Optical Modalities for Research, Diagnosis, and Treatment of Stroke and the Consequent Brain Injuries
Abstract
:1. Introduction
2. Investigating In Vivo Stroke Model Using Photochemical Thrombosis
2.1. Photochemical Thrombosis-Based Stroke Animal Model Establishments
2.2. Summary of In Vivo Stroke Model Investigations
3. Optical Imaging Modalities to Develop and Verify Diagnosis/Treatment Techniques of Stroke
3.1. Fluorescence Imaging
3.2. Functional Near-Infrared Spectroscopy
3.3. Optical Coherence Tomography
3.4. Photoacoustic Imaging and Tomography
3.5. Summary of Optical Imaging Modalities
4. Light Therapy for Mitigation/Treatment of Stroke
4.1. Light Therapy for Stroke Based on Photobiomodulation
4.2. Optogenetic Neurostimulation to Treat Stroke
4.3. Summary of Optical Treatments for Stroke
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Johnson, W.; Onuma, O.; Owolabi, M.; Sachdev, S. Stroke: A global response is needed. Bull. World Health Organ. 2016, 94, 634. [Google Scholar] [CrossRef] [PubMed]
- 2021 Heart Disease & Stroke Statistical Update Fact Sheet—Global Burden of Disease, American Heart Association. 2021. Available online: https://www.heart.org/-/media/PHD-Files-2/Science-News/2/2021-Heart-and-Stroke-Stat-Update/2021_Stat_Update_factsheet_Global_Burden_of_Disease.pdf (accessed on 2 February 2022).
- Sims, N.R.; Muyderman, H. Mitochondria, oxidative metabolism and cell death in stroke. Biochim. Biophys. Acta 2010, 1802, 80–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mattson, M.P.; Culmsee, C.; Yu, Z.F. Apoptotic and antiapoptotic mechanisms in stroke. Cell Tissue Res. 2000, 301, 173–187. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Klaus, J.A.; Zhang, J.; Xu, Z.; Kibler, K.K.; Andrabi, S.A.; Rao, K.; Yang, Z.-J.; Dawson, T.M.; Dawson, V.L.; et al. Contributions of poly(ADP-ribose) polymerase-1 and -2 to nuclear translocation of apoptosis- inducing factor and injury from focal cerebral ischemia. J. Neurochem. 2010, 113, 1012–1022. [Google Scholar] [CrossRef] [Green Version]
- Abdelkarim, G.E.; Gertz, K.; Harms, C.; Katchanov, J.; Dirnagl, U.; Szabo, C.; Endres, M. Protective effects of PJ34, a novel, potent inhibitor of poly(ADP-ribose) polymerase (PARP) in in vitro and in vivo models of stroke. Int. J. Mol. Med. 2001, 7, 255–260. [Google Scholar] [CrossRef]
- Domac, F.M.; Misirli, H. The role of neutrophils and interleukin-8 in acute ischemic stroke. Neuroscience 2008, 13, 136–141. [Google Scholar]
- Arvidsson, A.; Collin, T.; Kirik, D.; Kokaia, Z.; Lindvall, O. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat. Med. 2002, 8, 963–970. [Google Scholar] [CrossRef] [Green Version]
- Pin-Barre, C.; Hugues, N.; Constans, A.; Berton, E.; Pellegrino, C.; Laurin, J. Effects of different high-intensity interval training regimens on endurance and neuroplasticity after cerebral ischemia. Stroke 2021, 52, 1109–1114. [Google Scholar] [CrossRef]
- Cui, J.; Kim, C.S.; Kim, Y.; Sohn, M.K.; Jee, S. Effects of repetitive transcranial magnetic stimulation (rTMS) combined with aerobic exercise on the recovery of motor function in ischemic stroke rat model. Brain Sci. 2020, 10, 186. [Google Scholar] [CrossRef] [Green Version]
- Dihne, M.; Grommes, C.; Lutzenburg, M.; Witte, O.W.; Block, F. Different mechanisms of secondary neuronal damage in thalamic nuclei after focal cerebral ischemia in rats. Stroke 2002, 33, 3006–3011. [Google Scholar] [CrossRef] [Green Version]
- French, P. Biomedical optics. Phys. World 1999, 12, 41. [Google Scholar] [CrossRef]
- Wang, L.V.; Wu, H.I. Biomedical Optics: Principle and Imaging; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Torricelli, A.; Contini, D.; Mora, A.D.; Pifferi, A.; Re, R.; Zucchelli, L.; Caffini, M.; Farina, A.; Spinelli, L. Neurophotonics: Non-invasive optical techniques for monitoring brain functions. Funct. Neurol. 2014, 29, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.K.; Zheng, G.; Augustine, G.J.; Hochbaum, D.; Cohen, A.; Knöpfel, T.; Pisanello, F.; Pavone, F.S.; Vellekoop, I.M.; Booth, M.J.; et al. Roadmap on neurophotonics. J. Opt. 2016, 18, 093007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dittmar, M.; Spruss, T.; Schuierer, G.; Horn, M. External carotid artery territory ischemia impairs outcome in the endovascular filament model of middle cerebral artery occlusion in rats. Stroke 2003, 34, 2252–2257. [Google Scholar] [CrossRef] [PubMed]
