Substrate-Driven Atomic Layer Deposition of High-κ Dielectrics on 2D Materials
Abstract
:1. Introduction
2. Atomic Layer Deposition on 2D Materials
2.1. Methods to Promote ALD Growth on 2D Materials
- (i)
- Predeposition of a seed-layer;
- (ii)
- Chemical pre-functionalization.
2.2. Electrical Behavior and Interface Quality of High-κ Dielectrics by ALD on 2D Materials
3. Substrate-Driven ALD of High-κ Dielectrics on 2D Materials
3.1. ALD on Monolayer CVD Graphene on the Native Metal Substrates
3.2. ALD on Epitaxial Graphene on SiC
3.3. ALD on Exfoliated MoS2 on Gold
4. Challenges for Applications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Du, X.; Skachko, I.; Barker, A.; Aandrei, E.Y. Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 2008, 3, 491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giannazzo, F.; Sonde, S.; Lo Nigro, R.; Rimini, E.; Raineri, V. Mapping the Density of Scattering Centers Limiting the Electron Mean Free Path in Graphene. Nano Lett. 2011, 11, 4612–4618. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-M.; Dimitrakopoulos, C.; Jenkins, K.A.; Farmer, D.B.; Chiu, H.-Y.; Grill, A.; Avouris, P. 100-GHz Transistors from Wafer-Scale Epitaxial Graphene. Science 2010, 327, 662. [Google Scholar] [CrossRef] [Green Version]
- Moon, J.S.; Curtis, D.; Hu, M.; Wong, D.; McGuire, C.; Campbell, P.M.; Jernigan, G.; Tedesco, J.L.; VanMil, B.; Myers-Ward, R.; et al. Epitaxial-Graphene RF Field-Effect Transistors on Si-Face 6H-SiC Substrates. IEEE Electron Device Lett. 2009, 30, 650–652. [Google Scholar] [CrossRef]
- Liu, H.; Neal, A.T.; Ye, P.D. Channel Length Scaling of MoS2 MOSFETs. ACS Nano 2012, 6, 8563–8569. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Guo, J.; Wu, Y.; Zhu, E.; Weiss, N.O.; He, Q.; Wu, H.; Cheng, H.-C.; Xu, Y.; Shakir, I.; et al. Pushing the Performance Limit of Sub-100 nm Molybdenum Disulfide Transistors. Nano Lett. 2016, 16, 6337–6342. [Google Scholar] [CrossRef] [PubMed]
- Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150. [Google Scholar] [CrossRef]
- Kim, S.; Konar, A.; Hwang, W.S.; Lee, J.H.; Lee, J.; Yang, J.; Jung, C.; Kim, H.; Yoo, J.B.; Choi, J.Y.; et al. High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat. Commun. 2012, 3, 1011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mak, K.F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T.F. Atomically Thin MoS2: A New Direct-Gap Semiconductor. Phys. Rev. Lett. 2010, 105, 136805. [Google Scholar] [CrossRef] [Green Version]
- Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C.-Y.; Galli, G.; Wang, F. Emerging Photoluminescence in Monolayer MoS2. Nano Lett. 2010, 10, 1271–1275. [Google Scholar] [CrossRef] [PubMed]
- Reddy, D.; Register, L.F.; Carpenter, G.D.; Banerjee, S.K. Graphene Field-Effect Transistors. J. Phys. D Appl. Phys. 2011, 45, 019501. [Google Scholar] [CrossRef]
