Effect of a Decellularized Omentum Scaffold with Combination of Mesenchymal Stem Cells and Platelet-Rich Plasma on Healing of Critical-Sized Bone Defect: A Rat Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mesenchymal Stem Cell Isolation and In Vitro Expansion
2.2. Decellularized Omentum Scaffold Preparation
2.3. PRP Preparation
2.4. Animal Preparation and Surgical Procedure
- Control group (n = 6);
- Scaffold group (n = 6);
- Scaffold + PRP group (n = 6);
- Scaffold + Mesenchymal stem cell group (n = 6);
- Scaffold + PRP + Mesenchymal stem cell group (n = 6).
2.5. Radiologic Analysis
2.6. Histopathologic Analysis
2.7. Statistical Analysis
3. Results
3.1. Radiologic Findings
3.2. Histopathological Findings
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nauth, A.; McKee, M.D.; Einhorn, T.A.; Watson, J.T.; Li, R.; Schemitsch, E.H. Managing bone defects. J. Orthop. Trauma 2011, 25, 462–466. [Google Scholar] [CrossRef] [PubMed]
- Keating, J.; Simpson, A.; Robinson, C. The management of fractures with bone loss. J. Bone Jt. Surg. Br. Vol. 2005, 87, 142–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parikh, S.N. Bone graft substitutes in modern orthopedics. Orthopedics 2002, 25, 1301–1309. [Google Scholar] [CrossRef] [PubMed]
- Ghassemi, T.; Ebrahimzadeh, M.H.; Shahroodi, A.; Mousavian, A.; Moradi, A. Current Concepts in Scaffolding for Bone Tissue Engineering. Arch. Bone Jt. Surg. 2018, 6, 90–99. [Google Scholar] [CrossRef] [PubMed]
- Polo-Corrales, L.; Latorre-Esteves, M.; Ramirez-Vick, J.E. Scaffold design for bone regeneration. J. Nanosci. Nanotechnol. 2014, 14, 15–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, D.M.; Fisher, J.P. Natural and synthetic polymeric scaffolds. In Biomedical Materials; Springer: Berlin/Heidelberg, Germany, 2009; pp. 415–442. [Google Scholar]
- Moradi, A.; Ataollahi, F.; Sayar, K.; Pramanik, S.; Chong, P.-P.; Khalil, A.A.; Kamarul, T.; Pingguan-Murphy, B. Chondrogenic potential of physically treated bovine cartilage matrix derived porous scaffolds on human dermal fibroblast cells. J. Biomed. Mater. Res. Part A 2016, 104, 245–256. [Google Scholar] [CrossRef] [PubMed]
- Porzionato, A.; Sfriso, M.M.; Macchi, V.; Rambaldo, A.; Lago, G.; Lancerotto, L.; Vindigni, V.; De Caro, R. Decellularized omentum as novel biologic scaffold for reconstructive surgery and regenerative medicine. Eur. J. Histochem. 2013, 57, e4. [Google Scholar] [CrossRef] [Green Version]
- Parizi, A.M.; Oryan, A.; Shafiei-Sarvestani, Z.; Bigham, A. Human platelet rich plasma plus Persian Gulf coral effects on experimental bone healing in rabbit model: Radiological, histological, macroscopical and biomechanical evaluation. J. Mater. Sci. Mater. Electron. 2012, 23, 473–483. [Google Scholar] [CrossRef]
- Marx, R.E.; Carlson, E.R.; Eichstaedt, R.M.; Schimmele, S.R.; Strauss, J.E.; Georgeff, K.R. Platelet-rich plasma: Growth factor enhancement for bone grafts. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 1998, 85, 638–646. [Google Scholar] [CrossRef]
- Xing, Z.; Lu, C.; Hu, D.; Miclau, T., III; Marcucio, R.S. Rejuvenation of the inflammatory system stimulates fracture repair in aged mice. J. Orthop. Res. 2010, 28, 1000–1006. [Google Scholar] [CrossRef] [Green Version]
- Caplan, A.I.; Correa, D. The MSC: An Injury Drugstore. Cell Stem Cell 2011, 9, 11–15. [Google Scholar] [CrossRef] [Green Version]
- Uckan, D.; Kiliç, E.; Sharafi, P.; Kazik, M.; Çetinkaya, D.U.; Erdemli, E.; Can, A.; Tezcaner, A.; Kocaefe, C. Adipocyte differentiation defect in mesenchymal stromal cells of patients with malignant infantile osteopetrosis. Cytotherapy 2009, 11, 392–402. [Google Scholar] [CrossRef] [PubMed]