- Ansari, S.; Azari, H.; McConnell, D.J.; Afzal, A.; Mocco, J. Intraluminal middle cerebral artery occlusion (MCAO) model for ischemic stroke with laser doppler flowmetry guidance in mice. J. Vis. Exp. 2011, 51, e2879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fluri, F.; Schuhmann, M.K.; Kleinschnitz, C. Animal models of ischemic stroke and their application in clinical research. Drug Des. Dev. Ther. 2015, 9, 3445–3454. [Google Scholar]
- Selvamani, A.; Sathyan, P.; Miranda, R.C.; Sohrabji, F. An antagomir to microRNA Let7f promotes neuroprotection in an ischemic stroke model. PLoS ONE 2012, 7, e32662. [Google Scholar] [CrossRef] [Green Version]
- Yanamoto, H.; Nagata, I.; Niitsu, Y.; Xue, J.H.; Zhang, Z.; Kikuchi, H. Evaluation of MCAO stroke models in normotensive rats: Standardized neocortical infarction by the 3VO technique. Exp. Neurol. 2003, 182, 261–274. [Google Scholar] [CrossRef]
- Bederson, J.B.; Pitts, L.H.; Tsuji, M.; Nishimura, M.C.; Davis, R.L.; Bartkowski, H. Rat middle cerebral artery occlusion: Evaluation of the model and development of a neurologic examination. Stroke 1986, 17, 472–476. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; Li, Y.; Fu, X.; Li, L.; Hao, X.; Li, S. Nonhuman primate models of focal cerebral ischemia. Neural Regen. Res. 2017, 12, 321–328. [Google Scholar]
- Abeysinghe, H.C.S.; Roulston, C.L.; Abeysinghe, H.C.S.; Roulston, C.L. A complete guide to using the Endothelin-1 model of stroke in conscious rats for acute and long-term recovery studies. In Traumatic and Ischemic Injury, 1st ed.; Tharakan, B., Ed.; Humana Press: New York, NY, USA, 2018; pp. 115–133. [Google Scholar]
- Chan, H.H.; Cooperrider, J.L.; Park, H.J.; Wathen, C.A.; Gale, J.T.; Baker, K.B.; Machado, A.G. Crossed cerebellar atrophy of the lateral cerebellar nucleus in an endothelin-1-induced, rodent model of ischemic stroke. Front. Aging Neurosci. 2017, 9, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenblum, W.I.; El-Sabban, F. Platelet aggregation in the cerebral microcirculation: Effect of aspirin and other agents. Circ. Res. 1977, 40, 320–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watson, B.D.; Dietrich, W.D.; Busto, R.; Wachtel, M.S.; Ginsberg, M.D. Induction of reproducible brain infarction by photochemically initiated thrombosis. Ann. Neurol. 1985, 17, 497–504. [Google Scholar] [CrossRef] [PubMed]
- Labat-gest, V.; Tomasi, S. Photothrombotic ischemia: A minimally invasive and reproducible photochemical cortical lesion model for mouse stroke studies. J. Vis. Exp. 2013, 76, e50370. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.Y.; Kuo, Y.M.; Chen, H.R.; Short-Miller, J.C.; Smucker, M.R.; Kuan, C.Y. A murine photothrombotic stroke model with an increased fibrin content and improved responses to tPA-lytic treatment. Blood Adv. 2020, 4, 1222–1231. [Google Scholar] [CrossRef]
- Sigler, A.; Goroshkov, A.; Murphy, T.H. Hardware and methodology for targeting single brain arterioles for photothrombotic stroke on an upright microscope. J. Neurosci. Methods 2008, 170, 35–44. [Google Scholar] [CrossRef]
- Alaverdashvili, M.; Paterson, P.G.; Bradley, M.P. Laser system refinements to reduce variability in infarct size in the rat photothrombotic stroke model. J. Neurosci. Methods 2015, 247, 58–66. [Google Scholar] [CrossRef] [Green Version]
- Tuor, U.I.; Deng, Q.; Rushforth, D.; Foniok, T.; Qiao, M. Model of minor stroke with mild peri-infarct ischemic injury. J. Neurosci. Methods 2016, 268, 56–65. [Google Scholar] [CrossRef] [Green Version]
- Oh, S.S.; Park, H.J.; Min, H.S.; Kim, S.D.; Bae, S.K.; Kim, J.S.; Ryu, R.-H.; Kim, J.C.; Kim, S.H.; Lee, S.; et al. Investigation of a photothrombosis inducing system for an observation of transient variations in an in vivo rat brain. Curr. Opt. Photonics 2018, 2, 499–507. [Google Scholar]
- Kim, Y.; Lee, Y.B.; Bae, S.K.; Oh, S.S.; Choi, J. Development of a photochemical thrombosis investigation system to obtain a rabbit ischemic stroke model. Sci. Rep. 2021, 11, 5787. [Google Scholar] [CrossRef]
