Effect of Working Atmospheres on the Detection of Diacetyl by Resistive SnO2 Sensor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tin Oxide Preparation and Charactetrization
2.2. Sensor Preparation and Testing
3. Results and Discussion
3.1. SnO2 Powder Characterization
3.2. Gas Sensor Measurements
3.2.1. Sensor Response in Air Atmosphere
3.2.2. Sensor Response in N2 Atmosphere
3.2.3. Sensor Response in CO2 Atmosphere
3.2.4. Sensor Response towards Diacetyl in Aqueous and Alcholic Solutions
3.2.5. Effect of Diacetyl Concentrations in Alcholic and Aqueous Solutions
3.2.6. Response and Recovery Time in Alcholic Diacetyl Solution
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Wu, H.; Shi, L. Real-time anomaly detection in gas sensor streaming data. Int. J. Embed. Syst. 2021, 14, 81–88. [Google Scholar] [CrossRef]
- Nazemi, H.; Joseph, A.; Park, J.; Emadi, A. Advanced Micro- and Nano-Gas Sensor Technology: A Review. Sensors 2019, 19, 1285. [Google Scholar] [CrossRef] [Green Version]
- Malara, A.; Bonaccorsi, L.; Donato, A.; Frontera, P.; Neri, G. Doped Zinc Oxide Sensors for Hexanal Detection. In Lecture Notes in Electrical Engineering; Springer: Singapore, 2020; pp. 279–285. [Google Scholar]
- Wang, Z.; Zhu, L.; Sun, S.; Wang, J.; Yan, W. One-Dimensional Nanomaterials in Resistive Gas Sensor: From Material Design to Application. Chemosensors 2021, 9, 198. [Google Scholar] [CrossRef]
- Zhou, X.; Lee, S.; Xu, Z.; Yoon, J. Recent Progress on the Development of Chemosensors for Gases. Chem. Rev. 2015, 115, 7944–8000. [Google Scholar] [CrossRef] [PubMed]
- Faggio, G.; Gnisci, A.; Messina, G.D.S.; Lisi, N.; Capasso, A.; Lee, G.-H.; Armano, A.; Sciortino, A.; Messina, F.; Cannas, M.; et al. Carbon Dots Dispersed on Graphene/SiO2/Si: A Morphological Study. Phys. Status Solidi 2019, 216, 1800559. [Google Scholar] [CrossRef]
- Sawalha, S.; Moulaee, K.; Nocito, G.; Silvestri, A.; Petralia, S.; Prato, M.; Bettini, S.; Valli, L.; Conoci, S.; Neri, G. Carbon-dots conductometric sensor for high performance gas sensing. Carbon Trends 2021, 5, 100105. [Google Scholar] [CrossRef]
- Malara, A.; Leonardi, S.G.; Bonavita, A.; Fazio, E.; Stelitano, S.; Neri, G.; Neri, F.; Santangelo, S. Origin of the different behavior of some platinum decorated nanocarbons towards the electrochemical oxidation of hydrogen peroxide. Mater. Chem. Phys. 2016, 184, 269–278. [Google Scholar] [CrossRef]
- Nag, A.; Mitra, A.; Mukhopadhyay, S. Graphene and its sensor-based applications: A review. Sens. Actuators A Phys. 2018, 270, 177–194. [Google Scholar] [CrossRef]
- Busacca, C.; Donato, A.; Faro, M.L.; Malara, A.; Neri, G.; Trocino, S. CO gas sensing performance of electrospun Co3O4 nanostructures at low operating temperature. Sens. Actuators B Chem. 2020, 303, 127193. [Google Scholar] [CrossRef]
- Kailasa, S.; Reddy, M.S.B.; Maurya, M.R.; Rani, B.G.; Rao, K.V.; Sadasivuni, K.K. Electrospun Nanofibers: Materials, Synthesis Parameters, and Their Role in Sensing Applications. Macromol. Mater. Eng. 2021, 306, 2100410. [Google Scholar] [CrossRef]
- Radhakrishnan, J.; Kumara, M. Geetika Effect of temperature modulation, on the gas sensing characteristics of ZnO nanostructures, for gases O2, CO and CO2. Sens. Int. 2021, 2, 100059. [Google Scholar] [CrossRef]
- Zhang, L.; Tong, R.; Ge, W.; Guo, R.; Shirsath, S.E.; Zhu, J. Facile one-step hydrothermal synthesis of SnO2 microspheres with oxygen vacancies for superior ethanol sensor. J. Alloys Compd. 2020, 814, 152266. [Google Scholar] [CrossRef]
- Wang, D.; Chen, Y.; Liu, Z.; Li, L.; Shi, C.; Qin, H.; Hu, J. CO2-sensing properties and mechanism of nano-SnO2 thick-film sensor. Sens. Actuators B Chem. 2016, 227, 73–84. [Google Scholar] [CrossRef]
