Physico-Mechanical Properties of Particleboards Produced from Macadamia Nutshell and Gum Arabic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Macadamia Nutshell
2.1.2. Gum Arabic
2.2. Method
2.2.1. Specific Gravity
2.2.2. Bulk Density
2.2.3. Chemical Properties of Materials
2.2.4. Scanning Electron Microscope (SEM)
2.2.5. Preparation of Particleboard Made from Macadamia Nutshell and Gum Arabic
2.2.6. Physical Properties
2.2.7. Mechanical Test
3. Results
3.1. Specific Gravity and Bulk Density
3.2. Chemical Properties
3.3. Scanning Electron Microscopy Analysis of the Particleboard
3.4. Physical Properties
3.5. Mechanical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jafarnezhad, S.; Shalbafan, A.; Luedtke, J. Effect of surface layers compressibility and face-to-core-layer ratio on the properties of lightweight hybrid panels. Int. Wood Prod. J. 2018, 9, 164–170. [Google Scholar] [CrossRef]
- Kim, S.; Kim, H.J. Evaluation of formaldehyde emission of pine and wattle tannin-based adhesives by gas chromatography. Holz Als Roh-Und Werkst. 2004, 62, 101–106. [Google Scholar] [CrossRef]
- Kim, S.; Kim, H.J. Effect of addition of polyvinyl acetate to melamine-formaldehyde resin on the adhesion and formaldehyde emission in engineered flooring. Int. J. Adhes. Adhes. 2005, 25, 456–461. [Google Scholar] [CrossRef]
- Pontel, L.B.; Rosado, I.V.; Burgos-Barragan, G.; Garaycoechea, J.I.; Yu, R.; Arends, M.J.; Chandrasekaran, G.; Broecker, V.; Wei, W.; Liu, L.; et al. Endogenous formaldehyde is a hematopoietic stem cell genotoxin and metabolic carcinogen. Mol. Cell 2015, 60, 177–188. [Google Scholar] [CrossRef] [Green Version]
- Chaiklieng, S.; Tongsantia, U.; Autrup, H.N. Risk assessment of inhalation exposure to formaldehyde among workers in medical laboratories. Asia-Pac. J. Sci. Technol. 2021, 26, 4. [Google Scholar]
- Van der Laan, L.; Cardenas, A.; Vermeulen, R.; Fadadu, R.P.; Hubbard, A.E.; Phillips, R.V.; Zhang, L.; Breeze, C.; Hu, W.; Wen, C.; et al. Epigenetic aging biomarkers and occupational exposure to benzene, trichloroethylene and formaldehyde. Environ. Int. 2022, 158, 106871. [Google Scholar] [CrossRef] [PubMed]
- Spina, S.; Zhou, X.; Segovia, C.; Pizzi, A.; Romagnoli, M.; Giovando, S.; Pasch, H.; Delmotte, L. Phenolic resin adhesives based on chestnut (Castanea sativa) hydrolysable tannins. J. Adhes. Sci. Technol. 2013, 27, 2103–2111. [Google Scholar] [CrossRef]
- Garzón-Barrero, N.M.; Shirakawa, M.A.; Brazolin, S.; de Lara, I.A.R.; Savastano, H., Jr. Evaluation of mold growth on sugarcane bagasse particleboards in natural exposure and in accelerated test. Int. Biodeterior. Biodegrad. 2016, 115, 266–276. [Google Scholar] [CrossRef]
- Towards 2030|Kenya Vision 2030. Available online: https://vision2030.go.ke/towards-2030/ (accessed on 21 June 2021).