- Liu, Q.; Li, Y.; Lu, H.; Tong, S. Real-time high resolution laser speckle imaging of cerebral vascular changes in a rodent photothrombosis model. Biomed. Opt. Express 2014, 5, 1483–1493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Murphy, T.H. Imaging the impact of cortical microcirculation on synaptic structure and sensory-evoked hemodynamic responses in vivo. PLoS Biol. 2007, 5, e119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, H.; Li, Y.; Yuan, L.; Li, H.; Lu, X.; Tong, S. Induction and imaging of photothrombotic stroke in conscious and freely moving rats. J. Biomed. Opt. 2014, 19, 096013. [Google Scholar] [CrossRef] [PubMed]
- Xia, T.; Li, N.; Fang, X. Single-molecule fluorescence imaging in living cells. Ann. Rev. Phys. Chem. 2013, 64, 459–480. [Google Scholar] [CrossRef]
- Biswas, J.; Liu, Y.; Singer, R.H.; Wu, B. Fluorescence imaging methods to investigate translation in single cells. Cold Spring Harb. Perspect. Biol. 2019, 11, a032722. [Google Scholar] [CrossRef]
- Choi, J.; Sung, J.H.; Shuler, M.L.; Kim, D. Investigation of portable in situ fluorescence optical detection for microfluidic 3D cell culture assays. Opt. Lett. 2016, 35, 1374–1376. [Google Scholar] [CrossRef]
- Morris, S.J. Real-time multi-wavelength fluorescence imaging of living cells. Biotechnoques 1990, 8, 296–308. [Google Scholar]
- Mitsunaga, M.; Kosaka, N.; Choyke, P.L.; Young, M.R.; Dextras, C.R.; Saud, S.M.; Colburn, N.H.; Sakabe, M.; Nagano, T.; Asanuma, D.; et al. Fluorescence endoscopic detection of murine colitis-associated colon cancer by topically applied enzymatically rapid-activatable probe. Gut 2013, 62, 1179–1186. [Google Scholar] [CrossRef]
- Nudo, R.J. Functional and structural plasticity in mortor cortex: Implications for stroke recovery. Phys. Med. Rehabil. Clin. N. Am. 2003, 14, S57–S76. [Google Scholar] [CrossRef]
- Murphy, T.H.; Corbett, D. Plasticity during stroke recovery: From synapse to behavior. Nat. Rev. Neurosci. 2009, 10, 861–872. [Google Scholar] [CrossRef]
- Okabe, N.; Narita, K.; Miyamoto, O. Axonal remodeling in the corticospinal tract after stroke: How does rehabilitative training modulate it? Neural Regen. Res. 2017, 12, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Carmichael, S.T.; Kathirvelu, B.; Schweppe, C.A.; Nie, E.H. Molecular, cellular and functional events in axonal sprouting after stroke. Exp. Neurol. 2017, 287, 384–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, C.E.; Boyd, J.D.; Murphy, T.H. Longitudinal in vivo imaging reveals balanced and branch-specific remodeling of mature cortical pyramidal dendritic arbors after stroke. J. Cereb. Blood Flow Metabol. 2010, 30, 783–791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nie, S.; Chiu, D.T.; Zare, R.N. Probing individual molecules with confocal fluorescence microscopy. Science 1994, 266, 1018–1021. [Google Scholar] [CrossRef]
- Nwaneshiudu, A.; Kuschal, C.; Sakamoto, F.H.; Anderson, R.R.; Schwarzenberger, K.; Young, R.C. Introduction to confocal microscopy. J. Investig. Dermatol. 2012, 132, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Helmchen, F.; Denk, W. Deep tissue two-photon microscopy. Nat. Methods 2005, 2, 932–940. [Google Scholar] [CrossRef]
- Zong, W.; Wu, R.; Li, M.; Hu, Y.; Li, Y.; Li, J.; Rong, H.; Wu, H.; Xu, Y.; Lu, Y.; et al. Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice. Nat. Methods 2017, 14, 713–719. [Google Scholar] [CrossRef]
- Nishimura, N.; Schaffer, C.B.; Friedman, B.; Lyden, P.D.; Kleinfeld, D. Penetrating arterioles are a bottleneck in the perfusion of neocortex. Proc. Natl. Acad. Sci. USA 2007, 104, 365–370. [Google Scholar] [CrossRef] [Green Version]
- Watts, L.T.; Zheng, W.; Carling, R.J.; Frohlich, V.C.; Lechleiter, J.D. Rose Bengal photothrombosis by confocal optical imaging in vivo: A model of single vessel stroke. J. Vis. Exp. 2015, 100, e52794. [Google Scholar]
- Schrandt, C.J.; Kazmi, S.S.; Jonse, T.A.; Dunn, A.K. Chronic monitoring of vascular progression after ischemic stroke using multiexposure speckle imaging and two-photon fluorescence microscopy. J. Cereb. Blood Flow Metabol. 2015, 35, 933–942. [Google Scholar] [CrossRef]