- Soffer-Tsur, N.; Shevach, M.; Shapira, A.; Peer, D.; Dvir, T. Optimizing the biofabrication process of omentum-based scaffolds for engineering autologous tissues. Biofabrication 2014, 6, 035023. [Google Scholar] [CrossRef] [PubMed]
- Cook, S.D.; Baffes, G.C.; Wolfe, M.W.; Sampath, T.K.; Rueger, D.C. Recombinant human bone morphogenetic protein-7 induces healing in a canine long-bone segmental defect model. Clin. Orthop. Relat. Res. 1994, 301, 302–312. [Google Scholar] [CrossRef]
- Salkeld, S.L.; Patron, L.P.; Barrack, R.L.; Cook, S.D. The Effect of Osteogenic Protein-1 on the Healing of Segmental Bone Defects Treated with Autograft or Allograft Bone. J. Bone Jt. Surg. Am. Vol. 2001, 83, 803–816. [Google Scholar] [CrossRef] [PubMed]
- Yow, K.; Ingram, J.; Korossis, S.; Ingham, E.; Homer-Vanniasinkam, S. Tissue engineering of vascular conduits. J. Br. Surg. 2006, 93, 652–661. [Google Scholar] [CrossRef]
- Masuda, T.; Furue, M.; Matsuda, T. Novel Strategy for Soft Tissue Augmentation Based on Transplantation of Fragmented Omentum and Preadipocytes. Tissue Eng. 2004, 10, 1672–1683. [Google Scholar] [CrossRef] [PubMed]
- Baumert, H.; Simon, P.; Hekmati, M.; Fromont, G.; Levy, M.; Balaton, A.; Molinié, V.; Malavaud, B. Development of a Seeded Scaffold in the Great Omentum: Feasibility of an in vivo Bioreactor for Bladder Tissue Engineering. Eur. Urol. 2007, 52, 884–892. [Google Scholar] [CrossRef] [PubMed]
- Turhan, E.; Akça, M.K.; Bayar, A.; Songur, M.; Keser, S.; Doral, M.N. A comparison of the effects of platelet-rich plasma and demineralized bone matrix on critical bone defects: An experimental study on rats. Ulus Travma Acil Cerrahi Derg 2017, 23, 91–99. [Google Scholar] [CrossRef] [Green Version]
- Croisé, B.; Paré, A.; Joly, A.; Louisy, A.; Laure, B.; Goga, D. Optimized centrifugation preparation of the platelet rich plasma: Literature review. J. Stomatol. Oral Maxillofac. Surg. 2020, 121, 150–154. [Google Scholar] [CrossRef] [PubMed]
- Roh, Y.H.; Kim, W.; Park, K.U.; Oh, J.H. Cytokine-release kinetics of platelet-rich plasma according to various activation protocols. Bone Jt. Res. 2016, 5, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Niemeyer, P.; Schönberger, T.S.; Hahn, J.; Kasten, P.; Fellenberg, J.; Suedkamp, N.; Mehlhorn, A.T.; Milz, S.; Pearce, S. Xenogenic Transplantation of Human Mesenchymal Stem Cells in a Critical Size Defect of the Sheep Tibia for Bone Regeneration. Tissue Eng. Part A 2010, 16, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kim, I.S.; Cho, T.H.; Lee, K.B.; Hwang, S.J.; Tae, G.; Noh, I.; Lee, S.H.; Park, Y.; Sun, K. Bone regeneration using hyaluronic acid-based hydrogel with bone morphogenic protein-2 and human mesenchymal stem cells. Biomaterials 2007, 28, 1830–1837. [Google Scholar] [CrossRef]
- Fricain, J.C.; Schlaubitz, S.; Le Visage, C.; Arnault, I.; Derkaoui, S.M.; Siadous, R.; Catros, S.; Lalande, C.; Bareille, R.; Renard, M.; et al. A nano-hydroxyapatite—Pullulan/dextran polysaccharide composite macroporous material for bone tissue engineering. Biomaterials 2013, 34, 2947–2959. [Google Scholar] [CrossRef] [PubMed]
- Campos, D.F.D.; Blaeser, A.; Weber, M.; Jäkel, J.; Neuss, S.; Jahnen-Dechent, W.; Fischer, H. Three-dimensional printing of stem cell-laden hydrogels submerged in a hydrophobic high-density fluid. Biofabrication 2012, 5, 015003. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.; Docheva, D.; Knothe, U.R.; Tate, M.L.K. Arthritic Periosteal Tissue From Joint Replacement Surgery: A Novel, Autologous Source of Stem Cells. Stem Cells Transl. Med. 2014, 3, 308–317. [Google Scholar] [CrossRef]