- Ljungberg, L.Y. Materials selection and design for development of sustainable products. Mater. Des. 2007, 28, 466–479. [Google Scholar] [CrossRef]
- Adejumo, I.O.; Adebiyi, O.A. Agricultural Solid Wastes: Causes, Effects, and Effective Management. Solid Waste Manag. 2020, 1–460. [Google Scholar] [CrossRef]
- Quiroz, D.; Kuepper, B.; Wachira, J.; Emmott, A. Value Chain Analysis of Macadamia Nuts in Kenya; Centre for the Promotion of Imports from Developing Countries (CBI): Amsterdam, The Netherlands, 2019. [Google Scholar]
- Wechsler, A.; Zaharia, M.; Crosky, A.; Jones, H.; Ramírez, M.; Ballerini, A.; Nuñez, M.; Sahajwalla, V. Macadamia (Macadamia integrifolia) shell and castor (Rícinos communis) oil based sustainable particleboard: A comparison of its properties with conventional wood based particleboard. Mater. Des. 2013, 50, 117–123. [Google Scholar] [CrossRef]
- Kumar, U.; Maroufi, S.; Rajarao, R.; Mayyas, M.; Mansuri, I.; Joshi, R.K.; Sahajwalla, V. Cleaner production of iron by using waste macadamia biomass as a carbon resource. J. Clean. Prod. 2017, 158, 218–224. [Google Scholar] [CrossRef]
- Wang, C.H.; Mai, Y.W. Deformation and fracture of Macadamia nuts. Part 2: Microstructure and fracture mechanics analysis of nutshell. Int. J. Fract. 1994, 69, 67–85. [Google Scholar] [CrossRef]
- Wang, C.-H.; Zhang, L.; Mai, Y.-W. Deformation and fracture of Macadamia nuts. Part 1: Deformation analysis of nut-in-shell. Int. J. Fract. 1995, 69, 51–65. [Google Scholar] [CrossRef]
- Jaafar, N.S. Clinical effects of Arabic gum (Acacia): A mini review. Iraqi J. Pharm. Sci. 2019, 28, 9–16. [Google Scholar] [CrossRef]
- Ademoh, N.A.; Abdullahi, A.T. Evaluation of the effective baking conditions for grade 3 Nigerian acacia species bonded foundry sand cores. Res. J. Appl. Sci. Eng. Technol. 2010, 2, 504–507. [Google Scholar]
- Ali, B.H.; Ziada, A.; Blunden, G. Biological effects of gum arabic: A review of some recent research. Food Chem. Toxicol. 2009, 47, 1–8. [Google Scholar] [CrossRef]
- Njike, M.; Oyawa, W.O.; Abuodha, S.O. Potential of Straw Block as an Eco-Construction Material; Springer: Cham, Switzerland, 2019; pp. 253–261. [Google Scholar] [CrossRef]
- Suleiman, I.Y.; Aigbodion, V.S.; Shuaibu, L.; Shangalo, M. Development of eco-friendly particleboard composites using rice husk particles and gum Arabic. J. Mater. Sci. Eng. Adv. Technol 2013, 7, 75–91. [Google Scholar]
- ASTM E11-01. Standard Specification for Wire Cloth and Sieves for Testing Purposes; ASTM: West Conshohocken, PA, USA, 1995. [Google Scholar]
- Cholake, S.T.; Rajarao, R.; Henderson, P.; Rajagopal, R.R.; Sahajwalla, V. Composite panels obtained from automotive waste plastics and agricultural macadamia shell waste. J. Clean. Prod. 2017, 151, 163–171. [Google Scholar] [CrossRef]
- Dong, C.; Davies, I.J. Flexural properties of macadamia nutshell particle reinforced polyester composites. Compos. Part B Eng. 2012, 43, 2751–2756. [Google Scholar] [CrossRef] [Green Version]
- Ishaq, S.; Aboshio, A.; Garba, M.J.; Smith, A.S.J. Mechanical Properties of Particleboard Made from Mahogany Leaves Using Gum Arabic as Binder. Glob. Sci. J. 2020, 8, 802–812. [Google Scholar]
- Sotannde, O.; Oluwadare, A.; Ogedoh, O.; Adeogun, P. Evaluation of cement-bonded particle board produced from afzelia africana wood residues. J. Eng. Sci. Technol. 2012, 7, 732–743. [Google Scholar]
- ASTM C188-95. Standard Test Method for Density of Hydraulic Cement; ASTM: West Conshohocken, PA, USA, 1995. [Google Scholar]
- British Standards Institute (BSI). BS 1377-2: 1990 Soils for Civil Engineering Purposes—Part 2: Classification; BSI: London, UK, 1990. [Google Scholar]
- British Standards Institution. BS 812 Testing of Aggregates Part 2: Method of Determination of Density; BSI: London, UK, 1995. [Google Scholar]
- ASTM D 1037-96a Annual Book of ASTM Standards; American Society for Testing and Materials (ASTM): Philadelphia, PA, USA, 1999; pp. 4–9.
