A New Smoothed Seismicity Approach to Include Aftershocks and Foreshocks in Spatial Earthquake Forecasting: Application to the Global Mw ≥ 5.5 Seismicity
Abstract
:1. Introduction
2. Dataset
3. A New Smoothed Seismicity Approach
4. Likelihood Testing for Spatial Variation of Seismicity
5. Results
6. Discussion
7. Conclusions
- (1)
- In general, the adaptive smoothing approach has better performance with respect to the fixed smoothing approach also for a global catalog with large events (Mw ≥ 5.5 and Mw ≥ 6.5);
- (2)
- Using the simple correction described in this work, the inclusion of aftershocks and foreshocks leads to better spatial performances of the smoothed seismicity models.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Electric Power Research Institute. Seismic Hazard Methodology for the Central and Eastern United States; EPR/Report NP-4726; Electric Power Research Institute: Palo Alto, CA, USA, 1986; Volume 10. [Google Scholar]
- Meletti, C.; Galadini, F.; Valensise, G.; Stucchi, M.; Basili, R.; Barba, S.; Vannucci, G.; Boschi, E. A seismic source zone model for the seismic hazard assessment of the Italian territory. Tectonophysics 2008, 450, 85–108. [Google Scholar] [CrossRef]
- Frankel, A. Mapping seismic hazard in the central and eastern United States. Seismol. Res. Lett. 1995, 66, 8–21. [Google Scholar] [CrossRef]
- Helmstetter, A.; Kagan, Y.Y.; Jackson, D.D. High-resolution time-independent grid based forecast for M ≥ 5 earthquakes in California. Seismol. Res. Lett. 2007, 78, 78–86. [Google Scholar] [CrossRef]
- Cornell, C.A. Engineering seismic risk analysis. Bull. Seismol. Soc. Am. 1968, 58, 1583–1606. [Google Scholar] [CrossRef]
- Marzocchi, W.; Taroni, M. Some thoughts on declustering in probabilistic seismic-hazard analysis. Bull. Seismol. Soc. Am. 2014, 104, 1838–1845. [Google Scholar] [CrossRef]
- Le Cam, L. An approximation theorem for the Poisson binomial distribution. Pac. J. Math. 1960, 10, 1181–1197. [Google Scholar] [CrossRef]
- Serfling, R.J. A general Poisson approximation theorem. Ann. Prob. 1975, 3, 726–731. [Google Scholar] [CrossRef]
- Taroni, M.; Akinci, A. Good practices in PSHA: Declustering, b-value estimation, foreshocks and aftershocks inclusion; a case study in Italy. Geophys. J. Int. 2021, 224, 1174–1187. [Google Scholar] [CrossRef]
- Wang, Q.; Jackson, D.D.; Kagan, Y.Y. California earthquake forecasts based on smoothed seismicity: Model choices. Bull. Seismol. Soc. Am. 2011, 101, 1422–1430. [Google Scholar] [CrossRef] [Green Version]
- Ogata, Y. Space-time point-process models for earthquake occurrences. Ann. Inst. Stat. Math. 1998, 50, 379–402. [Google Scholar] [CrossRef]
- Zhuang, J.; Ogata, Y.; Vere-Jones, D. Stochastic declustering of space-time earthquake occurrences. J. Am. Stat. Assoc. 2002, 97, 369–380. [Google Scholar] [CrossRef]
- Ekström, G.; Nettles, M.; Dziewonski, A.M. The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes. Phys. Earth Planet. Inter. 2012, 200–201, 1–9. [Google Scholar] [CrossRef]
- Dziewonski, A.M.; Chou, T.A.; Woodhouse, J.H. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. J. Geophys. Res. Solid Earth 1981, 86, 2825–2852. [Google Scholar] [CrossRef]