- Echtermeyer, T.J.; Lemme, M.C.; Baus, M.; Szafranek, B.N.; Geim, A.K.; Kurz, H. Non-volatile switching in graphene field effect devices. IEEE Electron Device Lett. 2008, 29, 29952–29954. [Google Scholar] [CrossRef] [Green Version]
- Fisichella, G.; Lo Verso, S.; Di Marco, S.; Vinciguerra, V.; Schilirò, E.; Di Franco, S.; Lo Nigro, R.; Roccaforte, F.; Zurutuza, A.; Centeno, A.; et al. Advances in the fabrication of graphene transistors on flexible substrates. Beilstein J. Nanotechnol. 2017, 8, 467–474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Ye, P.D. MoS2 Dual-Gate MOSFET With Atomic-Layer-Deposited Al2O3 as Top-Gate Dielectric. IEEE Electron Device Lett. 2011, 33, 546–548. [Google Scholar] [CrossRef] [Green Version]
- Giannazzo, F.; Greco, G.; Roccaforte, F.; Sonde, S.S. Vertical Transistors Based on 2D Materials: Status and Prospects. Crystals 2018, 8, 70. [Google Scholar] [CrossRef] [Green Version]
- Giannazzo, F. Engineering 2D heterojunctions with dielectrics. Nat. Electron. 2019, 2, 54. [Google Scholar] [CrossRef]
- Giannazzo, F.; Fisichella, G.; Greco, G.; Schilirò, E.; Deretzis, I.; Lo Nigro, R.; La Magna, A.; Roccaforte, F.; Iucolano, F.; Lo Verso, S.; et al. Cordier, Fabrication and Characterization of Graphene Heterostructures with Nitride semiconductors for High Frequency Vertical Transistors. Phys. Status Solidi 2017, 215, 1700653. [Google Scholar] [CrossRef]
- Giannazzo, F.; Greco, G.; Schilirò, E.; Lo Nigro, R.; Deretzis, I.; La Magna, A.; Roccaforte, F.; Iucolano, F.; Ravesi, S.; Frayssinet, E.; et al. High-performance graphene/AlGaN/GaN schottky junctions for hot electron transistors. ACS Appl. Electron. Mater. 2019, 1, 2342–2354. [Google Scholar] [CrossRef]
- Mehr, W.; Dabrowski, J.; Scheytt, J.C.; Lippert, G.; Xie, Y.H.; Lemme, M.C.; Ostling, M.; Lupina, G. Vertical Graphene Base Transistor. IEEE Electron Device Lett. 2012, 33, 691–693. [Google Scholar] [CrossRef] [Green Version]
- Bae, T.-E.; Kim, H.; Jung, J.; Cho, W.-J. Fabrication of high-performance graphene field-effect transistor with solution-processed Al2O3 sensing membrane. Appl. Phys. Lett. 2014, 104, 153506. [Google Scholar] [CrossRef]
- Dlubak, B.; Kidambi, P.R.; Weatherup, R.S.; Hofmann, S.; Robertson, J. Substrate-assisted nucleation of ultra-thin dielectric layers on graphene by atomic layer deposition. Appl. Phys. Lett. 2012, 100, 173113. [Google Scholar] [CrossRef]
- Schilirò, E.; Lo Nigro, R.; Panasci, S.E.; Agnello, S.; Cannas, M.; Gelardi, F.M.; Roccaforte, F.; Giannazzo, F. Direct Atomic Layer Deposition of Ultrathin Aluminum Oxide on Monolayer MoS2 Exfoliated on Gold: The Role of the Substrate. Adv. Mater. Interfaces 2021, 8, 2101117. [Google Scholar] [CrossRef]
