Long Short-Term Memory Network-Based Metaheuristic for Effective Electric Energy Consumption Prediction
Abstract
:1. Introduction
- Input data sequences are collected from IHEPC and AEP datasets, and data refinement is accomplished using min-max along with standard transformation methods in order to eliminate redundant, missing, and outlier variables.
- Next, the EECP is generated using the proposed metaheuristic based on the LSTM model. The proposed model superiorly handles the irregular tendencies of energy consumption relative to other deep learning models and conventional LSTM networks.
- The effectiveness of the proposed metaheuristic based on the LSTM model is evaluated in terms of mean squared error (MSE), root MSE (RMSE), mean absolute error (MAE) and mean absolute percentage error (MAPE) on both IHEPC and AEP datasets.
2. Related Works
3. Proposal
3.1. Dataset Description
3.2. Data Refinement
3.3. Energy Consumption Prediction
Algorithm 1 Pseudocode of BOA |
Objective function Initialize butterfly population In the initial population, best solution is identified Determine the probability of switch While stopping criteria is not encountered do For every butterfly do Draw Find butterfly fragrance utilizing Equation (8) If then Accomplish global search utilizing Equation (9) Else Accomplish local search utilizing Equation (10) End if Calculate the new solutions Update the best solutions End for Identify the present better solution End while Output: Better solution is obtained |
4. Experimental Results
4.1. Quantitative Study on AEP Dataset
4.2. Quantitative Study on IHEPC Dataset
4.3. Comparative Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ABC | Artificial Bee Colony |
ACO | Ant Colony Optimizer |
AEP | Appliances Load Prediction |
ANFIS | Adaptive Neuro Fuzzy Inference System |
Bi-LSTM | Bidirectional Long Short-Term Memory network |
BOA | Butterfly Optimization Algorithm |
CNN | Convolutional Neural Network |
CWS | Chievres Weather Station |
DBN | Deep Belief Network |
EECP | Electric Energy Consumption Prediction |
ELM | Extreme Learning Machine |
GA | Genetic Algorithm |
GRUs | Gated Recurrent Units |
GWO | Grey Wolf Optimizer |
IHEPC | Individual Household Electric Power Consumption |
IMFs | Intrinsic Mode Functions |
kW | kilowatt |
LSTM | Long Short-Term Memory network |
MAE | Mean Absolute Error |
MAPE | Mean Absolute Percentage Error |
MSE | Mean Square Error |
PSO | Particle Swarm Optimization |
RMSE | Root Mean Square Error |
SVR | Support Vector Regression |
VMD | Variational Mode Decomposition |
Wh | Watt hour |
References
- Bandara, K.; Hewamalage, H.; Liu, Y.H.; Kang, Y.; Bergmeir, C. Improving the accuracy of global forecasting models using time series data augmentation. Pattern Recognit. 2021, 120, 108148. [Google Scholar] [CrossRef]
- Gonzalez-Vidal, A.; Jimenez, F.; Gomez-Skarmeta, A.F. A methodology for energy multivariate time series forecasting in smart buildings based on feature selection. Energy Build. 2019, 196, 71–82. [Google Scholar] [CrossRef]
- Chou, J.S.; Tran, D.S. Forecasting energy consumption time series using machine learning techniques based on usage patterns of residential householders. Energy 2018, 165, 709–726. [Google Scholar] [CrossRef]
- Lara-Benítez, P.; Carranza-García, M.; Luna-Romera, J.M.; Riquelme, J.C. Temporal convolutional networks applied to energy-related time series forecasting. Appl. Sci. 2020, 10, 2322. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Rivero, C.; Pucheta, J.; Laboret, S.; Sauchelli, V.; Patińo, D. Energy associated tuning method for short-term series forecasting by complete and incomplete datasets. J. Artif. Intell. Soft Comput. Res. 2017, 7, 5–16. [Google Scholar] [CrossRef] [Green Version]
- Di Piazza, A.; Di Piazza, M.C.; La Tona, G.; Luna, M. An artificial neural network-based forecasting model of energy-related time series for electrical grid management. Math. Comput. Simul. 2021, 184, 294–305. [Google Scholar] [CrossRef]