- Hoa, T.T.N.; Van Duy, N.; Hung, C.M.; Van Hieu, N.; Hau, H.H.; Hoa, N.D. Dip-coating decoration of Ag2O nanoparticles on SnO2 nanowires for high-performance H2S gas sensors. RSC Adv. 2020, 10, 17713–17723. [Google Scholar] [CrossRef]
- Sun, P.; Mei, X.; Cai, Y.; Ma, J.; Sun, Y.; Liang, X.; Liu, F.; Lu, G. Synthesis and gas sensing properties of hierarchical SnO2 nanostructures. Sens. Actuators B Chem. 2013, 187, 301–307. [Google Scholar] [CrossRef]
- Gnisci, A.; Fotia, A.; Malara, A.; Bonaccorsi, L.; Frontera, P.; Donato, A. SnO2 sensing performance toward volatile organic compounds. In Proceedings of the CSAC2021: 1st International Electronic Conference on Chemical Sensors and Analytical Chemistry, Online, 1–15 July 2021; Malara, A., Ed.; MDPI: Basel, Switzerland, 2021. [Google Scholar]
- Parish, M.E.; Braddock, R.J.; Wicker, L. Gas Chromatographic Detection of Diacetyl in Orange Juice. J. Food Qual. 1990, 13, 249–258. [Google Scholar] [CrossRef]
- Macciola, V.; Candela, G.; De Leonardis, A. Rapid gas-chromatographic method for the determination of diacetyl in milk, fermented milk and butter. Food Control. 2008, 19, 873–878. [Google Scholar] [CrossRef]
- Otsuka, M.; Ohmori, S. Simple and sensitive determination of diacetyl and acetoin in biological samples and alcoholic drinks by gas chromatography with electron-capture detection. J. Chromatogr. B Biomed. Sci. Appl. 1992, 577, 215–220. [Google Scholar] [CrossRef]
- Tian, J. Determination of several flavours in beer with headspace sampling–gas chromatography. Food Chem. 2010, 123, 1318–1321. [Google Scholar] [CrossRef]
- Clark, S.; Winter, C.K. Diacetyl in Foods: A Review of Safety and Sensory Characteristics. Compr. Rev. Food Sci. Food Saf. 2015, 14, 634–643. [Google Scholar] [CrossRef]
- Li, P.; Guo, X.; Shi, T.; Hu, Z.; Chen, Y.; Du, L.; Xiao, D. Reducing diacetyl production of wine by overexpressing BDH1 and BDH2 in Saccharomyces uvarum. J. Ind. Microbiol. Biotechnol. 2017, 44, 1541–1550. [Google Scholar] [CrossRef]
- Martineau, B.; Acree, T.E.; Henick-Kling, T. Effect of wine type on the detection threshold for diacetyl. Food Res. Int. 1995, 28, 139–143. [Google Scholar] [CrossRef]
- Krogerus, K.; Gibson, B.R. 125thAnniversary Review: Diacetyl and its control during brewery fermentation. J. Inst. Brew. 2013, 119, 86–97. [Google Scholar] [CrossRef]
- Lee, H.-H.; Lee, K.-T.; Shin, J.-A. Analytical method validation and monitoring of diacetyl in liquors from Korean market. Food Sci. Biotechnol. 2017, 26, 893–899. [Google Scholar] [CrossRef] [PubMed]
- Itoh, T.; Koyama, Y.; Shin, W.; Akamatsu, T.; Tsuruta, A.; Masuda, Y.; Uchiyama, K. Selective Detection of Target Volatile Organic Compounds in Contaminated Air Using Sensor Array with Machine Learning: Aging Notes and Mold Smells in Simulated Automobile Interior Contaminant Gases. Sensors 2020, 20, 2687. [Google Scholar] [CrossRef] [PubMed]
- Portno, A.D. The influence of oxygen on the production of diacetyl during fermentation and conditioning. J. Inst. Brew. 1966, 72, 458–461. [Google Scholar] [CrossRef]
- Pirsa, S.; Nejad, F.M. Simultaneous analysis of some volatile compounds in food samples by array gas sensors based on polypyrrole nano-composites. Sens. Rev. 2017, 37, 155–164. [Google Scholar] [CrossRef]
- Bailey, T.P.; Hammond, R.V.; Persaud, K.C. Applications for an Electronic Aroma Detector in the Analysis of Beer and Raw Materials. J. Am. Soc. Brew. Chem. 1995, 53, 39–42. [Google Scholar] [CrossRef]
- Malara, A.; Bonaccorsi, L.; Donato, A.; Frontera, P.; Piscopo, A.; Poiana, M.; Leonardi, S.G.; Neri, G. Sensing Properties of Indium, Tin and Zinc Oxides for Hexanal Detection. In Lecture Notes in Electrical Engineering; Springer: Singapore, 2019; pp. 39–44. [Google Scholar]
- Ragazzo-Sanchez, J.A.; Chalier, P.; Chevalier, D.; Ghommidh, C. Electronic nose discrimination of aroma compounds in alcoholised solutions. Sens. Actuators B Chem. 2006, 114, 665–673. [Google Scholar] [CrossRef]