- Aswendt, M.; Adamczak, J.; Tennstaedt, A. A review of novel optical imaging strategies of the stroke pathology and stem cell therapy in stroke. Front. Cell. Neurosci. 2014, 8, 226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, G.; Diao, S.; Chang, J.; Antaris, A.L.; Chen, C.; Zhang, B.; Zhao, S.; Atochin, D.N.; Huang, P.L.; Andreasson, K.I.; et al. Through-skull fluorescence imaging of the brain in a new near-infrared window. Nat. Photon. 2014, 8, 723–730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Fan, S.; Yao, Y.; Ding, J.; Wang, Y.; Zhao, Z.; Liao, L.; Li, P.; Zang, F.; Teng, G.-J. In vivo near-infrared imaging of fibrin deposition in thromboembolic stroke in mice. PLoS ONE 2012, 7, e30262. [Google Scholar] [CrossRef] [PubMed]
- Bunce, S.C.; Izzetoglu, M.; Izzetoglu, K.; Onaral, B.; Pourrezaei, K. Functional near-infrared spectroscopy. IEEE Eng. Med. Biol. Mag. 2006, 25, 54–62. [Google Scholar] [CrossRef]
- Scholkmann, F.; Kleiser, S.; Metz, A.J.; Zimmermann, R.; Pavia, J.M.; Wolf, U.; Wolf, M. A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology. Neuroimage 2014, 85, 6–27. [Google Scholar] [CrossRef]
- Ferrari, M.; Quaresima, V. A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. Neuroimage 2012, 63, 921–935. [Google Scholar] [CrossRef]
- Nguyen, H.D.; Hong, K.S.; Shin, Y.I. Bundled-optode method in functional near-infrared spectroscopy. PLoS ONE 2016, 11, e0165146. [Google Scholar] [CrossRef]
- Shang, Y.; Chen, L.; Toborek, M.; Yu, G. Diffuse optical monitoring of repeated cerebral ischemia in mice. Opt. Express 2011, 19, 20301–20315. [Google Scholar] [CrossRef] [Green Version]
- Han, C.-H.; Song, H.; Kang, Y.-G.; Kim, B.-M.; Im, C.-H. Hemodynamic responses in rat brain during transcranial direct current stimulation: A functional near-infrared spectroscopy study. Biomed. Opt. Express 2014, 5, 1812–1821. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z.-J.; Ren, M.; Li, L.; Liu, Y.; Su, J.; Yang, S.-H.; Liu, H. Interleaved imaging of cerebral hemodynamics and blood flow index to monitor ischemic stroke and treatment in rat by volumetric diffuse optical tomography. Neuroimage 2014, 85, 566–582. [Google Scholar] [CrossRef] [Green Version]
- Aries, M.J.H.; Coumou, A.D.; Elting, J.W.J.; van der Harst, J.J.; Kremer, B.P.H.; Vroomen, P.C.A.J. Near infrared spectroscopy for the detection of desaturations in vulnerable ischemic brain tissue: A pilot study at the stroke unit bedside. Stroke 2012, 43, 1134–1136. [Google Scholar] [CrossRef] [PubMed]
- Giacalone, G.; Zanoletti, M.; Re, R.; Germinario, B.; Contini, D.; Spinelli, L.; Torricelli, A.; Roveri, L. Time-domain near-infrared spectroscopy in acute ischemic stroke patients. Neurophotonics 2019, 6, 015003. [Google Scholar] [CrossRef] [PubMed]
- Saitou, H.; Yanagi, H.; Hara, S.; Tsuchiya, S.; Tomura, S. Cerebral blood volume and oxygenation among poststroke hemiplegic patients: Effects of 13 rehabilitation tasks measured by near-infrared spectroscopy. Arch. Phys. Med. Rehabil. 2000, 81, 1348–1356. [Google Scholar] [CrossRef] [PubMed]
- Kato, H.; Izumiyama, M.; Koizumi, H.; Takahashi, A.; Itoyama, Y. Near-infrared spectroscopic topography as a tool to monitor motor reorganization after hemiparetic stroke: A comparison with functional MRI. Stroke 2002, 33, 2032–2036. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.Y.; Lin, S.I.; Penney, T.; Chen, J.J. Applications of near infrared spectroscopy and imaging for motor rehabilitation in stroke patients. J. Med. Biol. Eng. 2009, 29, 210–221. [Google Scholar]
- Miyai, I.; Suzuki, M.; Hatakenaka, M.; Kubota, K. Effect of body weight support on cortical activation during gait in patients with stroke. Exp. Brain Res. 2006, 169, 85–91. [Google Scholar] [CrossRef]
- Miyai, I.; Yagura, H.; Oda, I.; Konishi, I.; Eda, H.; Suzuki, T.; Kubota, K. Premotor cortex is involved in restoration of gait in stroke. Ann. Neurol. 2002, 52, 188–194. [Google Scholar] [CrossRef]
- Lin, P.-Y.; Chen, J.-J.J.; Lin, S.-I. The cortical control of cycling exercise in stroke patients: An fNIRS study. Hum. Brain Map. 2013, 34, 2381–2390. [Google Scholar] [CrossRef]
- Dutta, A.; Jacob, A.; Chowdhury, S.R.; Das, A.; Nitsche, M.A. EEG-NIRS based assessment of neurovascular coupling during anodal transcranial direct current stimulation—A stroke case series. J. Med. Syst. 2015, 39, 36. [Google Scholar] [CrossRef]
