Dual-Frequency Microwave Plasma Source Based on Microwave Coaxial Transmission Line
Abstract
:Featured Application
Abstract
1. Introduction
2. Experiment Design
3. Experiment Results
4. Summary and Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Shin, K.S.; Sahu, B.B.; Han, J.G.; Hori, M. Utility of dual frequency hybrid source for plasma and radical generation in plasma enhanced chemical vapor deposition process. Jpn. J. Appl. Phys. 2015, 54, 76201. [Google Scholar] [CrossRef]
- van de Ven, E.P.; Connick, I.W.; Harrus, A.S. Advantages of dual frequency PECVD for deposition of ILD and passivation films. In Proceedings of the Seventh International IEEE Conference on VLSI Multilevel Interconnection, Santa Clara, CA, USA, 12–13 June 1990. [Google Scholar]
- Lafleur, T.; Delattre, P.A.; Johnson, E.V.; Booth, J.P. Separate control of the ion flux and ion energy in capacitively coupled radio-frequency discharges using voltage waveform tailoring. Appl. Phys. Lett. 2012, 101, 124104. [Google Scholar] [CrossRef]
- Curley, G.A.; Marić, D.; Booth, J.; Corr, C.S.; Chabert, P.; Guillon, J. Negative ions in single and dual frequency capacitively coupled fluorocarbon plasmas. Plasma Sources Sci. Technol. 2007, 16, S87–S93. [Google Scholar] [CrossRef]
- Lee, J.K.; Manuilenko, O.V.; Babaeva, N.Y.; Kim, H.C.; Shon, J.W. Ion energy distribution control in single and dual frequency capacitive plasma sources. Plasma Sources Sci. Technol. 2005, 14, 89–97. [Google Scholar] [CrossRef]
- Booth, J.P.; Curley, G.; Marić, D.; Chabert, P. Dual-frequency capacitive radiofrequency discharges: Effect of low-frequency power on electron density and ion flux. Plasma Sources Sci. Technol. 2010, 19, 15005. [Google Scholar] [CrossRef]
- Schulze, J.; Schüngel, E.; Czarnetzki, U.; Donkó, Z. Optimization of the electrical asymmetry effect in dual-frequency capacitively coupled radio frequency discharges: Experiment, simulation, and model. J. Appl. Phys. 2009, 106, 63307. [Google Scholar] [CrossRef] [Green Version]
- Maeshige, K.; Washio, G.; Yagisawa, T.; Makabe, T. Functional design of a pulsed two-frequency capacitively coupled plasma in CF[sub 4]/Ar for SiO[sub 2] etching. J. Appl. Phys. 2002, 91, 9494. [Google Scholar] [CrossRef]
- Piallat, F.; Vallée, C.; Gassilloud, R.; Michallon, P.; Pelissier, B.; Caubet, P. PECVD RF versus dual frequency: An investigation of plasma influence on metal–organic precursors’ decomposition and material characteristics. J. Phys. D Appl. Phys. 2014, 47, 185201. [Google Scholar] [CrossRef]
- Kim, M.; Cheong, H.; Whang, K. Particle formation and its control in dual frequency plasma etching reactors. J. Vac. Sci. Technol. A Vac. Surf. Film. 2015, 33, 41303. [Google Scholar] [CrossRef]
- Cianci, E.; Schina, A.; Minotti, A.; Quaresima, S.; Foglietti, V. Dual frequency PECVD silicon nitride for fabrication of CMUTs’ membranes. Sens. Actuators A Phys. 2006, 127, 80–87. [Google Scholar] [CrossRef]
- Pearce, C.W.; Fetcho, R.F.; Gross, M.D.; Koefer, R.F.; Pudliner, R.A. Characteristics of silicon nitride deposited by plasma-enhanced chemical vapor deposition using a dual frequency radio-frequency source. J. Appl. Phys. 1992, 71, 1838. [Google Scholar] [CrossRef]
- Tarraf, A.; Daleiden, J.; Irmer, S.; Prasai, D.; Hillmer, H. Stress investigation of PECVD dielectric layers for advanced optical MEMS. J. Micromechanics Microeng. 2003, 14, 317–323. [Google Scholar] [CrossRef]
- Zhou, X.; Tan, X.; Lv, Y.; Wang, Y.; Li, J.; Liang, S.; Zhang, Z.; Feng, Z.; Cai, S. 128-pixel arrays of 4H-SiC UV APD with dual-frequency PECVD SiNx passivation. Opt. Express 2020, 28, 29245. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Fu, W.; Zhang, C.; Lu, D.; Han, M.; Yan, Y. Langmuir Probe Diagnostics with Optical Emission Spectrometry (OES) for Coaxial Line Microwave Plasma. Appl. Sci. 2020, 10, 8117. [Google Scholar] [CrossRef]
