A Two-Echelon Electric Vehicle Routing Problem with Time Windows and Battery Swapping Stations
Abstract
:1. Introduction
2. Literature Review
2.1. Related Research on the EVRP
2.2. Related Research on the 2E-VRP
3. Problem Formulation
3.1. Problem Description
3.2. Model
- (1)
- Direct delivery from the depot to customers is prohibited.
- (2)
- Each satellite can be visited by ICVs multiple times in the first echelon.
- (3)
- Only the first echelon allows split deliveries.
- (4)
- There is no direct travel between satellites in the second echelon.
- (5)
- The supply at the depot is sufficient.
- (6)
- The loading and service time at customers are assumed as being included into the travel time, and thus can be ignored.
- (7)
- The violation of time windows is not allowed.
- (1)
- Travelling costs of ICVs and EVs:
- (2)
- Battery swapping costs:
- (3)
- Fixed cost of ICVs and EVs:
4. Algorithms for the 2E-EVRPTW-BSS
Algorithm 1. VNS. |
Input: initial solution S0 = (,). |
A set of neighborhood structures Nk, k = 1,2,…, kmax for shaking phase. |
S*←S0 |
k, l = 1 |
Output: best feasible solution achieved S*. |
1. Whilek ≤ kmax |
2. Shaking: pick a random solution from the kth neighborhood of S*. |
Construct based on . Update the solution as |
3. While l ≤ lmax |
4. Local search ← the best solution from the lth neighborhood of . |
5. Construct based on Update the current solution as . |
6. Ifthen |
7. |
8. L = 1 |
9. Else |
10. L = l + 1 |
11. If*) then |
12. S*←S’’ |
13. K = 1 |
14. Else: |
15. K = k + 1 |
16. If the termination condition is met, then return S*. |
17. End while |
18. End while |
4.1. Solution Representation and Encoding
4.2. Initial Solution
4.3. Solution Decoding
4.4. Solution Evaluation
4.5. Neighborhoods and Local Search
5. Numerical Experiments
5.1. Experiment Description and Parameter Settings
5.2. Computational Results and Analysis
5.2.1. Comparison between the Proposed VNS and GUROBI for the Small-Sized Instances
5.2.2. Comparison between Two Metaheuristics for the Middle- and Large-Sized Instances
5.2.3. Comparison of Carbon Emission between ICVs and EVs in the Second-Echelon
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhao, Y.B.; Gao, P.P.; Yang, W.D.; Ni, H.G. Vehicle exhaust: An overstated cause of haze in China. Sci. Total Environ. 2018, 612, 490–491. [Google Scholar] [CrossRef] [PubMed]
- Savelesbergh, M.; Van Woensel, T. 50th Anniversary invited article-city logistics: Challenges and opportunities. Transp. Sci. 2016, 50, 579–590. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, M.; Zhang, W. A novel location-routing problem in electric vehicle transportation with stochastic demands. J. Clean. Prod. 2019, 221, 567–581. [Google Scholar] [CrossRef]
- Li, P.; Zhang, Y.; Zhang, K.; Jiang, M. The effects of dynamic traffic conditions, route characteristics and environmental conditions on trip-based electricity consumption prediction of electric bus. Energy 2021, 218, 119437. [Google Scholar] [CrossRef]
- John, J. JD.com CEO Sets February 2018 Target to Change Its Fleet of Delivery Vans in Beijing to Electric. 2017. Available online: https://www.gizmochina.com/2017/12/13/jd-com-ceo-sets-february-2018-target-change-fleet-delivery-vans-beijing-electric/ (accessed on 1 September 2019).