- Guhathakurta, D.; Dutta, A. Computational pipeline for NIRS-EEG joint imaging of tDCS-evoked cerebral responses—An application in ischemic stroke. Front. Neurosci. 2016, 10, 261. [Google Scholar] [CrossRef] [Green Version]
- Litscher, G.; Zhang, X.; Sheng, Z.; Jing, X.-H.; Wang, L. Multimodal laser stimulation and traditional needle acupuncture in post-stroke patients—A pilot cross-over study with results from near infrared spectroscopy. Medicines 2019, 6, 115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, A.L. Portable traumatic brain injury detection with near-infrared technology: Infrascanner model 2000. Mil. Med. 2015, 180, 597–598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peters, J.; Van Wageningen, B.; Hoogerwerf, N.; Tan, E. Near-infrared spectroscopy: A promising prehospital tool for management of traumatic brain injury. Prehosp. Disaster Med. 2017, 32, 414–418. [Google Scholar] [CrossRef] [PubMed]
- Schober, P.; Bossers, S.M.; Schwarte, L.A. Intracranial hematoma detection by near infrared spectroscopy in a helicopter emergency medical service: Practical experience. BioMed Res. Int. 2017, 2017, 1846830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujimoto, J.G.; Brezinski, M.E.; Tearney, G.J.; Boppart, S.A.; Bouma, B.; Hee, M.R.; Southern, J.F.; Swanson, E.A. Optical biopsy and imaging using optical coherence tomography. Nat. Med. 1995, 1, 970–972. [Google Scholar] [CrossRef]
- Fercher, A.F. Optical coherence tomography. J. Biomed. Opt. 1996, 1, 157–174. [Google Scholar] [CrossRef]
- Fercher, A.F.; Drexler, W.; Hitzenberger, C.K.; Lasser, T. Optical coherence tomography-principles and applications. Rep. Prog. Phys. 2003, 66, 239. [Google Scholar] [CrossRef]
- Wojtkowski, M.; Leitgeb, R.; Kowalczyk, A.; Bajraszewski, T.; Fercher, A.F. In vivo human retinal imaging by Fourier domain optical coherence tomography. J. Biomed. Opt. 2002, 7, 457–463. [Google Scholar] [CrossRef]
- Graham, K.L.; McCowan, C.I.; Caruso, K.; Billson, F.M.; Whittaker, C.J.; White, A. Optical coherence tomography of the retina, nerve fiber layer, and optic nerve head in dogs with glaucoma. Vet. Ophthalmol. 2020, 23, 97–112. [Google Scholar] [CrossRef]
- Rajabi-Estarabadi, A.; Bittar, J.M.; Zheng, C.; Nascimento, V.; Camacho, I.; Feun, L.G.; Nasiriavanaki, M.; Kunz, M.; Nouri, K. Optical coherence tomography imaging of melanoma skin cancer. Lasers Med. Sci. 2019, 34, 411–420. [Google Scholar] [CrossRef]
- Rangaraju, L.P.; Kunapuli, G.; Every, D.; Ayala, O.D.; Ganapathy, P.; Mahadevan-Jansen, A. Classification of burn injury using Raman spectroscopy and optical coherence tomography: An ex-vivo study on porcine skin. Burns 2019, 45, 659–670. [Google Scholar] [CrossRef] [PubMed]
- Wartak, A.; Beer, F.; Desissaire, S.; Baumann, B.; Pircher, M.; Hitzenberger, C.K. Investigating spontaneous retinal venous pulsation using Doppler optical coherence tomography. Sci. Rep. 2019, 9, 4237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Israelsen, N.M.; Peterson, C.R.; Barh, A.; Jain, D.; Jensen, M.; Hannesschläger, G.; Tidemand-Lichtenberg, P.; Pedersen, C.; Podoleanu, A.; Bang, O. Real-time high-resolution mid-infrared optical coherence tomography. Light Sci. Appl. 2019, 8, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, W.J.; Li, Y.; Wang, R.K. Monitoring acute stroke progression: Multi-parametric OCT imaging of cortical perfusion, flow, and tissue scattering in a mouse model of permanent focal ischemia. IEEE Trans. Med. Imaging 2019, 38, 1427–1437. [Google Scholar] [CrossRef]
- Wei, X.; Hormel, T.T.; Pi, S.; Guo, Y.; Jian, Y.; Jia, Y. High dynamic range optical coherence tomography angiography (HDR-OCTA). Biomed. Opt. Express 2019, 10, 3560–3571. [Google Scholar] [CrossRef]
- Yu, L.; Nguyen, E.; Liu, G.; Choi, B.; Chen, Z. Spectral Doppler optical coherence tomography imaging of localized ischemic stroke in a mouse model. J. Biomed. Opt. 2010, 15, 066006. [Google Scholar] [CrossRef] [Green Version]
- Osiac, E.; Bălşeanu, T.A.; Mogoantă, L.; Gheonea, D.I.; Pirici, I.; Iancău, M.; Mitran, S.I.; Albu, C.V.; Cătălin, B.; Sfredel, V. Optical coherence tomography investigation of ischemic stroke inside a rodent model. Rom. J. Morphol. Embryol. 2014, 55, 767–772. [Google Scholar]