- Oryan, A.; Kamali, A.; Moshiri, A.; Baghaban Eslaminejad, M. Role of Mesenchymal Stem Cells in Bone Regenerative Medicine: What Is the Evidence? Cells Tissues Organs 2017, 204, 59–83. [Google Scholar] [CrossRef] [PubMed]
- Kawane, T.; Qin, X.; Jiang, Q.; Miyazaki, T.; Komori, H.; Yoshida, C.A.; Matsuura-Kawata, V.K.D.S.; Sakane, C.; Matsuo, Y.; Nagai, K.; et al. Runx2 is required for the proliferation of osteoblast progenitors and induces proliferation by regulating Fgfr2 and Fgfr3. Sci. Rep. 2018, 8, 13551. [Google Scholar] [CrossRef]
- Cho, H.H.; Shin, K.K.; Kim, Y.J.; Song, J.S.; Kim, J.M.; Bae, Y.C.; Jung, J.S. NF-κB activation stimulates osteogenic differentiation of mesenchymal stem cells derived from human adipose tissue by increasing TAZ expression. J. Cell. Physiol. 2010, 223, 168–177. [Google Scholar]
- Lu, Z.; Wang, G.; Dunstan, C.R.; Zreiqat, H. Short-Term Exposure to Tumor Necrosis Factor-Alpha Enables Human Osteoblasts to Direct Adipose Tissue-Derived Mesenchymal Stem Cells into Osteogenic Differentiation. Stem Cells Dev. 2012, 21, 2420–2429. [Google Scholar] [CrossRef]
- Mountziaris, P.M.; Tzouanas, S.N.; Mikos, A.G. Dose effect of tumor necrosis factor-α on in vitro osteogenic differentiation of mesenchymal stem cells on biodegradable polymeric microfiber scaffolds. Biomaterials 2010, 31, 1666–1675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leibacher, J.; Dauber, K.; Ehser, S.; Brixner, V.; Kollar, K.; Vogel, A.; Spohn, G.; Schäfer, R.; Seifried, E.; Henschler, R. Human mesenchymal stromal cells undergo apoptosis and fragmentation after intravenous application in immune-competent mice. Cytotherapy 2017, 19, 61–74. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; McClurg, A.; Zhou, G.Q.; McCaigue, M.; Armstrong, M.A.; Li, G. Chondrogenic differentiation alters the immunosuppressive property of bone marrow-derived mesenchymal stem cells, and the effect is partially due to the upregulated expression of B7 molecules. Stem Cells 2007, 25, 364–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Longoni, A.; Pennings, I.; Lopera, M.C.; Van Rijen, M.H.P.; Peperzak, V.; Rosenberg, A.J.W.P.; Levato, R.; Gawlitta, D. Endochondral Bone Regeneration by Non-autologous Mesenchymal Stem Cells. Front. Bioeng. Biotechnol. 2020, 8, 651. [Google Scholar] [CrossRef] [PubMed]
Description | Score |
---|---|
No change from immediate postoperative appearance | 0 |
A slight increase in radiodensity distinguishable from the graft | 1 |
Recognizable increase in radiodensity, bridging of one cortex with new bone formation from the graft | 2 |
Bridging of at least one cortex with material of non-uniform radiodensity, early incorporation of the graft suggested by obscurity of graft borders | 3 |
Defect bridged on both medial and lateral sides with bone of uniform radiodensity, cut ends of the cortex still visible, graft and new bone not easy to differentiate | 4 |
Same as grade 3, with at least one of four cotices obscured by new bone | 5 |
Defect bridged by uniform new bone, cut ends of cortex no longer distinguishable, graft no longer visible | 6 |
Criteria | Description | Score | |
---|---|---|---|
Quality of union | No sign of fibrous or other union | 0 | |
Fibrous union | 1 | ||
Fibrocartilagenous union or cartilage union | 2 | ||
Mineralizing cartilage and bone union | 3 | ||