- Pollard, A.J.; Perkins, E.W.; Smith, N.A.; Saywell, A.; Goretzki, G.; Phillips, A.G.; Argent, S.P.; Sachdev, H.; Müller, F.; Hüfner, S.; et al. Supramolecular Assemblies Formed on an Epitaxial Graphene Superstructure. Angew. Chem. Int. Ed. 2010, 49, 1794. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Sun, J.; Low, T.; Zhang, L.; Pan, Y.; Liu, Q.; Mao, J.; Zhou, H.; Guo, H.; Du, S.; et al. Assembly of iron phthalocyanine and pentacene molecules on a graphene monolayer grown on Ru(0001). Phys. Rev. B 2011, 84, 245436. [Google Scholar] [CrossRef] [Green Version]
- Rafiee, J.; Mi, X.; Gullapalli, H.; Thomas, A.V.; Yavari, F.; Shi, Y.; Ajayan, P.M.; Koratkar, N.A. Wetting transparency of graphene. Nat. Mater. 2012, 11, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Schilirò, E.; Lo Nigro, R.; Roccaforte, F.; Deretzis, I.; La Magna, A.; Armano, A.; Agnello, S.; Pecz, B.; Ivanov, I.G.; Yakimova, R.; et al. Seed-Layer-Free Atomic Layer Deposition of Highly Uniform Al2O3 Thin Films onto Monolayer Epitaxial Graphene on Silicon Carbide. Adv. Mater. Interfaces 2019, 6, 1900097. [Google Scholar] [CrossRef]
- Schilirò, E.; Lo Nigro, R.; Panasci, S.E.; Gelardi, F.M.; Agnello, S.; Yakimova, R.; Roccaforte, F.; Giannazzo, F. Aluminum oxide nucleation in the early stages of atomic layer deposition on epitaxial graphene. Carbon 2020, 169, 172–181. [Google Scholar] [CrossRef]
- Vervuurt, R.H.J.; Kessels, W.M.M.; Bol, A.A. Atomic Layer Deposition for Graphene Device Integration. Adv. Mater. Interfaces 2017, 4, 1700232. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.G.; Lee, H.-B.-R. Atomic Layer Deposition on 2D Materials. Chem. Mater. 2017, 29, 3809–3826. [Google Scholar] [CrossRef]
- Giannazzo, F.; Schilirò, E.; Lo Nigro, R.; Roccaforte, F.; Yakimova, R. Atomic Layer Deposition of High-k Insulators on Epitaxial Graphene: A Review. Appl. Sci. 2020, 10, 2440. [Google Scholar] [CrossRef] [Green Version]
- Oviroh, P.O.; Akbarzadeh, R.; Pan, D.; Coetzee, R.A.M.; Jen, T.-C. New development of atomic layer deposition: Processes, methods and applications. Sci. Technol. Adv. Mater. 2019, 20, 465–496. [Google Scholar] [CrossRef] [Green Version]
- Park, T.; Kim, H.; Leem, M.; Ahn, W.; Choi, S.; Kim, J.; Uh, J.; Kwon, K.; Jeong, S.-J.; Park, S.; et al. Atomic layer deposition of Al2O3 on MoS2, WS2, WSe2, and h-BN: Surface coverage and adsorption energy. RSC Adv. 2017, 7, 884–889. [Google Scholar] [CrossRef] [Green Version]
- Cheng, L.; Qin, X.; Lucero, A.T.; Azcatl, A.; Huang, J.; Wallace, R.M.; Cho, K.; Kim, J. Atomic Layer Deposition of a High-k Dielectric on MoS2 Using Trimethylaluminum and Ozone. ACS Appl. Mater. Interfaces 2014, 6, 11834–11838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Tabakman, S.M.; Dai, H. Atomic Layer Deposition of Metal Oxides on Pristine and Functionalized Graphene. J. Am. Chem. Soc. 2008, 130, 8152. [Google Scholar] [CrossRef] [Green Version]
- Shin, W.C.; Kim, T.Y.; Sul, O.; Cho, B.J. Seeding atomic layer deposition of high-k dielectric on graphene with ultrathin poly(4-vinylphenol) layer for enhanced device performance and reliability. Appl. Phys. Lett. 2012, 101, 033507. [Google Scholar] [CrossRef]
