Hydrothermal Carbonization as Sustainable Process for the Complete Upgrading of Orange Peel Waste into Value-Added Chemicals and Bio-Carbon Materials
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. HTC Experimental Procedure
2.3. Characterization
2.3.1. Characterization of the Bio-Oil Fraction
2.3.2. Characterization of the Hydrochar Fraction
3. Results and Discussion
3.1. Hydrochar Solid Fraction
3.1.1. Hydrochar Yields and Chemical-Structural Characteristics
3.1.2. Effect of Initial pH and Solid to Water Ratio
3.2. Hydrothermal Bio-Oil Liquid Fraction
3.2.1. Composition of Hydrothermal Bio-Oil Liquid Fraction
3.2.2. Production of Furan Derivatives and Levulinates from Hydrothermal Upgrading of Orange Peel Waste
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. Fruit and Vegetables-Your Dietary Essentials. The International Year of Fruits and Vegetables; FAO: Rome, Italy, 2021. [Google Scholar]
- Choi, I.S.; Lee, Y.G.; Khanal, S.K.; Park, B.J.; Bae, H.J. A low-energy, cost-effective approach to fruit and citrus peel waste processing for bioethanol production. Appl. Energy 2015, 140, 65–74. [Google Scholar] [CrossRef]
- FAS-USDA (Foreign Agricultural Service-United States Department of Agriculture). Citrus: World Markets and Trade. 2014. Available online: https://apps.fas.usda.gov/psdonline/circulars/citrus.pdf (accessed on 20 July 2020).
- Satari, B.; Karimi, K. Citrus processing wastes: Environmental impacts, recent advances, and future perspectives in total valorization. Resour. Conserv. Recycl. 2018, 129, 153–167. [Google Scholar] [CrossRef]
- Zema, D.A.; Calabrò, P.S.; Folino, A.; Tamburino, V.; Zappia, G.; Zimbone, S.M. Valorisation of citrus processing waste: A review. Waste Manag. 2018, 80, 252–273. [Google Scholar] [CrossRef]
- Raimondo, M.; Caracciolo, F.; Cembalo, L.; Chinnici, G.; Pecorino, B.; D’Amico, M. Making virtue out of necessity: Managing the citrus waste supply chain for bioeconomy applications. Sustainability 2018, 10, 4821. [Google Scholar] [CrossRef] [Green Version]
- De la Torre, I.; Martin-Dominguez, V.; Acedos, M.G.; Esteban, J.; Santos, V.E.; Ladero, M. Utilisation/upgrading of orange peel waste from a biological biorefinery perspective. Appl. Microbiol. Biotechol. 2019, 103, 5975–5991. [Google Scholar] [CrossRef] [PubMed]
- Fazzino, F.; Mauriello, F.; Paone, E.; Sidari, R.; Calabrò, P.S. Integral valorization of orange peel waste through optimized ensiling: Lactic acid and bioethanol production. Chemosphere 2021, 271, 129602. [Google Scholar] [CrossRef]
- Fidalgo, A.; Ciriminna, R.; Carnaroglio, D.; Tamburino, A.; Cravotto, G.; Grillo, G.; Ilharco, L.M.; Pagliaro, M. Eco-friendly extraction of pectin and essential oils from orange and lemon peels. ACS Sustain. Chem. Eng. 2016, 4, 2243–2251. [Google Scholar] [CrossRef]
- Espro, C.; Paone, E.; Mauriello, F.; Gotti, R.; Uliassi, E.; Bolognesi, M.L.; Rodriguez Padron, D.; Luque, R. Sustainable production of pharmaceutical, nutraceutical and bioactive compounds from biomass and waste. Chem. Soc. Rev. 2021, 50, 11191. [Google Scholar] [CrossRef] [PubMed]