- Streba, C.T.; Georgescu, S.L.; Jigau, M.; Dinu, M.A.; Balseanu, T.-A.; Dinescu, V.C.; Catalin, B.; Osiac, E. Artificial neural network as an analyze tool for optical coherence tomography images of experimental stroke models-a pilot study. Phys. AUC 2015, 25, 1–8. [Google Scholar]
- Srinivasan, V.J.; Mandeville, E.T.; Can, A.; Blasi, F.; Climov, M.; Daneshmand, A.; Lee, J.H.; Yu, E.; Radhakrishnan, H.; Lo, E.H.; et al. Multiparametric, longitudinal optical coherence tomography imaging reveals acute injury and chronic recovery in experimental ischemic stroke. PLoS ONE 2013, 8, e71478. [Google Scholar] [CrossRef]
- Chen, S.; Liu, Q.; Shu, X.; Soetikno, B.; Tong, S.; Zhang, H.F. Imaging hemodynamic response after ischemic stroke in mouse cortex using visible-light optical coherence tomography. Biomed. Opt. Express 2016, 7, 3377–3389. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Chen, S.; Soetikno, B.; Liu, W.; Tong, S.; Zhang, H.F. Monitoring acute stroke in mouse model using laser speckle imaging-guided visible-light optical coherence tomography. IEEE Trans. Biomed. Eng. 2017, 65, 2136–2142. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Wang, L.V. Photoacoustic imaging in biomedicine. Rev. Sci. Instrum. 2006, 77, 041101. [Google Scholar] [CrossRef] [Green Version]
- Beard, P. Biomedical photoacoustic imaging. Interface Focus 2011, 1, 602–631. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Lin, L.; Wang, L.V. Multiscale photoacoustic tomography. Opt. Photonics News 2018, 29, 32–39. [Google Scholar] [CrossRef]
- Schwarz, M.; Omar, M.; Buehler, A.; Aguirre, J.; Ntziachristos, V. Implications of ultrasound frequency in optoacoustic mesoscopy of the skin. IEEE. Trans. Med. Imaging 2015, 34, 672–677. [Google Scholar] [CrossRef]
- Fehm, T.F.; Deán-Ben, X.L.; Ford, S.J.; Razansky, D. In vivo whole-body optoacoustic scanner with real-time volumetric imaging capacity. Optica 2016, 3, 1153–1159. [Google Scholar] [CrossRef]
- Li, L.; Zhu, L.; Ma, C.; Lin, L.; Yao, J.; Wang, L.; Maslov, K.; Zhang, R.; Chen, W.; Shi, J.; et al. Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution. Nat. Biomed. Eng. 2017, 1, 0071. [Google Scholar] [CrossRef]
- Hartman, R.K.; Hallam, K.A.; Donnelly, E.M.; Emelianov, S.Y. Photoacoustic imaging of gold nanorods in the brain delivered via microbubble-assisted focused ultrasound: A tool for in vivo molecular neuroimaging. Laser Phys. Lett. 2019, 16, 025603. [Google Scholar] [CrossRef]
- Kitai, T.; Torii, M.; Sugie, T.; Kanao, S.; Mikami, Y.; Shiina, T.; Toi, M. Photoacoustic mammography: Initial clinical results. Breast Cancer 2014, 21, 146–153. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.; Hu, P.; Shi, J.; Appleton, C.M.; Maslov, K.; Li, L.; Zhang, R.; Wang, L.V. Single-breath-hold photoacoustic computed tomography of the breast. Nat. Commun. 2018, 9, 2352. [Google Scholar] [CrossRef]
- Laufer, J.; Zhang, E.; Raivich, G.; Beard, P. Three-dimensional noninvasive imaging of the vasculature in the mouse brain using a high resolution photoacoustic scanner. Appl. Opt. 2009, 48, D299–D306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, L.; Yao, J.; Zhang, R.; Chen, C.-C.; Huang, C.-H.; Li, Y.; Wang, L.; Chapman, W.; Zou, J.; Wang, L.V. High-speed photoacoustic microscopy of mouse cortical microhemodynamics. J. Biophotonics 2017, 10, 792–798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kneipp, M.; Turner, J.; Hambauer, S.; Krieg, S.M.; Lehmberg, J.; Lindauer, U.; Razansky, D. Functional real-time optoacoustic imaging of middle cerebral artery occlusion in mice. PLoS ONE 2014, 9, e96118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, Z.; Wang, Z.; Yang, X.; Luo, Q.; Gong, H. In vivo imaging of hemodynamics and oxygen metabolism in acute focal cerebral ischemic rats with laser speckle imaging and functional photoacoustic microscopy. J. Biomed. Opt. 2012, 17, 081415. [Google Scholar] [CrossRef]
- Wu, D.; Yang, J.; Zhang, G.; Jiang, H. Noninvasive in vivo monitoring of collagenase induced intracerebral hemorrhage by photoacoustic tomography. Biomed. Opt. Express 2017, 8, 2276–2286. [Google Scholar] [CrossRef] [Green Version]