- Bonaccorsi, L.; Malara, A.; Donato, A.; Donato, N.; Leonardi, S.G.; Neri, G. Effects of UV Irradiation on the Sensing Properties of In2O3 for CO Detection at Low Temperature. Micromachines 2019, 10, 338. [Google Scholar] [CrossRef] [Green Version]
- Williams, D.E. Semiconducting oxides as gas-sensitive resistors. Sens. Actuators B Chem. 1999, 57, 1–16. [Google Scholar] [CrossRef]
- Liu, L.; Shu, S.; Zhang, G.; Liu, S. Highly Selective Sensing of C2H6O, HCHO, and C3H6O Gases by Controlling SnO2 Nanoparticle Vacancies. ACS Appl. Nano Mater. 2018, 1, 31–37. [Google Scholar] [CrossRef]
- Shahabuddin, M.; Sharma, A.; Kumar, J.; Tomar, M.; Umar, A.; Gupta, V. Metal clusters activated SnO2 thin film for low level detection of NH3 gas. Sens. Actuators B Chem. 2014, 194, 410–418. [Google Scholar] [CrossRef]
- Hermida, I.D.P.; Wiranto, G.; Hiskia; Nopriyanti, R. Fabrication of SnO2based CO gas sensor device using thick film technology. J. Phys. Conf. Ser. 2016, 776, 012061. [Google Scholar] [CrossRef]
- Sedghi, S.M.; Mortazavi, Y.; Khodadadi, A.A. Low temperature CO and CH4 dual selective gas sensor using SnO2 quantum dots prepared by sonochemical method. Sens. Actuators B Chem. 2010, 145, 7–12. [Google Scholar] [CrossRef]
- Devi, G.S.; Manorama, S.; Rao, V. High sensitivity and selectivity of an SnO2 sensor to H2S at around 100 °C. Sens. Actuators B Chem. 1995, 28, 31–37. [Google Scholar] [CrossRef]
- Das, S.; Girija, K.; Debnath, A.; Vatsa, R. Enhanced NO2 and SO2 sensor response under ambient conditions by polyol synthesized Ni doped SnO2 nanoparticles. J. Alloys Compd. 2021, 854, 157276. [Google Scholar] [CrossRef]
- Shimizu, Y. SnO2 Gas Sensor BT—Encyclopedia of Applied Electrochemistry; Kreysa, G., Ota, K., Savinell, R.F., Eds.; Springer: New York, NY, USA, 2014; pp. 1974–1982. ISBN 978-1-4419-6996-5. [Google Scholar]
- Hübert, T.; Majewski, J.; Banach, U.; Detjens, M.; Tiebe, C. Response Time Measurement of Hydrogen Sensors. 2017. Available online: https://hysafe.info/uploads/2017_papers/211.pdf (accessed on 28 December 2021).
- Abokifa, A.A.; Haddad, K.; Fortner, J.; Lo, C.S.; Biswas, P. Sensing mechanism of ethanol and acetone at room temperature by SnO2 nano-columns synthesized by aerosol routes: Theoretical calculations compared to experimental results. J. Mater. Chem. A 2018, 6, 2053–2066. [Google Scholar] [CrossRef]
- Liu, X.-L.; Zhao, Y.; Ma, S.-X.; Zhu, S.-W.; Ning, X.-J.; Zhao, L.; Zhuang, J. Rapid and Wide-Range Detection of NOx Gas by N-Hyperdoped Silicon with the Assistance of a Photovoltaic Self-Powered Sensing Mode. ACS Sens. 2019, 4, 3056–3065. [Google Scholar] [CrossRef]
- Barsan, N.; Weimar, U. Conduction Model of Metal Oxide Gas Sensors. J. Electroceram. 2001, 7, 143–167. [Google Scholar] [CrossRef]
- Santos, G.T.; Felix, A.A.; Orlandi, M.O. Ultrafast Growth of h-MoO3 Microrods and Its Acetone Sensing Performance. Surfaces 2021, 4, 9–16. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gnisci, A.; Fotia, A.; Bonaccorsi, L.; Donato, A. Effect of Working Atmospheres on the Detection of Diacetyl by Resistive SnO2 Sensor. Appl. Sci. 2022, 12, 367. https://doi.org/10.3390/app12010367
Gnisci A, Fotia A, Bonaccorsi L, Donato A. Effect of Working Atmospheres on the Detection of Diacetyl by Resistive SnO2 Sensor. Applied Sciences. 2022; 12(1):367. https://doi.org/10.3390/app12010367
Chicago/Turabian StyleGnisci, Andrea, Antonio Fotia, Lucio Bonaccorsi, and Andrea Donato. 2022. "Effect of Working Atmospheres on the Detection of Diacetyl by Resistive SnO2 Sensor" Applied Sciences 12, no. 1: 367. https://doi.org/10.3390/app12010367
APA StyleGnisci, A., Fotia, A., Bonaccorsi, L., & Donato, A. (2022). Effect of Working Atmospheres on the Detection of Diacetyl by Resistive SnO2 Sensor. Applied Sciences, 12(1), 367. https://doi.org/10.3390/app12010367