- Burguete, P.; Corma, A.; Hitzl, M.; Modrego, R.; Ponceb, E.; Renz, M. Fuel and chemicals from wet lignocellulosic biomass waste streams by hydrothermal carbonization. Green Chem. 2016, 18, 1051–1060. [Google Scholar] [CrossRef]
- Fang, J.; Zhan, L.; Ok, Y.S.; Gao, B. Mini review of potential applications of hydrochar derived from hydrothermal carbonization of biomass. J. Ind. Eng. Chem. 2018, 57, 15–21. [Google Scholar] [CrossRef]
- Satira, A.; Espro, C.; Paone, E.; Calabrò, P.S.; Pagliaro, M.; Ciriminna, R.; Mauriello, F. The limonene biorefinery: From extractive technologies to its catalytic upgrading into p-cymene. Catalysts 2021, 11, 387. [Google Scholar] [CrossRef]
- Xiao, K.; Liu, H.; Li, Y.; Yang, G.; Wang, Y.; Yao, H. Excellent performance of porous carbon from urea-assisted hydrochar of orange peel for toluene and iodine adsorption. Chem. Eng. J. 2020, 382, 122997. [Google Scholar] [CrossRef]
- Kalderis, D.; Papameletiou, G.; Kayan, B. Assessment of orange peel hydrochar as a soil amendment: Impact on clay soil physical properties and potential phytotoxicity. Waste Biomass 2019, 10, 3471–3484. [Google Scholar] [CrossRef]
- Pistone, A.; Espro, C. Current trends on turning biomass wastes into carbon materials for electrochemical sensing and rechargeable battery applications. Curr. Opin. Green Sustain. Chem. 2020, 26, 100374–100381. [Google Scholar] [CrossRef]
- Gou, H.; He, J.; Zhao, G.; Zhang, L.; Yang, C.; Rao, H. Porous nitrogen-doped carbon networks derived from orange peel for high-performance supercapacitors. Ionics 2019, 25, 4371–4380. [Google Scholar] [CrossRef]
- Bressi, V.; Ferlazzo, A.; Iannazzo, D.; Espro, C. Graphene quantum dots by eco-friendly green synthesis for electrochemical sensing: Recent advances and future perspectives. Nanomaterials 2021, 11, 1120. [Google Scholar] [CrossRef]
- Espro, C.; Satira, M.; Anajafi, M.K.; Iannazzo, D.; Neri, G. Orange peels-derived hydrochar for chemical sensing applications. Sens. Actuators B Chem. 2021, 341, 130016–130027. [Google Scholar] [CrossRef]
- Lathiya, D.R.; Bhatt, D.V.; Maheria, K.C. Synthesis of sulfonated carbon catalyst from waste orange peel for cost effective biodiesel production. Bioresour. Technol. Rep. 2018, 2, 69–76. [Google Scholar] [CrossRef]
- Singh, M.; Pandey, N.; Dwivedi, P.; Kumar, V.; Mishra, B.B. Production of xylose, levulinic acid, and lignin from spent aromatic biomass with a recyclable Brønsted acid synthesized from d-limonene as renewable feedstock from citrus waste. Bioresour. Technol. 2019, 293, 122105. [Google Scholar] [CrossRef]
- Pileidis, F.D.; Tabassum, M.; Coutts, S.; Titiric, M.-M. Esterification of levulinic acid into ethyl levulinate catalysed by sulfonated hydrothermal carbons. Chin. J. Catal. 2014, 35, 929–936. [Google Scholar] [CrossRef]