Bone union | 4 | ||
Cortex development and remodelling | No cortex formed | 0 | |
Formation of new bone along exterior borders | 1 | ||
Recognizable formation of both the outer cortex border and the medullary space | 2 | ||
Coritces formed but incomplete bridging | 3 | ||
Complete formation of cortices with bridging of defect | 4 | ||
Bone-graft incorporation and new bone formation | No new bone, all or most of graft visible | Graft material present, no incorporation, no new bone formation | 0 |
Graft present, some incorporation with new bone formation and small amount of new bone | 1 | ||
Graft present, some incorporation with new bone formation and moderate amount of new bone | 2 | ||
Decreasing graft, increasing new bone | Graft present, some incorporation with new bone formation continuous with host bone and early remodelling changes in new bone | 3 | |
Decreased amount of graft (compared with grade 3) good incorporation of graft and new bone with host and ample new bone | 4 | ||
Less amount of graft still visible (compared with grade 4), good incorporation of graft and new bone with host and ample new bone | 5 | ||
No graft visible, extensive new bone | Difficult to differantiate graft from new bone, excellent incorporation and advanced remodelling of new bone with graft and host | 6 |
Group | N | Median | Minimum | Maximum | p |
---|---|---|---|---|---|
Control | 12 | 1.0 | 0 | 1 | |
Omentum | 12 | 1.5 | 1 | 3 | |
Omentum + MSC | 12 | 1.0 | 0 | 1 | <0.05 |
Omentum + PRP | 12 | 1.5 | 1 | 3 | |
Omentum + MSC + PRP | 12 | 1.0 | 0 | 3 |
Group | N | Quality of Union | Cortical Development and Remodelling | New Bone Formation | Total Score | p |
---|---|---|---|---|---|---|
Control | 12 | 2 (1–2) | 0 (0–0) | 1 (0–1) | 3 (1–3) | |
Omentum | 12 | 3 (2–3) | 3 (2–3) | 3 (3–3) | 9 (7–9) | |
Omentum + Mesenchymal stem cell | 12 | 1.5 (1–2) | 0 (0–1) | 1 (1–2) | 2.5 (2–5) | <0.01 |
Omentum + PRP | 12 | 3 (2–3) | 2.5 (2–3) | 3.5 (2–4) | 8.5 (6–10) | |
Omentum + Mesenchymal stem cell + PRP | 12 | 2 (2–3) | 2 (2–3) | 2 (1–3) | 6.5 (3–9) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Emet, A.; Ozdemir, E.; Cetinkaya, D.U.; Kilic, E.; Hashemihesar, R.; Yuruker, A.C.S.; Turhan, E. Effect of a Decellularized Omentum Scaffold with Combination of Mesenchymal Stem Cells and Platelet-Rich Plasma on Healing of Critical-Sized Bone Defect: A Rat Model. Appl. Sci. 2021, 11, 10900. https://doi.org/10.3390/app112210900
Emet A, Ozdemir E, Cetinkaya DU, Kilic E, Hashemihesar R, Yuruker ACS, Turhan E. Effect of a Decellularized Omentum Scaffold with Combination of Mesenchymal Stem Cells and Platelet-Rich Plasma on Healing of Critical-Sized Bone Defect: A Rat Model. Applied Sciences. 2021; 11(22):10900. https://doi.org/10.3390/app112210900
Chicago/Turabian StyleEmet, Abdulsamet, Erdi Ozdemir, Duygu Uckan Cetinkaya, Emine Kilic, Ramin Hashemihesar, Ali Celalettin Sinan Yuruker, and Egemen Turhan. 2021. "Effect of a Decellularized Omentum Scaffold with Combination of Mesenchymal Stem Cells and Platelet-Rich Plasma on Healing of Critical-Sized Bone Defect: A Rat Model" Applied Sciences 11, no. 22: 10900. https://doi.org/10.3390/app112210900
APA StyleEmet, A., Ozdemir, E., Cetinkaya, D. U., Kilic, E., Hashemihesar, R., Yuruker, A. C. S., & Turhan, E. (2021). Effect of a Decellularized Omentum Scaffold with Combination of Mesenchymal Stem Cells and Platelet-Rich Plasma on Healing of Critical-Sized Bone Defect: A Rat Model. Applied Sciences, 11(22), 10900. https://doi.org/10.3390/app112210900