- Wirtz, C.; Hallam, T.; Cullen, C.P.; Berner, N.C.; O’Brien, M.; Marcia, M.; Hirsch, A.; Duesberg, G.S. Atomic layer deposition on 2D transition metal chalcogenides: Layer dependent reactivity and seeding with organic ad-layers. Chem. Commun. 2015, 51, 16553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fallahazad, B.; Lee, K.; Lian, G.; Kim, S.; Corbet, C.; Ferrer, D.; Colombo, L.; Tutuc, E. Scaling of Al2O3 dielectric for graphene field-effect transistors. Appl. Phys. Lett. 2012, 100, 093112. [Google Scholar] [CrossRef]
- Guo, T.; Wu, H.; Su, X.; Guo, B.; Liu, C. Surface functionalization toward top-gated monolayer MoS2 field-effect transistors with ZrO2/Al2O3 as composite dielectrics. J. Alloy. Compd. 2021, 871, 159116. [Google Scholar] [CrossRef]
- Woo, W.J.; Oh, I.K.; Park, B.E.; Kim, Y.; Park, J.; Seo, S.; Song, J.-G.; Jung, H.; Kim, D.; Lim, J.H.; et al. Bi-layer high-k dielectrics of Al2O3/ZrO2 to reduce damage to MoS2 channel layers during atomic layer deposition. 2D Mater. 2019, 6, 015019. [Google Scholar] [CrossRef]
- Haodong, Z.; Arutchelvan, G.; Meersschaut, J.; Gaur, A.; Conard, T.; Bender, H.; Lin, D.; Asselberghs, I.; Heyns, M.; Radu, I.; et al. MoS2 Functionalization with a Sub-nm Thin SiO2 Layer for Atomic Layer Deposition of High-κ Dielectrics. Chem. Mater. 2017, 29, 6772–6780. [Google Scholar]
- Zhang, Y.; Qiu, Z.; Cheng, X.; Xie, H.; Wang, H.; Xie, X.; Yu, Y.; Liu, R. Direct growth of high-quality Al2O3 dielectric on graphene layers by low-temperature H2O-based ALD. J. Phys. D Appl. Phys. 2014, 47, 055106. [Google Scholar] [CrossRef]
- Fisichella, G.; Schilirò, E.; Di Franco, S.; Fiorenza, P.; Lo Nigro, R.; Roccaforte, F.; Ravesi, S.; Giannazzo, F. Interface Electrical Properties of Al2O3 Thin Films on Graphene Obtained by Atomic Layer Deposition with an in Situ Seedlike Layer. ACS Appl. Mater. Interfaces 2017, 9, 7761–7771. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-S.; Cheng, P.-H.; Huang, K.-W.; Lin, H.-C.; Chen, M.-J. Atomic layer deposition of sub-10 nm high-K gate dielectrics on top-gated MoS2 transistors without surface functionalization. Appl. Surf. Sci. 2018, 443, 421–428. [Google Scholar] [CrossRef]
- Gong, F.; Luo, W.; Wang, J.; Wang, P.; Fang, H.; Zheng, D.; Guo, N.; Wang, J.; Luo, M.; Ho, J.C.; et al. High-Sensitivity Floating-Gate Phototransistors Based on WS2 and MoS2. Adv. Funct. Mater. 2016, 26, 6084–6090. [Google Scholar] [CrossRef]
- Lin, Y.M.; Jenkins, K.A.; Valdes-Garcia, A.; Small, J.P.; Farmer, D.B.; Avouris, P. Operation of Graphene Transistors at Gigahertz Frequencies. Nano Lett. 2009, 9, 422. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.; Mordi, G.; Kim, M.J.; Chabal, Y.J.; Vogel, E.M.; Wallace, R.M.; Cho, K.J.; Colombo, L.; Kim, J. Characteristics of high-k Al2O3 dielectric using ozone-based atomic layer deposition for dual-gated graphene devices. J. Appl. Phys. Lett. 2010, 97, 043107. [Google Scholar] [CrossRef]