- Erdogan, E.; Atila, B.; Mumme, J.; Reza, M.T.; Toptas, A.; Elibol, M.; Yanik, J. Characterization of products from hydrothermal carbonization of orange pomace including anaerobic digestibility of process liquor. Bioresour. Technol. 2015, 196, 35–42. [Google Scholar] [CrossRef]
- Aboagye, D.; Banadda, N.; Kiggundu, N.; Kabenge, I. Assessment of orange peel waste availability in Ghana and potential bio-oil yield using fast pyrolysis. Renew. Sustain. Energy Rev. 2017, 70, 814–821. [Google Scholar] [CrossRef]
- Xu, C.; Paone, E.; Rodríguez-Padrón, D.; Luque, R.; Mauriello, F. Recent catalytic routes for the preparation and the upgrading of biomass derived furfural and 5-hydroxymethylfurfural. Chem. Soc. Rev. 2020, 49, 4273–4306. [Google Scholar] [CrossRef]
- Overend, R.P.; Chornet, E. Fractionation of lignocellulosics by steam-aqueous pretreatments. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1987, 321, 523–536. [Google Scholar]
- Gumina, B.; Espro, C.; Galvagno, S.; Pietropaolo, R.; Mauriello, F. Bioethanol production from unpretreated cellulose under neutral selfsustainable hydrolysis/hydrogenolysis conditions promoted by the heterogeneous Pd/Fe3O4 catalyst. ACS Omega 2019, 4, 352–357. [Google Scholar] [CrossRef] [PubMed]
- Malara, A.; Paone, E.; Bonaccorsi, L.; Mauriello, F.; Macario, A.; Frontera, P. Pd/Fe3O4 nanofibers for the catalytic conversion of lignin-derived benzyl phenyl ether under transfer hydrogenolysis conditions. Catalysts 2020, 10, 20. [Google Scholar] [CrossRef] [Green Version]
- Malara, A.; Paone, E.; Frontera, P.; Bonaccorsi, L.; Panzera, G.; Mauriello, F. Sustainable exploitation of coffee silverskin in water remediation. Sustainability 2018, 10, 3547. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, X.; Zhan, H.; Songa, Y.; He, C.; Huang, Y.; Yin, X.; Wu, C. Insights into the evolution of chemical structures in lignocellulose and non-lignocellulose biowastes during hydrothermal carbonization (HTC). Fuel 2019, 236, 960–974. [Google Scholar] [CrossRef]
- Rivas-Cantu, R.C.; Jones, K.D.; Mills, P.L. A citrus waste-based biorefinery as a source of renewable energy: Technical advances and analysis of engineering challenges. Waste Manag. Res. 2013, 31, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Resa, M.T.; Yang, X.; Coronella, C.J.; Lin, H.; Hathwaik, U.; Shintani, D.; Neupane, B.P.; Miller, G.C. Hydrothermal carbonization (HTC) and pelletization of two arid land plants bagasse for energy densification. ACS Sustain. Chem. Eng. 2016, 4, 1106–1114. [Google Scholar]
- Yan, W.; Perez, S.; Sheng, K. Upgrading fuel quality of moso bamboo via low temperature thermochemical treatments: Dry torrefaction and hydrothermal carbonization. Fuel 2017, 196, 473–480. [Google Scholar] [CrossRef]
- Yao, Z.; Ma, X.; Lin, Y. Effects of hydrothermal treatment temperature and residence time on characteristics and combustion behaviors of green waste. Appl. Therm. Eng. 2016, 104, 678–686. [Google Scholar] [CrossRef]