- Ma, S.C.; Fan, Y.; Guo, J.F.; Xu, J.H.; Zhu, J. Analyzing online behavior to determine Chinese consumers’ preferences for electric vehicles. J. Clean. Prod. 2019, 229, 244–255. [Google Scholar] [CrossRef]
- Ren, S.; Luo, F.; Lin, L.; Hsu, S.C.; Li, X.I. A novel dynamic pricing scheme for a large-scale electric vehicle sharing network considering vehicle relocation and vehicle-grid-integration. Int. J. Prod. Econ. 2019, 218, 339–351. [Google Scholar] [CrossRef]
- Li, X.; Shi, X.; Zhao, Y.; Liang, H.; Dong, Y. SVND enhanced metaheuristic for plug-in hybrid electric vehicle routing problem. Appl. Sci. 2020, 10, 441. [Google Scholar] [CrossRef] [Green Version]
- Asghari, M.; Al-e-hashem, S.M.J.M. Green vehicle routing problem: A state-of-the-art review. Int. J. Prod. Econ. 2021, 231, 107899. [Google Scholar] [CrossRef]
- Cruz-Chávez, M.A.; Rodríguez-León, A.; Rivera-López, R.; Cruz-Rosales, M.H. A grid-based genetic approach to solving the vehicle routing problem with time windows. Appl. Sci. 2019, 9, 3656. [Google Scholar] [CrossRef] [Green Version]
- Cattaruzza, D.; Absi, N.; Feillet, D.; González-Feliu, J. Vehicle routing problems for city logistics. EURO J. Transp. Logist. 2017, 6, 51–79. [Google Scholar] [CrossRef]
- Kucukoglu, I.; Dewil, R.; Cattrysse, D. The electric vehicle routing problem and its variations: A literature review. Comput. Ind. Eng. 2021, 161, 107650. [Google Scholar] [CrossRef]
- Conrad, R.G.; Figliozzi, M.A. The recharging vehicle routing problem. In Proceedings of the 2011 Industrial Engineering Research Conference, Portland, OR, USA, May 2011; IISE: Norcross, GA, USA, 2011; p. 8. [Google Scholar]
- Pelletier, S.; Jabali, O.; Laporte, G. 50th Anniversary invited article—goods distribution with electric vehicles: Review and research perspectives. Transp. Sci. 2016, 50, 3–22. [Google Scholar] [CrossRef]
- Schneider, M.; Stenger, A.; Goeke, D. The electric vehicle-routing problem with time windows and recharging stations. Transp. Sci. 2014, 48, 500–520. [Google Scholar] [CrossRef]
- Desaulniers, G.; Errico, F.; Irnich, S.; Schneider, M. Exact algorithms for electric vehicle-routing problems with time windows. Oper. Res. 2016, 64, 1388–1405. [Google Scholar] [CrossRef]
- Yang, J.; Sun, H. Battery swap station location-routing problem with capacitated electric vehicles. Comput. Oper. Res. 2015, 55, 217–232. [Google Scholar] [CrossRef]
- Adler, J.D.; Mirchandani, P.B. Online routing and battery reservations for electric vehicles with swappable batteries. Transp. Res. Part B Methodol. 2014, 70, 285–302. [Google Scholar] [CrossRef]
- Liao, C.S.; Lu, S.H.; Shen, Z.J.M. The electric vehicle touring problem. Transp. Res. Part B Methodol. 2016, 86, 163–180. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Gajpal, Y.; Appadoo, S.S.; Abdulkader, M.M.S. Electric vehicle routing problem with recharging stations for minimizing energy consumption. Int. J. Prod. Econ. 2018, 203, 404–413. [Google Scholar] [CrossRef]
- Karakatič, S. Optimizing nonlinear charging times of electric vehicle routing with genetic algorithm. Expert Syst. Appl. 2021, 164, 114039. [Google Scholar] [CrossRef]