- Ni, R.; Vaas, M.; Ren, W.; Klohs, J. Non-invasive detection of matrix-metalloproteinase activity in a mouse model of cerebral ischemia using multispectraloptoacoustic tomography. Proc. SPIE 2018, 10494, 104940O. [Google Scholar]
- Medrado, A.P.; Soares, A.P.; Santos, E.T.; Reis, S.R.A.; Andrade, Z.A. Influence of laser photobiomodulation upon connective tissue remodeling during wound healing. J. Photochem. Photobiol. B 2008, 92, 144–152. [Google Scholar] [CrossRef]
- Kuffler, D.P. Photobiomodulation in promoting wound healing: A review. Future Med. 2016, 11, 107–122. [Google Scholar] [CrossRef]
- Corazza, A.V.; Jorge, J.; Kurachi, C.; Bagnato, V.S. Photobiomodulation on the angiogenesis of skin wounds in rats using different light sources. Photomed. Laser Surg. 2007, 25, 102–106. [Google Scholar] [CrossRef]
- de Freitas, L.F.; Hamblin, M.R. Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 348–364. [Google Scholar] [CrossRef] [Green Version]
- Desmet, K.D.; Paz, D.A.; Corry, J.J.; Eells, J.T.; Wong-Riley, M.T.T.; Henry, M.M.; Buchmann, E.V.; Connelly, M.P.; Dovi, J.V.; Liang, H.L.; et al. Clinical and experimental applications of NIR-LED photobiomodulation. Photomed. Laser Surg. 2006, 24, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Cassano, P.; Petrie, S.R.; Hamblin, M.R.; Henderson, T.A.; Iosifescu, D.V. Review of transcranial photobiomodulation for major depressive disorder: Targeting brain metabolism, inflammation, oxidative stress, and neurogenesis. Neurophotonics 2016, 3, 031404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cassano, P.; Petrie, S.R.; Mischoulon, D.; Cusin, C.; Katnani, H.; Yeung, A.; Taboada, L.D.; Archibald, A.; Bui, E.; Baer, L.; et al. Transcranial photobiomodulation for the treatment of major depressive disorder. The ELATED-2 pilot trial. Photomed. Laser Surg. 2018, 36, 634–646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamilton, C.; Hamilton, D.; Nicklason, F.; El Massri, N.; Mitrofanis, J. Exploring the use of transcranial photobiomodulation in Parkinson’s disease patients. Neural Regen. Res 2018, 13, 1738. [Google Scholar]
- Hamblin, M.R. Shining light on the head: Photobiomodulation for brain disorders. BBA Clin. 2016, 6, 113–124. [Google Scholar] [CrossRef] [Green Version]
- DeTaboada, L.; Ilic, S.; Leichliter-Martha, S.; Oron, U.; Oron, A.; Streeter, J. Transcranial application of low-energy laser irradiation improves neurological deficits in rats following acute stroke. Laser Surg. Med. 2006, 38, 70–73. [Google Scholar] [CrossRef]
- Oron, A.; Oron, U.; Chen, J.; Eilam, A.; Zhang, C.; Sadeh, M.; Lampl, Y.; Streeter, J.; DeTaboada, L.; Chopp, M. Low-level laser therapy applied transcranially to rats after induction of stroke significantly reduces long-term neurological deficits. Stroke 2006, 37, 2620–2624. [Google Scholar] [CrossRef] [Green Version]
- Lapchak, P.A.; Salgado, K.F.; Chao, C.H.; Zivin, J.A. Transcranial near-infrared light therapy improves motor function following embolic strokes in rabbits: An extended therapeutic window study using continuous and pulse frequency delivery modes. Neuroscience 2007, 148, 907–914. [Google Scholar] [CrossRef]
- Lee, H.I.; Lee, S.-W.; Kim, N.G.; Park, K.-J.; Choi, B.T.; Shin, Y.-I.; Shin, H.K. Low-level light emitting diode (LED) therapy suppresses inflammasome-mediated brain damage in experimental ischemic stroke. J. Biophotonics 2017, 11, 1502–1513. [Google Scholar] [CrossRef]
- Lee, H.I.; Lee, S.W.; Kim, N.G.; Park, K.-J.; Choi, B.T.; Shin, Y.-I.; Shin, H.K. Low-level light emitting diode therapy promotes long-term functional recovery after experimental stroke in mice. J. Biophotonics 2017, 10, 1761–1771. [Google Scholar] [CrossRef]
- Argibay, B.; Compos, F.; Perez-Mato, M.; Vieites-Prado, A.; Correa-Paz, C.; López-Arias, E.; Da Silva-Candal, A.; Moreno, V.; Montero, C.; Sobrino, T.; et al. Light-Emitting Diode photobiomodulation after cerebral ischemia. Front. Neurol. 2019, 10, 911. [Google Scholar] [CrossRef] [PubMed]