- Lee, J.; Lee, B.; Kim, J.; Cho, K. Ozone Adsorption on Graphene: Ab Initio Study and Experimental Validation. J. Phys. Chem. C 2009, 113, 14225. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.; Park, S.Y.; Kim, H.C.; Cho, K.; Vogel, E.M.; Kim, M.J.; Wallace, R.M.; Kim, J. Conformal Al2O3 dielectric layer deposited by atomic layer deposition for graphene-based nanoelectronics. J. Appl. Phys. Lett. 2008, 92, 203102. [Google Scholar] [CrossRef]
- Azcatl, A.; Santosh, K.C.; Peng, X.; Lu, N.; McDonnell, S.; Qin, X.; de Dios, F.; Addou, R.; Kim, J.; Kim, M.J.; et al. HfO2 on UV-O3 Exposed Transition Metal Dichalcogenides: Interfacial Reactions Study. 2D Mater. 2015, 2, 014004. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Kim, S.; Choi, W.; Park, S.H.; Jung, Y.; Cho, M.-H.; Kim, H. Improved Growth Behavior of Atomic-Layer-Deposited High-k Dielectrics on Multilayer MoS2 by Oxygen Plasma Pretreatment. ACS Appl. Mater. Interfaces 2013, 5, 4739–4744. [Google Scholar] [CrossRef] [PubMed]
- Nayfeh, O.M.; Marr, T.; Dubey, M. Impact of Plasma-Assisted Atomic-Layer-Deposited Gate Dielectric on Graphene Transistors. IEEE Electron Device Lett. 2011, 32, 473–475. [Google Scholar] [CrossRef]
- Lim, T.; Kim, D.; Ju, S. Direct deposition of aluminum oxide gate dielectric on graphene channel using nitrogen plasma treatment. Appl. Phys. Lett. 2013, 113, 013107. [Google Scholar] [CrossRef]
- Aria, A.I.; Nakanishi, K.; Xiao, L.; Braeuninger-Weimer, P.; Sagade, A.A.; Alexander-Webber, J.A.; Hofmann, S. Parameter Space of Atomic Layer Deposition of Ultrathin Oxides on Graphene. ACS Appl. Mater. Interfaces 2016, 8, 30564. [Google Scholar] [CrossRef]
- Kwak, I.; Kavrik, M.; Park, J.H.; Grissom, L.; Fruhberger, B.; Wong, K.T.; Kang, S.; Kummel, A.C. Low interface trap density in scaled bilayer gate oxides on 2D materials via nanofog low temperature atomic layer deposition. Appl. Surf. Sci. 2019, 463, 758–766. [Google Scholar] [CrossRef]
- Kitzmann, J.; Göritz, A.; Fraschke, M.; Lukosius, M.; Wenger, C.; Wolff, A.; Lupina, G. Perfluorodecyltrichlorosilane-based seed-layer for improved chemical vapour deposition of ultrathin hafnium dioxide films on graphene. Sci. Rep. 2016, 6, 29223. [Google Scholar] [CrossRef] [Green Version]
- Farmer, D.B.; Chiu, H.-Y.; Lin, Y.-M.; Jenkins, K.A.; Xia, F.; Avouris, P. Utilization of a Buffered Dielectric to Achieve High Field-Effect Carrier Mobility in Graphene Transistors. Nano Lett. 2009, 9, 4474. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Nah, J.; Jo, I.; Shahrjerdi, D.; Colombo, L.; Yao, Z.; Tutuc, E.; Banerjee, S.K. Realization of a high mobility dual-gated graphene field-effect transistor with Al2O3 dielectric. Appl. Phys. Lett. 2009, 94, 062107. [Google Scholar] [CrossRef] [Green Version]