- Raeesi, R.; Zografos, K.G. The electric vehicle routing problem with time windows and synchronised mobile battery swapping. Transp. Res. Part B Methodol. 2020, 140, 101–129. [Google Scholar] [CrossRef]
- Hof, J.; Schneider, M.; Goeke, D. Solving the battery swap station location-routing problem with capacitated electric vehicles using an AVNS algorithm for vehicle routing problems with intermediate stops. Transp. Res. Part B Methodol. 2017, 97, 102–112. [Google Scholar] [CrossRef]
- Keskin, M.; Çatay, B. Partial recharge strategies for the electric vehicle routing problem with time windows. Transp. Res. Part C Emerg. Technol. 2016, 65, 111–127. [Google Scholar] [CrossRef]
- Breunig, U.; Baldacci, R.; Hartl, R.F.; Vidal, T. The electric two-echelon vehicle routing problem. Comput. Oper. Res. 2019, 103, 198–210. [Google Scholar] [CrossRef] [Green Version]
- Cuda, R.; Guastaroba, G.; Speranza, M.G. A survey on two-echelon routing problems. Comput. Oper. Res. 2015, 55, 185–199. [Google Scholar] [CrossRef]
- Jacobsen, S.K.; Madsen, O.B. A comparative study of heuristics for a two-level routing-location problem. Eur. J. Oper. Res. 1980, 5, 378–387. [Google Scholar] [CrossRef]
- Crainic, T.G.; Ricciardi, N.; Storchi, G. Models for evaluating and planning city logistics systems. Transp. Sci. 2009, 43, 432–454. [Google Scholar] [CrossRef] [Green Version]
- Perboli, G.; Tadei, R.; Vigo, D. The two-echelon capacitated vehicle routing problem: Models and math-based heuristics. Transp. Sci. 2011, 45, 364–380. [Google Scholar] [CrossRef] [Green Version]
- Grangier, P.; Gendreau, M.; Lehuédé, F.; Rousseau, L.M. An adaptive large neighborhood search for the two-echelon multiple-trip vehicle routing problem with satellite synchronization. Eur. J. Oper. Res. 2016, 254, 80–91. [Google Scholar] [CrossRef]
- Li, H.; Liu, Y.; Jian, X.; Lu, Y. The two-echelon distribution system considering the real-time transshipment capacity varying. Transp. Res. Part B Methodol. 2018, 110, 239–260. [Google Scholar] [CrossRef]
- Jepsen, M.; Spoorendonk, S.; Ropke, S. A branch-and-cut algorithm for the symmetric two-echelon capacitated vehicle routing problem. Transp. Sci. 2013, 47, 23–37. [Google Scholar] [CrossRef]
- Baldacci, R.; Mingozzi, A.; Roberti, R.; Calvo, R.W. An exact algorithm for the two-echelon capacitated vehicle routing problem. Oper. Res. 2013, 61, 298–314. [Google Scholar] [CrossRef] [Green Version]
- Santos, F.A.; da Cunha, A.S.; Mateus, G.R. Branch-and-price algorithms for the two-echelon capacitated vehicle routing problem. Optim. Lett. 2013, 7, 1537–1547. [Google Scholar] [CrossRef]
- Crainic, T.G.; Mancini, S.; Perboli, G.; Tadei, R. Multi-start heuristics for the two-echelon vehicle routing problem. In European Conference on Evolutionary Computation in Combinatorial Optimization; Springer: Berlin/Heidelberg, Germany, 2011; pp. 170–190. [Google Scholar]
- Breunig, U.; Schmid, V.; Hartl, R.F.; Vidal, T. A large neighborhood-based heuristic for two-echelon routing problems. Comput. Oper. Res. 2016, 76, 208–225. [Google Scholar] [CrossRef] [Green Version]