- Wang, S.; Dai, G.; Yang, H.; Luo, Z. Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review. Prog. Energy Combust. Sci. 2017, 62, 33–86. [Google Scholar] [CrossRef]
- Cai, J.; Li, B.; Wang, J.; Zhao, M.; Zhang, K. Hydrothermal carbonization of tobacco stalk for fuel application. Bioresour. Technol. 2016, 220, 305–311. [Google Scholar] [CrossRef] [Green Version]
- Sevilla, M.; Fuertes, A.B. Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. Chem. Eur. J. 2009, 15, 4195–4203. [Google Scholar] [CrossRef]
- Reza, M.T.; Uddin, M.H.; Lynam, J.G.; Hoekman, S.K.; Coronella, C.J. Hydrothermal carbonization of loblolly pine: Reaction chemistry and water balance. Biomass Convers. Biorefinery 2014, 4, 311–321. [Google Scholar] [CrossRef]
- Reza, M.T.; Rottler, E.; Herklotz, L.; Wirth, B. Hydrothermal carbonization (HTC) of wheat straw: Influence of feedwater pH prepared by acetic acid and potassium hydroxide. Bioresour. Technol. 2015, 182, 336–344. [Google Scholar] [CrossRef]
- Tag, A.T.; Duman, G.; Yanik, J. Influences of feedstock type and process variables on hydrochar properties. Bioresour. Technol. 2018, 250, 337–344. [Google Scholar]
- Sabio, E.; Álvarez-Murillo, A.; Román, S.; Ledesma, B. Conversion of tomato-peel waste into solid fuel by hydrothermal carbonization: Influence of the processing variables. Waste Manag. 2016, 47, 122–132. [Google Scholar] [CrossRef] [PubMed]
- Volpe, M.; Fiori, L. From olive waste to solid biofuel through hydrothermal carbonization: The role of temperature and solid load on secondary char formation and hydrochar energy properties. J. Anal. Appl. Pyrolysis 2017, 124, 63–72. [Google Scholar] [CrossRef]
- Borrero-López, A.M.; Fierro, V.; Jeder, A.; Ouederni, A.; Masson, E.; Celzard, A. High added-value products from the hydrothermal carbonization of olive stones. Environ. Sci. Pollut. Res. 2017, 24, 9859–9869. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Gao, Y.; Zhu, G.; Zhu, J.; Yuan, Q.; Chen, J.; Cai, M.; Feng, L. Characterization of dairy manure hydrochar and aqueous phase products generated by hydrothermal carbonization at different temperatures. J. Anal. Appl. Pyrolysis 2017, 127, 335–342. [Google Scholar] [CrossRef]
- Chheda, J.N.; Román-Leshkov, Y.; Dumesic, J.A. Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived mono- and poly-saccharides. Green Chem. 2007, 9, 342–350. [Google Scholar] [CrossRef]
- Puccini, M.; Licursi, D.; Stefanelli, E.; Vitolo, S.; Raspolli Galletti, A.M.; Heeres, H.J. Hydrothermal treatment of orange peel waste for the integrated production of furfural, levulinic acid and reactive hydrochar: Towards the application of the biorefinery concept. Chem. Eng. Trans. 2016, 50, 223–228. [Google Scholar]
- Silva, J.F.L.; Pinto Mariano, A.; Filho, R.M. Less severe reaction conditions to produce levulinic acid with reduced humins formation at the expense of lower biomass conversion: Is it economically feasible? Fuel Commun. 2021, 9, 100029. [Google Scholar] [CrossRef]