- Iraiwa, A.; Matsumura, D.; Kawarada, H. Effect of atomic layer deposition temperature on current conduction in Al2O3 films formed using H2O oxidant. J. Appl. Phys. 2016, 120, 084504. [Google Scholar]
- Fallahazad, B.; Kim, S.; Colombo, L.; Tutuc, E. Dielectric Thickness Dependence of Carrier Mobility in Graphene with HfO2 Top Dielectric. Appl. Phys. Lett. 2010, 97, 123105. [Google Scholar] [CrossRef] [Green Version]
- Zhao, P.; Khosravi, A.; Azcatl, A.; Bolshakov, P.; Mirabelli, G.; Caruso, E.; Hinkle, C.L.; Hurley, P.K.; Wallace, R.M.; Young, C.D. Evaluation of border traps and interface traps in HfO2/MoS2 gate stacks by capacitance–voltage analysis. 2D Mater. 2018, 5, 031002. [Google Scholar] [CrossRef] [Green Version]
- Zhou, P.; Yang, S.; Sun, Q.; Chen, L.; Wang, P.; Ding, S.; Zhang, D.W. Direct Deposition of Uniform High-k Dielectrics on Graphene. Sci. Rep. 2014, 4, 6448. [Google Scholar] [CrossRef] [Green Version]
- Dingemans, G.; van de Sanden, M.C.M.; Kessels, W.M.M. Influence of the Deposition Temperature on the c-Si Surface Passivation by Al2O3 Films Synthesized by ALD and PECVD. Electrochem. Solid-State Lett. 2010, 13, H76. [Google Scholar] [CrossRef] [Green Version]
- Roos, M.; Ku¨nzel, D.; Uhl, B.; Huang, H.H.; Brandao, O.; Hoster, H.E.; Gross, A.; Behm, R.J. Hierarchical Interactions and Their Influence upon the Adsorption of Organic Molecules on a Graphene Film. J. Am. Chem. Soc. 2011, 133, 9208. [Google Scholar] [CrossRef]
- Bayer, B.C.; Aria, A.I.; Eder, D.; Hofmann, S.; Meyer, J.C. Resolving the Nucleation Stage in Atomic Layer Deposition of Hafnium Oxide on Graphene. arXiv 2019, arXiv:1909.00712. [Google Scholar]
- Giannazzo, F.; Fisichella, G.; Greco, G.; Fiorenza, P.; Roccaforte, F. Conductive Atomic Force Microscopy: Applications in Nanomaterials; Lanza, M., Ed.; Wiley-VCH Verlag: Weinheim, Germany, 2017; Chapter 7; pp. 163–186. [Google Scholar]
- Sonde, S.; Giannazzo, F.; Raineri, V.; Yakimova, R.; Huntzinger, J.-R.; Tiberj, A.; Camassel, J. Electrical properties of the graphene/4H-SiC (0001) interface probed by scanning current spectroscopy. Phys. Rev. B 2009, 80, 241406(R). [Google Scholar] [CrossRef]
- Emtsev, K.V.; Bostwick, A.; Horn, K.; Jobst, J.; Kellogg, G.L.; Ley, L.; McChesney, J.L.; Ohta, T.; Reshanov, S.A.; Reohrl, J.; et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mater. 2009, 8, 203–207. [Google Scholar] [CrossRef]
- Giannazzo, F.; Deretzis, I.; La Magna, A.; Roccaforte, F.; Yakimova, R. Electronic transport at monolayer-bilayer junctions in epitaxial graphene on SiC. Phys. Rev. B 2012, 86, 235422. [Google Scholar] [CrossRef]
- Speck, F.; Ostler, M.; Rohrl, J.; Emtsev, K.V.; Hundhausen, M.; Ley, L.; Seyller, T. Atomic layer deposited aluminum oxide films on graphite and graphene studied by XPS and AFM. Phys. Status Solidi C 2010, 7, 398. [Google Scholar] [CrossRef]