- Hemmelmayr, V.C.; Cordeau, J.F.; Crainic, T.G. An adaptive large neighborhood search heuristic for two-echelon vehicle routing problems arising in city logistics. Comput. Oper. Res. 2012, 39, 3215–3228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, K.; Shao, Y.; Zhou, W. Matheuristic for a two-echelon capacitated vehicle routing problem with environmental considerations in city logistics service. Transp. Res. Part D Transp. Environ. 2017, 57, 262–276. [Google Scholar] [CrossRef]
- Kitjacharoenchai, P.; Min, B.C.; Lee, S. Two echelon vehicle routing problem with drones in last mile delivery. Int. J. Prod. Econ. 2020, 225, 107598. [Google Scholar] [CrossRef]
- Boysen, N.; Fedtke, S.; Schwerdfeger, S. Last-mile delivery concepts: A survey from an operational research perspective. OR Spectr. 2021, 43, 1–58. [Google Scholar] [CrossRef]
- Jie, W.; Yang, J.; Zhang, M.; Huang, Y.X. The two-echelon capacitated electric vehicle routing problem with battery swapping stations: Formulation and efficient methodology. Eur. J. Oper. Res. 2019, 272, 879–904. [Google Scholar] [CrossRef]
- Wang, D.; Zhou, H.; Feng, R. A two-echelon vehicle routing problem involving electric vehicles with time windows. J. Phys. Conf. Ser. 2019, 1324, 012071. [Google Scholar] [CrossRef] [Green Version]
- Mladenović, N.; Hansen, P. Variable neighborhood search. Comput. Oper. Res. 1997, 24, 1097–1100. [Google Scholar] [CrossRef]
- Imran, A.; Salhi, S.; Wassan, N.A. A variable neighborhood-based heuristic for the heterogeneous fleet vehicle routing problem. Eur. J. Oper. Res. 2009, 197, 509–518. [Google Scholar] [CrossRef] [Green Version]
- Jarboui, B.; Derbel, H.; Hanafi, S.; Mladenović, N. Variable neighborhood search for location routing. Comput. Oper. Res. 2013, 40, 47–57. [Google Scholar] [CrossRef]
- Vidal, T.; Crainic, T.G.; Gendreau, M.; Prins, C. A hybrid genetic algorithm with adaptive diversity management for a large class of vehicle routing problems with time-windows. Comput. Oper. Res. 2013, 40, 475–489. [Google Scholar] [CrossRef]
- Lin, S. Computer solutions of the traveling salesman problem. Bell Syst. Tech. J. 1965, 44, 2245–2269. [Google Scholar] [CrossRef]
- Potvin, J.Y.; Rousseau, J.M. An exchange heuristic for routing problems with time windows. J. Oper. Res. Soc. 1995, 46, 1433–1446. [Google Scholar] [CrossRef]
- Hiermann, G.; Prandtstetter, M.; Rendl, A.; Puchinger, J.; Raidl, G.R. Metaheuristics for solving a multimodal home-healthcare scheduling problem. Cent. Eur. J. Oper. Res. 2015, 23, 89–113. [Google Scholar] [CrossRef] [Green Version]
- Sadati, M.E.H.; Çatay, B. A hybrid variable neighborhood search approach for the multi-depot green vehicle routing problem. Transp. Res. Part E 2021, 149, 102293. [Google Scholar] [CrossRef]
- Pelletier, S.; Jabali, O.; Laporte, G. The electric vehicle routing problem with energy consumption uncertainty. Transp. Res. Part B Methodol. 2019, 126, 225–255. [Google Scholar] [CrossRef]
Symbol | Description |
---|---|
Sets | |
. | |
. | |
. | |
. | |
. | |
. | |
. | |
K1, K2 | Set of the ICVs in the 1st-echelon and set of EVs in the 2nd-echelon. |
K | . |
Parmeters | |
M | A large positive number. |
Tmax | The max running time of the proposed VNS algorithm. |
The capacity of the ICV and EV, respectively. | |