- Murat Sen, S.; Gürbüz, E.I.; Wettstein, S.G.; Martin Alonso, D.; Dumesic, J.A.; Maravelias, C.T. Production of butene oligomers as transportation fuels using butene for esterification of levulinic acid from lignocellulosic biomass: Process synthesis and technoeconomic evaluation. Green Chem. 2012, 14, 3289–3294. [Google Scholar]
- Bond, J.Q.; Martin Alonso, D.; Wang, D.; West, R.M.; Dumesic, J.A. Integrated catalytic conversion of gamma-valerolactone to liquid alkenes for transportation fuels. Science 2010, 327, 1110–1114. [Google Scholar] [CrossRef]
- Tabanelli, T.; Paone, E.; Blair Vásquez, P.; Pietropaolo, R.; Cavani, F.; Mauriello, F. Transfer hydrogenation of methyl and ethyl levulinate promoted by a ZrO2 catalyst: Comparison of batch vs continuous gas-flow conditions. ACS Sustain. Chem. Eng. 2019, 7, 9937–9947. [Google Scholar] [CrossRef]
- Vaśquez, P.B.; Tabanelli, T.; Monti, E.; Albonetti, S.; Dimitratos, N.; Cavani, F. Gas-phase catalytic transfer hydrogenation of alkyl levulinates with ethanol over ZrO2. ACS Sustain. Chem. Eng. 2019, 7, 8317. [Google Scholar] [CrossRef]
- Wright, W.R.H.; Palkovits, R. Development of heterogeneous catalysts for the conversion of levulinic acid to γ-valerolactone. ChemSusChem 2012, 5, 1657–1667. [Google Scholar] [CrossRef]
- Omoruyi, U.; Page, S.; Hallett, J.; Miller, P.W. Homogeneous catalyzed reactions of levulinic acid: To γ-valerolactone and beyond. ChemSusChem 2016, 9, 2037–2047. [Google Scholar] [CrossRef]
Sample | LogR0 | HC Yields (wt%) |
---|---|---|
S-HC150–60 | 3.25 | 13.27 |
S-HC180–60 | 4.13 | 18.74 |
S-HC180–180 | 4.61 | 35.37 |
S-HC180–300 | 4.83 | 36.40 |
S-HC210–60 | 5.01 | 49.10 |
S-HC210–180 | 5.49 | 54.05 |
S-HC210–300 | 5.71 | 36.13 |
S-HC240–60 | 5.90 | 29.45 |
S-HC240–180 | 6.37 | 28.66 |
S-HC240–300 | 6.59 | 24.48 |
S-HC270–60 | 6.78 | 24.53 |
S-HC270–180 | 7.26 | 22.34 |
S-HC270–300 | 7.48 | 20.39 |
S-HC300–60 | 7.66 | 20.40 |
S-HC300–180 | 8.14 | 20.87 |
S-HC300–300 | 8.36 | 19.69 |
Observed Peak Intensity | Possible Functional Groups | Sample | B.E.T. S.A. (m2/g) | Pore Volume (cc/g) | Pore Radius Dv(r) (Å) |
---|---|---|---|---|---|
3300 cm−1 | O–H (alcohols, phenols, carboxylic acid) | S-HC180–60 | 4.9 | 0.009 | 17.9 |
3000 cm−1 | C–H (aliphatic methyl) | S-HC210–60 | 5.5 | 0.008 | 20.4 |
1701 cm−1 | C=O (ketone, aldehydes, amides) | S-HC 240–60 | 7.7 | 0.010 | 17.6 |
1608 cm−1 | C=C (aromatic rings, carbonyl, quinone, ester or carboxyl groups) | S-HC270–60 | 9.1 | 0.011 | 17.8 |
1527 cm−1 | N–O (nitro) | S-HC300–60 | 18.4 | 0.029 | 22.4 |
1431 cm−1 | COO– (carboxylate) | ||||
1120 cm−1 | C–O of lignocellulose | ||||
1026 cm−1 | C–O (carboxylic acid, esters) |
Sample | pH 1 | pH 2 | Hydrochar Yield (wt%) |
---|---|---|---|
S-H180–60 | - | 3.60 | 18.74 |
SA-HC1 | 1 | 1.61 | 30.62 |
SA-HC2 | 2 | 1.89 | 27.36 |
AA-HC1 | 1 | 1.20 | 21.51 |
AA-HC2 | 2 | 1.80 | 19.39 |
AA-HC3 | 3 | 2.40 | 15.24 |
Compounds Name | Sample | ||||
---|---|---|---|---|---|
L-HC150–60 | L-HC180–60 | L-HC240–60 | L-HC300–60 | ||
Peak Area% | |||||