- Robinson, J.A.; LaBella, M.; Trumbull, K.A.; Weng, X.; Cavelero, R.; Daniels, T.; Hughes, Z.; Hollander, M.; Fanton, M. Nucleation of Epitaxial Graphene on SiC(0001). ACS Nano 2010, 4, 2667. [Google Scholar] [CrossRef]
- Desai, S.R.; Madhvapathy, S.R.; Amani, M.; Kiriya, D.; Hettick, M.; Tosun, M.; Zhou, Y.; Dubey, M.; Ager, J.W.; Chrzan, D.; et al. Gold-Mediated Exfoliation of Ultralarge Optoelectronically-Perfect Monolayers. Adv. Mater. 2016, 28, 4053–4058. [Google Scholar] [CrossRef]
- Huang, Y.; Pan, Y.-H.; Yang, R.; Bao, L.-H.; Meng, L.; Luo, H.-L.; Cai, Y.-Q.; Liu, G.-D.; Zhao, W.-J.; Zhou, Z.; et al. Universal mechanical exfoliation of large-area 2D crystals. Nature Commun. 2020, 11, 2453. [Google Scholar] [CrossRef]
- Panasci, S.E.; Schilirò, E.; Greco, G.; Cannas, M.; Gelardi, F.M.; Agnello, S.; Roccaforte, F.; Giannazzo, F. Strain, Doping, and Electronic Transport of Large Area Monolayer MoS2 Exfoliated on Gold and Transferred to an Insulating Substrate. ACS Appl. Mater. Interfaces 2021, 13, 31248–31259. [Google Scholar] [CrossRef]
- Panasci, S.E.; Schilirò, E.; Migliore, F.; Cannas, M.; Gelardi, F.M.; Roccaforte, F.; Giannazzo, F.; Agnello, S. Substrate impact on the thickness dependence of vibrational and optical properties of large area MoS2 produced by gold-assisted exfoliation. Appl. Phys. Lett. 2021, 119, 093103. [Google Scholar] [CrossRef]
- Cabrero-Vilatela, A.; Alexander-Webber, J.A.; Sagade, A.A.; Aria, A.I.; Braeuninger-Weimer, P.; Martin, M.-B.; Weatherup, R.S.; Hofmann, S. Atomic layer deposited oxide films as protective interface layers for integrated graphene transfer. Nanotechnology 2017, 28, 485201. [Google Scholar] [CrossRef]
- Magda, G.Z.; Pető, J.; Dobrik, G.; Hwang, C.; Biró, L.P.; Tapasztó, L. Exfoliation of large-area transition metal chalcogenide single layers. Sci. Rep. 2015, 5, 14714. [Google Scholar] [CrossRef] [Green Version]
- Ge, R.; Wu, X.; Kim, M.; Shi, J.; Sonde, S.; Tao, L.; Zhang, Y.; Lee, J.C.; Akinwande, D. Atomristor: Nonvolatile Resistance Switching in Atomic Sheets of Transition Metal Dichalcogenides. Nano Lett. 2018, 18, 434. [Google Scholar] [CrossRef]
Ref | 2D Material | ALD Process | ||||
---|---|---|---|---|---|---|
ALD Activation | TALD (°C) | High-κ Type | Uniformity | 2D Damage | ||
Seed layer deposition | ||||||
[34] | CVD-graphene on SiO2 | 3,4,9,10-perylene tetracarboxylic acid (PTCA) | 100 °C | Al2O3, ~2 nm | High | Not |
[35] | CVD-graphene on SiO2 | Poly(4-vinylphenol) (PVP) | ------ | Al2O3, 20 nm | High | Not |
[36] | CVD-MoS2 and CVD-WS2 | Perylene bisimide | 80 °C | Al2O3, ~3 nm | High | Not |
[37] | Exfoliated graphene | Evaporated Al | 250 °C | Al2O3, ~3 nm | High for seed layer > 1.2 nm | Not |
[38,39] | CVD-MoS2 | Al | 150 °C | ZrO2, ~15 nm | High | Not |
[40] | MoS2 by sulfurization of Mo | SiO2 nanoparticles | 300 °C | Al2O3, 5.7 nm HfO2, 2.8 nm | High | Not |