The battery capacity of the EVs. | |
c1, c2 | Cost of unit time from i to j for ICV and EV, respectively. |
c3 | Battery swapping cost. |
The fixed cost of ICV and EV. | |
The time window for the deriving at node i. | |
The electric power consumption of each EV for unit time. | |
qi | The demand for node i. |
tij | Travel time from node i to node j. |
Decision and variables | |
Arrival time at the node i in the first echelon and the second echelon, respectively. | |
ts | Latest arrival time of ICV at the satellite s. |
The remaining battery power of EV k when it arrives at node i in the 2nd-echelon. | |
The remaining battery power of EV k when it leaves node i in the 2nd-echelon. | |
uik | The remaining demand in vehicle k at node i. |
xijk | 1 if vehicle k travels arc (i,j) in the 1st-echelon; 0 otherwise. |
zijsk | 1 if EV k travels arc (i,j) from the satellite s; 0 otherwise. |
Parameter | Value (Unit) | Parameter | Value (Unit) |
---|---|---|---|
c1 | 3 | Q1 | 400 (kg) |
c2 | 5 | Q2 | 280 (kg) |
c3 | 5 | v1 | 50 (km/h) |
50 | v2 | 40 (km/h) | |
80 | 500 | ||
a | 3 (kWh) | 500 | |
B | 100 (kWh) | 500 |
Inst | Instance Size | GUROBI | VNS | Gap (VNS/G) | |||||
---|---|---|---|---|---|---|---|---|---|
m | n | l | Obj | Time (s) | Best | Avg | Time (s) | ||
1-1 | 1 | 5 | 1 | 239.38 | 9.04 | 239.38 | 239.38 | 0.01 | 0.00% |
1-2 | 1 | 5 | 1 | 236.29 | 10.07 | 236.29 | 236.29 | 0.01 | 0.00% |
1-3 | 1 | 5 | 1 | 233.68 | 13.01 | 233.68 | 233.68 | 0.01 | 0.00% |
1-4 | 1 | 5 | 1 | 234.66 | 10.67 | 234.66 | 234.66 | 0.01 | 0.00% |
1-5 | 1 | 5 | 1 | 229.40 | 12.44 | 229.40 | 229.40 | 0.01 | 0.00% |
1-6 | 2 | 10 | 2 | 469.55 | 2736.22 | 469.55 | 469.55 | 3.06 | 0.00% |
1-7 | 2 | 10 | 2 | 476.69 | 987.44 | 476.69 | 476.69 | 3.04 | 0.00% |
1-8 | 2 | 10 | 2 | 457.64 | 3827.14 | 457.64 | 457.64 | 3.07 | 0.00% |
1-9 | 2 | 10 | 2 | 409.42 | 2736.12 | 409.42 | 409.42 | 4.04 | 0.00% |
1-10 | 2 | 10 | 2 | 472.30 | 3412.34 | 472.30 | 472.30 | 4.04 | 0.00% |
1-11 | 2 | 15 | 3 | 735.66 | 4500 | 733.07 | 733.07 | 17.15 | −0.35% |
1-12 | 2 | 15 | 3 | 750.79 | 4500 | 748.79 | 748.79 | 18.36 | −0.27% |
1-13 | 2 | 15 | 3 | 822.44 | 4500 | 821.67 | 821.67 | 19.77 | −0.09% |
1-14 | 2 | 15 | 3 | 620.76 | 4500 | 620.76 | 620.76 | 18.34 | 0.00% |
1-15 | 2 | 15 | 3 | 841.86 | 4500 | 841.86 | 841.86 | 26.06 | 0.00% |
Inst | Instance Size | Wang (2017) | VNS | Gap (VNS/Wang (2017)) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
m | n | l | Best | Avg | Time (s) | Best | Avg | Time (s) | ||
2-1 | 2 | 20 | 4 | 857.05 | 857.05 | 64.77 | 857.05 | 857.05 | 73.45 | 0.00% |
2-2 | 2 | 20 | 4 | 986.73 | 986.73 | 78.05 | 986.73 | 986.73 | 80.19 | 0.00% |
2-3 | 2 | 20 | 4 | 853.67 | 853.67 | 100.40 | 853.67 | 853.67 | 123.35 | 0.00% |
2-4 | 2 | 30 | 6 | 1310.07 | 1310.07 | 987.17 | 1310.07 | 1310.07 | 1056.69 | 0.00% |
2-5 | 2 | 30 | 6 | 1415.36 | 1415.36 | 1209.68 | 1415.36 | 1415.36 | 1233.37 | 0.00% |
2-6 | 2 | 30 | 6 | 1440.31 | 1440.31 | 1444.67 | 1440.31 | 1440.31 | 1425.45 | 0.00% |
2-7 | 2 | 40 | 8 | 1915.31 | 1915.31 | 1433.08 | 1915.31 | 1915.31 | 1433.29 | 0.00% |
2-8 | 2 | 40 | 8 | 1915.59 | 1915.59 | 2004.07 | 1919.59 | 1915.59 | 1904.75 | 0.21% |