- Schorlemmer, D.; Wiemer, S.; Wyss, M. Variations in earthquake-size distribution across different stress regimes. Nature 2005, 437, 539–542. [Google Scholar] [CrossRef] [PubMed]
- Gardner, J.K.; Knopoff, L. Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian? Bull. Seismol. Soc. Am. 1974, 64, 1363–1367. [Google Scholar] [CrossRef]
- Wiemer, S. A software package to analyze seismicity: ZMAP. Seismol. Res. Lett. 2001, 72, 373–382. [Google Scholar] [CrossRef]
- Hiemer, S.; Woessner, J.; Basili, R.; Danciu, L.; Giardini, D.; Wiemer, S. A smoothed stochastic earthquake rate model considering seismicity and fault moment release for Europe. Geophys. J. Int. 2014, 198, 1159–1172. [Google Scholar] [CrossRef] [Green Version]
- Akinci, A. HAZGRIDX: Earthquake forecasting model for ML C 5.0 earthquakes in Italy based on spatially smoothed seismicity. Ann. Geophys. 2010, 53, 51–61. [Google Scholar] [CrossRef]
- Lombardi, A.M.; Marzocchi, W. The assumption of Poisson seismic-rate variability in CSEP/RELM experiments. Bull. Seismol. Soc. Am. 2010, 100, 2293–2300. [Google Scholar] [CrossRef] [Green Version]
- Kagan, Y.Y. Earthquakes: Models, Statistics, Testable Forecasts; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Schorlemmer, D.; Gerstenberger, M.C.; Wiemer, S.; Jackson, D.D.; Rhoades, D.A. Earthquake likelihood model testing. Seismol. Res. Lett. 2007, 78, 17–29. [Google Scholar] [CrossRef]
- Schorlemmer, D.; Werner, M.; Marzocchi, W.; Jordan, T.H.; Ogata, Y.; Jackson, D.D.; Mak, S.; Rhoades, D.A.; Gerstenberger, M.C.; Hirata, N.; et al. The collaboratory for the study of earthquake predictability: Achievements and priorities. Seismol. Res. Lett. 2018, 89, 1305–1313. [Google Scholar] [CrossRef] [Green Version]
- Savran, W.H.; Werner, M.J.; Marzocchi, W.; Rhoades, D.A.; Jackson, D.D.; Milner, K.; Field, E.; Michael, A. Pseudoprospective Evaluation of UCERF3-ETAS Forecasts during the 2019 Ridgecrest Sequence. Bull. Seismol. Soc. Am. 2020, 110, 1799–1817. [Google Scholar] [CrossRef]
- Taroni, M.; Zechar, J.D.; Marzocchi, W. Assessing annual global M 6+ seismicity forecasts. Geophys. J. Int. 2014, 196, 422–431. [Google Scholar] [CrossRef] [Green Version]
- Strader, A.; Werner, M.; Bayona, J.; Maechling, P.; Silva, F.; Liukis, M.; Schorlemmer, D. Prospective evaluation of global earthquake forecast models: 2 yrs of observations provide preliminary support for merging smoothed seismicity with geodetic strain rates. Seismol. Res. Lett. 2018, 89, 1262–1271. [Google Scholar] [CrossRef]
- Kass, R.E.; Raftery, A.E. Bayes factors. J. Am. Stat. Assoc. 1995, 90, 773–795. [Google Scholar] [CrossRef]
- Marzocchi, W.; Zechar, J.D.; Jordan, T.H. Bayesian forecast evaluation and ensemble earthquake forecasting. Bull. Seismol. Soc. Am. 2012, 102, 2574–2584. [Google Scholar] [CrossRef]
- Taroni, M.; Zhuang, J.; Marzocchi, W. High-Definition Mapping of the Gutenberg–Richter b-Value and Its Relevance: A Case Study in Italy. Seismol. Res. Lett. 2021, 92, 3778–3884. [Google Scholar] [CrossRef]