- Lampl, Y.; Zivin, J.A.; Fisher, M.; Lew, R.; Welin, L.; Dahlof, B.; Borenstein, P.; Andersson, B.; Perez, J.; Caparo, C.; et al. Infrared laser therapy for ischemic stroke: A new treatment strategy: Results of the NeuroThera Effectiveness and Safety Trial-1 (NEST-1). Stroke 2007, 38, 1843–1849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lapchak, P. Taking a light approach to treating acute ischemic stroke patients: Transcranial near-infrared laser therapy translational science. Ann. Med. 2010, 42, 576–586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huisa, B.N.; Stemer, A.B.; Walker, M.G.; Rapp, K.; Meyer, B.C.; Zivin, J.A. Transcranial laser therapy for acute ischemic stroke: A pooled analysis of NEST-1 and NEST-2. Int. J. Stroke 2013, 8, 315–320. [Google Scholar] [CrossRef] [Green Version]
- Casalechi, H.L.; Dumont, A.J.L.; Ferreira, L.A.B.; de Paiva, P.R.V.; Machado, C.D.S.M.; de Carvalho, P.D.T.C.; Oliveira, C.S.; Leal, E.C.P., Jr. Acute effects of photobiomodulation therapy and magnetic field on functional mobility in stroke survivors: A randomized, sham-controlled, triple-blind, crossover, clinical trial. Lasers Med. Sci. 2019, 35, 1253–1262. [Google Scholar] [CrossRef] [PubMed]
- Nagel, G.; Szellas, T.; Huhn, W.; Kateriya, S.; Adeishvili, N.; Berthold, P.; Ollig, D.; Hegemann, P.; Bamberg, E. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl. Acad. Sci. USA 2003, 100, 13940–13945. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.K.; Adhikari, A.; Deisseroth, K. Integration of optogenetics with complementary methodologies in systems neuroscience. Nat. Rev. Neurosci. 2017, 18, 222–235. [Google Scholar] [CrossRef]
- Song, C.; Knöpfel, T. Optogenetics enlightens neuroscience drug discovery. Nat. Rev. Drug Discov. 2016, 15, 97–109. [Google Scholar] [CrossRef]
- Cheng, M.Y.; Wang, E.H.; Woodson, W.J.; Wang, S.; Sun, G.; Lee, A.G.; Arac, A.; Fenno, L.E.; Deisseroth, K.; Steinberg, G.K. Optogenetic neuronal stimulation promotes functional recovery after stroke. Proc. Natl. Acad. Sci. USA 2014, 111, 12913–12918. [Google Scholar] [CrossRef] [Green Version]
- Song, M.; Yu, S.P.; Mohamad, O.; Cao, W.; Wei, Z.Z.; Gu, X.; Jiang, M.Q.; Wei, L. Optogenetic stimulation of glutamatergic neuronal activity in the striatum enhances neurogenesis in the subventricular zone of normal and stroke mice. Neurobiol. Dis. 2017, 98, 9–24. [Google Scholar] [CrossRef] [Green Version]
- Shah, A.M.; Ishizaka, S.; Cheng, M.Y.; Wang, E.H.; Bautista, A.R.; Levy, S.; Smerin, D.; Sung, G.; Steinberg, G.K. Optogenetic neuronal stimulation of the lateral cerebellar nucleus promotes persistent functional recovery after stroke. Sci. Rep. 2017, 7, 46612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pendharkar, A.V.; Smerin, D.; Gonzalez, L.; Wang, E.H.; Levy, S.; Wang, S.; Ishizaka, S.; Ito, M.; Uchino, H.; Chiang, T.; et al. Optogenetic stimulation reduces neuronal nitric oxide synthase expression after stroke. Transl. Stroke Res. 2021, 12, 347–356. [Google Scholar] [CrossRef] [PubMed]
- Conti, E.; Mascaro, A.L.A.; Scaglione, A.; de Vito, G.; Calugi, F.; Pasquini, M.; Pizzorusso, T.; Micera, S.; Pavone, F.S. Restoration of motor-evoked cortical activity is a distinguishing feature of the most effective rehabilitation therapy after stroke. bioRxiv 2021. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, S.S.; Kim, Y.; Lee, Y.B.; Bae, S.K.; Kim, J.S.; An, S.-h.; Choi, J.-r. Optical Modalities for Research, Diagnosis, and Treatment of Stroke and the Consequent Brain Injuries. Appl. Sci. 2022, 12, 1891. https://doi.org/10.3390/app12041891
Oh SS, Kim Y, Lee YB, Bae SK, Kim JS, An S-h, Choi J-r. Optical Modalities for Research, Diagnosis, and Treatment of Stroke and the Consequent Brain Injuries. Applied Sciences. 2022; 12(4):1891. https://doi.org/10.3390/app12041891
Chicago/Turabian StyleOh, Sung Suk, Yoonhee Kim, Yoon Bum Lee, Seung Kuk Bae, Jun Sik Kim, Sang-hyun An, and Jong-ryul Choi. 2022. "Optical Modalities for Research, Diagnosis, and Treatment of Stroke and the Consequent Brain Injuries" Applied Sciences 12, no. 4: 1891. https://doi.org/10.3390/app12041891
APA StyleOh, S. S., Kim, Y., Lee, Y. B., Bae, S. K., Kim, J. S., An, S. -h., & Choi, J. -r. (2022). Optical Modalities for Research, Diagnosis, and Treatment of Stroke and the Consequent Brain Injuries. Applied Sciences, 12(4), 1891. https://doi.org/10.3390/app12041891