- ASTM Standard. D4442-07: STANDARD Test Methods for Direct Moisture Content Measurement of Wood and Wood-Base Materials; ASTM International: West Conshohocken, PA, USA, 2007. [Google Scholar]
- Dazmiri, M.K.; Kiamahalleh, M.V.; Dorieh, A.; Pizzi, A. Effect of the initial F/U molar ratio in urea-formaldehyde resins synthesis and its influence on the performance of medium density fiberboard bonded with them. Int. J. Adhes. Adhes. 2019, 95, 102440. [Google Scholar] [CrossRef]
- Risthaus, K.; Bürger, I.; Linder, M.; Schmidt, M. Numerical analysis of the hydration of calcium oxide in a fixed bed reactor based on lab-scale experiments. Appl. Energy 2020, 261, 114351. [Google Scholar] [CrossRef]
- Arul, E.; Raja, K.; Krishnan, S.; Sivaji, K.; Das, S.J. Bio-Directed synthesis of calcium oxide (CaO) nanoparticles extracted from limestone using honey. J. Nanosci. Nanotechnol. 2018, 18, 5790–5793. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Liu, Y.; Wang, C.; Chu, F.; Xu, F.; Zhang, D. Synthesis of Lignin-Based Polyacid Catalyst and Its Utilization to Improve Water Resistance of Urea-formaldehyde Resins. Polymers 2020, 12, 175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishaq, S.; Aboshio, A.; Garba, M.J.; Smith, A.S.J. Particleboard produced from mahogany leaves and gum arabic as binder. Bayoro J. Eng. Technol. 2020, 15, 51–63. [Google Scholar]
- Jennings, J.S.; Macmillan, N.H. A tough nut to crack. J. Mater. Sci. 1986, 21, 1517–1524. [Google Scholar] [CrossRef]
Sample | Specific Gravity | Bulk Density (kg/m3) |
---|---|---|
Macadamia nutshell | 1.20 | 743 |
Gum Arabic | 1.55 | 903 |
Treatment | Adhesive Type | (%) | Material Type | (%) |
---|---|---|---|---|
T1 | Gum Arabic | 20 | Macadamia nutshell | 80 |
T2 | 30 | 70 | ||
T3 | 40 | 60 | ||
T4 | 50 | 50 |
Elements | Macadamia Nutshell (%) | Gum Arabic (%) |
---|---|---|
P2O5 | 21.82 | 0 |
CaO | 70.84 | 56.94 |
MgO | 0 | 24.4 |
K2O | 0 | 15.25 |
Ti, Cr, Mn, S | 5.26 | 2.80 |
Fe, Cu, Zn, Sr | 2.07 | 0.56 |
As, Zr, Pb | 0 | 0.04 |
Treatment | Density (kg/m3) | MC (%) | WA (2 h) (%) | TS at 2 h (%) | WA at 24 h (%) | TS at 24 h (%) |
---|---|---|---|---|---|---|
T1 | 818.60 a | 6.90 | 25.95 | 6.06 | 38.76 | 28.46 |
(15.59) 1 | (1.05) | (1.64) | (0.58) | (3.32) | (0.81) | |
T2 | 1067.33 | 12.18 | 12.87 | 3.33 | 24.17 | 21.67 |
(4.41) | (0.66) | (0.25) | (0.58) | (0.13) | (0.71) | |
T3 | 1128.53 | 12.18 | 12.87 | 1.50 | 14.48 | 17.39 |
(10.29) | (0.05) | (0.73) | (0.50) | (0.42) | (1.21) | |
T4 | 1219.20 | 13.45 | 8.12 | 0.00 | 9.42 | 6.22 |
(25.56) | (0.12) | (0.97) | (0.00) | (0.28) | (3.30) |
Treatment | MOR (MPa) | MOE (GPa) | IB (MPa) | Rc (MPa) |
---|---|---|---|---|
T1 | 4.20 b | 1.05 | 1.00 | 10.88 |
(0.41) 2 | (0.08) | (0.02) | (0.41) | |
T2 | 7.06 | 1.30 | 1.06 | 13.84 |
(0.41) | (0.03) | (0.02) | (0.41) | |
T3 | 9.91 | 1.49 | 1.16 | 19.70 |
(0.40) | (0.08) | (0.02) | (0.41) | |
T4 | 12.21 | 1.81 | 1.25 | 22.54 |
(0.23) | (0.06) | (0.01) | (0.41) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mirindi, D.; Onchiri, R.O.; Thuo, J. Physico-Mechanical Properties of Particleboards Produced from Macadamia Nutshell and Gum Arabic. Appl. Sci. 2021, 11, 11138. https://doi.org/10.3390/app112311138
Mirindi D, Onchiri RO, Thuo J. Physico-Mechanical Properties of Particleboards Produced from Macadamia Nutshell and Gum Arabic. Applied Sciences. 2021; 11(23):11138. https://doi.org/10.3390/app112311138
Chicago/Turabian StyleMirindi, Derrick, Richard O. Onchiri, and Joseph Thuo. 2021. "Physico-Mechanical Properties of Particleboards Produced from Macadamia Nutshell and Gum Arabic" Applied Sciences 11, no. 23: 11138. https://doi.org/10.3390/app112311138
APA StyleMirindi, D., Onchiri, R. O., & Thuo, J. (2021). Physico-Mechanical Properties of Particleboards Produced from Macadamia Nutshell and Gum Arabic. Applied Sciences, 11(23), 11138. https://doi.org/10.3390/app112311138