- Taroni, M.; Vocalelli, G.; De Polis, A. Gutenberg–Richter B-Value Time Series Forecasting: A Weighted Likelihood Approach. Forecasting 2021, 3, 561–569. [Google Scholar] [CrossRef]
- Akinci, A.; Moschetti, M.P.; Taroni, M. Ensemble smoothed seismicity models for the new Italian probabilistic seismic hazard map. Seismol. Res. Lett. 2018, 89, 1277–1287. [Google Scholar] [CrossRef]
- Sarlis, N.V.; Skordas, E.S.; Varotsos, P.A. Order parameter fluctuations of seismicity in natural time before and after mainshocks. EPL 2010, 91, 59001. [Google Scholar] [CrossRef] [Green Version]
- Sarlis, N.V.; Skordas, E.S.; Varotsos, P.A.; Nagao, T.; Kamogawa, H.; Uyeda, S. Spatiotemporal variations of seismicity before major earthquakes in the Japanese area and their relation with the epicentral locations. Proc. Natl. Acad. Sci. USA 2015, 112, 986–989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rundle, J.B.; Turcotte, D.L.; Donnellan, A.; Grant Ludwig, L.; Luginbuhl, M.; Gong, G. Nowcasting earthquakes. Earth Space Sci. 2016, 3, 480–486. [Google Scholar] [CrossRef]
Catalog Type | Time Window | Number of Events |
---|---|---|
Complete | 1980–2019 | 11638 |
Declustered | 1980–2019 | 6440 |
Complete–Learning | 1980–2009 | 7977 |
Declustered–Learning | 1980–2009 | 4718 |
Complete–Testing | 2010–2019 | 3161 |
Model | MLE |
---|---|
Fixed | Sigma = 135 |
Adaptive | NN = 1 |
Corrected Fixed | Sigma = 115 |
Corrected Adaptive | NN = 1 |
Model | Log-Likelihood (LL) |
---|---|
Corrected Adaptive | −29,632 |
Adaptive | −29,639 |
Corrected Fixed | −31,198 |
Fixed | −31,297 |
Model | Log-Likelihood (LL) |
---|---|
Corrected Adaptive | −2850 |
Adaptive | −2857 |
Corrected Fixed | −2931 |
Fixed | −2949 |
Models | Magnitude for the Comparison | Log-Likelihood Difference, |
---|---|---|
Corrected Adaptive vs. Adaptive | 5.5+ | 7 |
Corrected Adaptive vs. Adaptive | 6.5+ | 7 |
Corrected Fixed vs. Fixed | 5.5+ | 99 |
Corrected Fixed vs. Fixed | 6.5+ | 18 |
Adaptive vs. Fixed | 5.5+ | 1658 |
Adaptive vs. Fixed | 6.5+ | 92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taroni, M.; Akinci, A. A New Smoothed Seismicity Approach to Include Aftershocks and Foreshocks in Spatial Earthquake Forecasting: Application to the Global Mw ≥ 5.5 Seismicity. Appl. Sci. 2021, 11, 10899. https://doi.org/10.3390/app112210899
Taroni M, Akinci A. A New Smoothed Seismicity Approach to Include Aftershocks and Foreshocks in Spatial Earthquake Forecasting: Application to the Global Mw ≥ 5.5 Seismicity. Applied Sciences. 2021; 11(22):10899. https://doi.org/10.3390/app112210899
Chicago/Turabian StyleTaroni, Matteo, and Aybige Akinci. 2021. "A New Smoothed Seismicity Approach to Include Aftershocks and Foreshocks in Spatial Earthquake Forecasting: Application to the Global Mw ≥ 5.5 Seismicity" Applied Sciences 11, no. 22: 10899. https://doi.org/10.3390/app112210899
APA StyleTaroni, M., & Akinci, A. (2021). A New Smoothed Seismicity Approach to Include Aftershocks and Foreshocks in Spatial Earthquake Forecasting: Application to the Global Mw ≥ 5.5 Seismicity. Applied Sciences, 11(22), 10899. https://doi.org/10.3390/app112210899