2-9 | 2 | 40 | 8 | 1918.16 | 1918.16 | 2012.39 | 1918.16 | 1918.16 | 1983.08 | 0.00% |
2-10 | 2 | 50 | 10 | 2309.42 | 2309.42 | 2100.89 | 2307.70 | 2307.70 | 2142.66 | −0.07% |
2-11 | 2 | 50 | 10 | 2376.50 | 2376.50 | 2387.79 | 2377.84 | 2322.84 | 2223.04 | 0.06% |
2-12 | 2 | 50 | 10 | 67,586.62 | 67,586.62 | 2366.45 | 60,314.84 | 60,314.84 | 2245.89 | −10.76% |
2-13 | 3 | 60 | 12 | 81,753.85 | 81,753.85 | 3104.56 | 77,195.14 | 77,195.14 | 3004.35 | −5.58% |
2-14 | 3 | 60 | 12 | 2818.74 | 2818.74 | 3399.97 | 2802.56 | 2802.56 | 3179.97 | −0.57% |
2-15 | 3 | 60 | 12 | 2783.41 | 2783.41 | 3374.67 | 2761.43 | 2761.43 | 3113.37 | −0.79% |
Inst | Instance Size | Wang (2017) | VNS | Gap (VNS/Wang (2017)) | ||||
---|---|---|---|---|---|---|---|---|
m | n | l | Best | Avg | Best | Avg | ||
3-1 | 5 | 100 | 20 | 4816.65 | 4816.65 | 4788.05 | 4788.05 | −0.60% |
3-2 | 5 | 100 | 20 | 4529.14 | 4529.14 | 4522.59 | 4522.59 | −0.14% |
3-3 | 5 | 100 | 20 | 4592.02 | 4592.02 | 4457.66 | 4457.66 | −3.01% |
3-4 | 10 | 100 | 20 | 4640.24 | 4640.24 | 4513.64 | 4513.64 | −2.80% |
3-5 | 10 | 100 | 20 | 4452.50 | 4452.50 | 4352.32 | 4352.32 | −2.30% |
3-6 | 10 | 100 | 20 | 4616.22 | 4616.22 | 4555.90 | 4555.90 | −1.32% |
3-7 | 10 | 100 | 20 | 4441.32 | 4441.32 | 4382.85 | 4382.85 | −1.33% |
3-8 | 10 | 100 | 20 | 4497.03 | 4497.03 | 4432.90 | 4432.90 | −1.45% |
3-9 | 10 | 100 | 20 | 4710.86 | 4710.86 | 4589.38 | 4589.38 | −2.65% |
3-10 | 10 | 100 | 20 | 4769.99 | 4769.99 | 4695.48 | 4695.48 | −1.59% |
3-11 | 10 | 100 | 20 | 4313.99 | 4313.99 | 4247.62 | 4247.62 | −1.56% |
3-12 | 10 | 100 | 20 | 4260.96 | 4260.96 | 4251.71 | 4251.71 | −0.22% |
3-13 | 10 | 100 | 20 | 4630.31 | 4630.31 | 4562.67 | 4562.67 | −1.48% |
3-14 | 10 | 100 | 20 | 4411.85 | 4411.85 | 4348.67 | 4348.67 | −1.45% |
3-15 | 10 | 200 | 20 | 9407.12 | 9407.12 | 9277.62 | 9277.62 | −1.40% |
3-16 | 10 | 200 | 40 | 9216.41 | 9216.41 | 9142.42 | 9142.42 | −0.81% |
3-17 | 10 | 200 | 40 | 9984.68 | 9984.68 | 9851.93 | 9851.93 | −1.35% |
Inst | Instance Size | EV | ICV | Gap (EV/ICV) | |
---|---|---|---|---|---|
m | n | ||||
1–6 | 2 | 10 | 86.21 | 107.12 | −19.52% |
1–10 | 2 | 10 | 58.47 | 82.66 | −29.26% |
2–10 | 2 | 50 | 559.22 | 694.88 | −19.52% |
2–11 | 2 | 50 | 513.77 | 638.41 | −19.52% |
3–1 | 5 | 100 | 752.01 | 934.45 | −19.52% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Zhou, H. A Two-Echelon Electric Vehicle Routing Problem with Time Windows and Battery Swapping Stations. Appl. Sci. 2021, 11, 10779. https://doi.org/10.3390/app112210779
Wang D, Zhou H. A Two-Echelon Electric Vehicle Routing Problem with Time Windows and Battery Swapping Stations. Applied Sciences. 2021; 11(22):10779. https://doi.org/10.3390/app112210779
Chicago/Turabian StyleWang, Dan, and Hong Zhou. 2021. "A Two-Echelon Electric Vehicle Routing Problem with Time Windows and Battery Swapping Stations" Applied Sciences 11, no. 22: 10779. https://doi.org/10.3390/app112210779
APA StyleWang, D., & Zhou, H. (2021). A Two-Echelon Electric Vehicle Routing Problem with Time Windows and Battery Swapping Stations. Applied Sciences, 11(22), 10779. https://doi.org/10.3390/app112210779