- Cha, J.; Kim, S.; Lee, H. A Linear Microwave Plasma Source Using a Circular Waveguide Filled with a Relatively High-Permittivity Dielectric: Comparison with a Conventional Quasi-Coaxial Line Waveguide. Appl. Sci. 2021, 11, 5358. [Google Scholar] [CrossRef]
- Salgado-Meza, M.; Martínez-Rodríguez, G.; Tirado-Cantú, P.; Montijo-Valenzuela, E.E.; García-Gutiérrez, R. Synthesis and Properties of Electrically Conductive/Nitrogen Grain Boundaries Incorporated Ultrananocrystalline Diamond (N-UNCD) Thin Films Grown by Microwave Plasma Chemical Vapor Deposition (MPCVD). Appl. Sci. 2021, 11, 8443. [Google Scholar] [CrossRef]
- Wiktor, A.; Hrycak, B.; Jasiński, M.; Rybak, K.; Kieliszek, M.; Kraśniewska, K.; Witrowa-Rajchert, D. Impact of Atmospheric Pressure Microwave Plasma Treatment on Quality of Selected Spices. Appl. Sci. 2020, 10, 6815. [Google Scholar] [CrossRef]
- Zhang, Y.; Kushner, M.J.; Sriraman, S.; Marakhtanov, A.; Holland, J.; Paterson, A. Control of ion energy and angular distributions in dual-frequency capacitively coupled plasmas through power ratios and phase: Consequences on etch profiles. J. Vac. Sci. Technol. A 2015, 33, 31302. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Jeong, Y.; Shon, Y.; Kwon, D.; Jeon, J.; Choe, H. Modified Fluid Simulation of an Inductively Coupled Plasma Discharge. Appl. Sci. Converg. Technol. 2019, 28, 221–225. [Google Scholar] [CrossRef]
- Franz, G. Low Pressure Plasmas and Microstructuring Technology; Springer: Berlin/Heidelberg, Germany, 2009; pp. 188–190. [Google Scholar]
- Rebiai, S.; Bahouh, H.; Sahli, S. 2-D simulation of dual frequency capacitively coupled helium plasma, using COMSOL multiphysics. IEEE Trans. Dielectr. Electr. Insul. 2013, 20, 1616–1624. [Google Scholar] [CrossRef]
- Ochoa Brezmes, A.; Breitkopf, C. Simulation of inductively coupled plasma with applied bias voltage using COMSOL. Vacuum 2014, 109, 52–60. [Google Scholar] [CrossRef]
- Lei, F.; Li, X.; Liu, Y.; Liu, D.; Yang, M.; Yu, Y. Simulation of a large size inductively coupled plasma generator and comparison with experimental data. AIP Adv. 2018, 8, 15003. [Google Scholar]
- Lymberopoulos, D.P.; Economou, D.J. Modeling and simulation of glow discharge plasma reactors. J. Vac. Sci. Technol. A Vac. Surf. Film. 1994, 12, 1229–1236. [Google Scholar] [CrossRef]
- Shahbazian, A.; Salem, M.K.; Ghoranneviss, M. Simulation by COMSOL of Effects of Probe on Inductively Coupled Argon Plasma. Braz. J. Phys. 2021, 51, 351. [Google Scholar] [CrossRef]
- Reece Roth, J. Principles. In Industrial Plasma Engineering; CRC Press: Boca Raton, FL, USA, 1995; Volume 1. [Google Scholar]
No. | Reaction | Type | Energy Loss ∆ε (eV) |
---|---|---|---|
1 | Elastic | ||
2 | Excitation | 11.5 | |
3 | Superelastic | −11.5 | |
4 | Ionization | 15.8 | |
5 | Ionization | 4.24 | |
6 | Penning ionization | ||
7 | Metastable quenching |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Fu, W.; Zhang, C.; Lu, D.; Han, M.; Yan, Y. Dual-Frequency Microwave Plasma Source Based on Microwave Coaxial Transmission Line. Appl. Sci. 2021, 11, 9873. https://doi.org/10.3390/app11219873
Chen C, Fu W, Zhang C, Lu D, Han M, Yan Y. Dual-Frequency Microwave Plasma Source Based on Microwave Coaxial Transmission Line. Applied Sciences. 2021; 11(21):9873. https://doi.org/10.3390/app11219873
Chicago/Turabian StyleChen, Chi, Wenjie Fu, Chaoyang Zhang, Dun Lu, Meng Han, and Yang Yan. 2021. "Dual-Frequency Microwave Plasma Source Based on Microwave Coaxial Transmission Line" Applied Sciences 11, no. 21: 9873. https://doi.org/10.3390/app11219873
APA StyleChen, C., Fu, W., Zhang, C., Lu, D., Han, M., & Yan, Y. (2021). Dual-Frequency Microwave Plasma Source Based on Microwave Coaxial Transmission Line. Applied Sciences, 11(21), 9873. https://doi.org/10.3390/app11219873