[41] | Exfoliated graphene | Seed layer of H2O-assisted dielectric at low temperature (100 °C) | 100 °C | Al2O3, ~11 nm | High | Not |
[42] | Transferred CVD-graphene on SiO2 | Seed layer of H2O-assisted dielectric at low temperature (100 °C) | 250 °C | Al2O3, ~22 nm | High | Not |
[43] | Exfoliated MoS2 | Seed layer of H2O-assisted dielectric at low temperature (80 °C) | 180°C | Al2O3, <10 nm | High | Not |
[44] | Exfoliated WS2 | Evaporated Al | 95 °C | HfO2, ~20 nm | High | Not |
Chemical functionalization | ||||||
[45] | Exfoliated graphene | NO2 | 250 °C | Al2O3, ~12 nm | High | Current and mobility degradation |
[46] | Exfoliated graphene | O3 (25–200 °C) | 200 °C | Al2O3, ~15 nm | High | Significant defect amount during O3 treatment at 200 °C |
[33] | Exfoliated MoS2 | O3 (30°) | 200 °C | Al2O3, ~5 nm | High | Not |
[47,48] | HOPG | O3 (25°) | 200 °C | Al2O3, ~10 nm | High | Damage to 2D crystal |
[49] | Exfoliated MoSe2, WSe2 | UV-O3 | 200 °C | HfO2, ~4 nm | High on MoSe2 Low on WSe2 | Partial etching of the 2D layers |
[50] | Exfoliated MoS2 | O2-plasma | 250 °C | Al2O3, ~10 nm HfO2, ~10 nm | High | MoS2 oxidation |
[51] | Transferred CVD-graphene | O2-plasma | 100 °C | Al2O3, ~10 nm | High | Significant amount of defects |
[52] | Exfoliated graphene | N2-plasma | ------ | Al2O3, ~28 nm | High | Significant amount of defects and reduced conductivity |
ALD parameter tuning | ||||||
[53] | Exfoliated graphene | Low-temperature ALD process | 80–150 °C | Al2O3 | High (98%) at 80 °C | Not |
[32] | Exfoliated MoS2, WS2, WSe2, h-BN | Low-temperature ALD process | 150 °C | Al2O3, 1, 10 nm | Variable as the 2D polarizability (WSe2 < WS2 < MoS2 < h-BN) | Not |
[54] | Exfoliated HOPG and MoS2 | Low-temperature ALD process | 50 °C | Al2O3, few nm | High | Not |
[53] | CVD graphene on Cu | Long or multiple precursor pulses | 200 °C | Al2O3, few nm | Variable | Not |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schilirò, E.; Lo Nigro, R.; Roccaforte, F.; Giannazzo, F. Substrate-Driven Atomic Layer Deposition of High-κ Dielectrics on 2D Materials. Appl. Sci. 2021, 11, 11052. https://doi.org/10.3390/app112211052
Schilirò E, Lo Nigro R, Roccaforte F, Giannazzo F. Substrate-Driven Atomic Layer Deposition of High-κ Dielectrics on 2D Materials. Applied Sciences. 2021; 11(22):11052. https://doi.org/10.3390/app112211052
Chicago/Turabian StyleSchilirò, Emanuela, Raffaella Lo Nigro, Fabrizio Roccaforte, and Filippo Giannazzo. 2021. "Substrate-Driven Atomic Layer Deposition of High-κ Dielectrics on 2D Materials" Applied Sciences 11, no. 22: 11052. https://doi.org/10.3390/app112211052
APA StyleSchilirò, E., Lo Nigro, R., Roccaforte, F., & Giannazzo, F. (2021). Substrate-Driven Atomic Layer Deposition of High-κ Dielectrics on 2D Materials. Applied Sciences, 11(22), 11052. https://doi.org/10.3390/app112211052