Furans | Furfural | 18.94 | 16.69 | 1.63 | - |
2-Furancarboxaldehyde, 5-methyl | 14.86 | 7.88 | 5.05 | - | |
5-Hydroxymethylfurfural | 41.97 | 61.82 | 28.61 | - | |
Phenols | Phenol | 0.57 | 0.10 | 4.72 | 9.62 |
Catechol | 0.60 | 0.29 | 4.52 | 8.64 | |
1,2-Benzenediol, 3-methyl | - | 0.11 | 0.78 | 1.04 | |
Hydroquinone | - | - | 1.91 | 7.26 | |
p-Cresol | - | - | 0.79 | 2.17 | |
Phenol, 2-methyl | - | - | 0.27 | 0.69 | |
Acids | Benzoic acid | 2.27 | 0.61 | 2.67 | 6.21 |
2-Pentenoic acid | - | - | 0.32 | - | |
Ketones | 2-Pentanone, 4-hydroxy-4-methyl | 0.40 | 0.68 | 3.87 | 1.20 |
Ethanone, 1-(2-furanyl) | 0.69 | 0.46 | 0.40 | 1.86 | |
1,2-Cyclopentanedione, 3-methyl | 0.63 | 0.81 | - | - | |
2-Cyclopenten-1-one, 2-hydroxy-3-methyl | - | - | 4.37 | 0.99 | |
2-Cyclopenten-1-one, 2-methyl | - | - | 0.61 | 5.83 | |
2-Cyclopenten-1-one, 3-methyl | - | - | 0.61 | 7.41 | |
Aldehydes | 1H-Pyrrole-2-carboxaldehyde | 0.86 | 0.41 | 0.66 | - |
Benzaldehyde, 3-hydroxy | - | 0.17 | 0.83 | - | |
Vanillin, acetate | - | - | 1.07 | - | |
Alcohols | α-Terpineol | 0.91 | 0.24 | - | 1.01 |
Benzyl alcohol | - | - | 0.29 | - | |
3-Pyridinol | - | - | 10.14 | 4.63 | |
Alkenes | 1-Nonadecene | 0.24 | 0.33 | 1.65 | - |
1-Pentadecene | - | 0.59 | 3.51 | - | |
1-Heptadecene | - | - | 3.64 | - |
Product | Solvent (wt:wt) | (0.1 M H2SO4) | (0.1 M H2SO4) | (0.1 M H2SO4) |
---|---|---|---|---|
Methyl-levulinate | water: methanol (50:50) | 7.1 (% yield) | 24.0 (% yield) | 14.2 (% yield) |
Ethyl-levulinate | water: ethanol (50:50) | 4.9 (% yield) | 16.7 (% yield) | 7.5 (% yield) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Satira, A.; Paone, E.; Bressi, V.; Iannazzo, D.; Marra, F.; Calabrò, P.S.; Mauriello, F.; Espro, C. Hydrothermal Carbonization as Sustainable Process for the Complete Upgrading of Orange Peel Waste into Value-Added Chemicals and Bio-Carbon Materials. Appl. Sci. 2021, 11, 10983. https://doi.org/10.3390/app112210983
Satira A, Paone E, Bressi V, Iannazzo D, Marra F, Calabrò PS, Mauriello F, Espro C. Hydrothermal Carbonization as Sustainable Process for the Complete Upgrading of Orange Peel Waste into Value-Added Chemicals and Bio-Carbon Materials. Applied Sciences. 2021; 11(22):10983. https://doi.org/10.3390/app112210983
Chicago/Turabian StyleSatira, Antonella, Emilia Paone, Viviana Bressi, Daniela Iannazzo, Federica Marra, Paolo Salvatore Calabrò, Francesco Mauriello, and Claudia Espro. 2021. "Hydrothermal Carbonization as Sustainable Process for the Complete Upgrading of Orange Peel Waste into Value-Added Chemicals and Bio-Carbon Materials" Applied Sciences 11, no. 22: 10983. https://doi.org/10.3390/app112210983
APA StyleSatira, A., Paone, E., Bressi, V., Iannazzo, D., Marra, F., Calabrò, P. S., Mauriello, F., & Espro, C. (2021). Hydrothermal Carbonization as Sustainable Process for the Complete Upgrading of Orange Peel Waste into Value-Added Chemicals and Bio-Carbon Materials. Applied Sciences, 11(22), 10983. https://doi.org/10.3390/app112210983