- Coelho, I.M.; Coelho, V.N.; Luz, E.J.D.S.; Ochi, L.S.; Guimarães, F.G.; Rios, E. A GPU deep learning metaheuristic based model for time series forecasting. Appl. Energy 2017, 201, 412–418. [Google Scholar] [CrossRef]
- Le, T.; Vo, M.T.; Kieu, T.; Hwang, E.; Rho, S.; Baik, S.W. Multiple electric energy consumption forecasting using a cluster-based strategy for transfer learning in smart building. Sensors 2020, 20, 2668. [Google Scholar] [CrossRef]
- Choi, J.Y.; Lee, B. Combining LSTM network ensemble via adaptive weighting for improved time series forecasting. Math. Probl. Eng. 2018, 2018, 2470171. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, T.; Chen, H. Potential of three variant machine-learning models for forecasting district level medium-term and long-term energy demand in smart grid environment. Energy 2018, 160, 1008–1020. [Google Scholar] [CrossRef]
- AlKandari, M.; Ahmad, I. Solar power generation forecasting using ensemble approach based on deep learning and statistical methods. Appl. Comput. Inf. 2020. [Google Scholar] [CrossRef]
- Talavera-Llames, R.; Pérez-Chacón, R.; Troncoso, A.; Martínez-Álvarez, F. MV-kWNN: A novel multivariate and multi-output weighted nearest neighbours algorithm for big data time series forecasting. Neurocomputing 2019, 353, 56–73. [Google Scholar] [CrossRef]
- Ahmad, T.; Chen, H. Utility companies strategy for short-term energy demand forecasting using machine learning based models. Sustain. Cities Soc. 2018, 39, 401–417. [Google Scholar] [CrossRef]
- Xiao, J.; Li, Y.; Xie, L.; Liu, D.; Huang, J. A hybrid model based on selective ensemble for energy consumption forecasting in China. Energy 2018, 159, 534–546. [Google Scholar] [CrossRef]
- Gajowniczek, K.; Ząbkowski, T. Two-stage electricity demand modeling using machine learning algorithms. Energies 2017, 10, 1547. [Google Scholar] [CrossRef] [Green Version]
- Le, T.; Vo, M.T.; Vo, B.; Hwang, E.; Rho, S.; Baik, S.W. Improving electric energy consumption prediction using CNN and Bi-LSTM. Appl. Sci. 2019, 9, 4237. [Google Scholar] [CrossRef] [Green Version]
- Ishaq, M.; Kwon, S. Short-Term Energy Forecasting Framework Using an Ensemble Deep Learning Approach. IEEE Access 2021, 9, 94262–94271. [Google Scholar]
- Lin, Y.; Luo, H.; Wang, D.; Guo, H.; Zhu, K. An ensemble model based on machine learning methods and data preprocessing for short-term electric load forecasting. Energies 2017, 10, 1186. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Peng, H.; Zeng, X.; Zhou, F.; Tian, X.; Peng, X. A hybrid modelling method for time series forecasting based on a linear regression model and deep learning. Appl. Intell. 2019, 49, 3002–3015. [Google Scholar] [CrossRef]
- Maldonado, S.; Gonzalez, A.; Crone, S. Automatic time series analysis for electric load forecasting via support vector regression. Appl. Soft Comput. 2019, 83, 105616. [Google Scholar] [CrossRef]
- Wan, R.; Mei, S.; Wang, J.; Liu, M.; Yang, F. Multivariate temporal convolutional network: A deep neural networks approach for multivariate time series forecasting. Electronics 2019, 8, 876. [Google Scholar] [CrossRef] [Green Version]
- Bouktif, S.; Fiaz, A.; Ouni, A.; Serhani, M.A. Multi-sequence LSTM-RNN deep learning and metaheuristics for electric load forecasting. Energies 2020, 13, 391. [Google Scholar] [CrossRef] [Green Version]
- Qiu, X.; Zhang, L.; Suganthan, P.N.; Amaratunga, G.A. Oblique random forest ensemble via least square estimation for time series forecasting. Inf. Sci. 2017, 420, 249–262. [Google Scholar] [CrossRef]
- Kuo, P.H.; Huang, C.J. A high precision artificial neural networks model for short-term energy load forecasting. Energies 2018, 11, 213. [Google Scholar] [CrossRef] [Green Version]
- Qiu, X.; Ren, Y.; Suganthan, P.N.; Amaratunga, G.A. Empirical mode decomposition based ensemble deep learning for load demand time series forecasting. Appl. Soft Comput. 2017, 54, 246–255. [Google Scholar] [CrossRef]
- Pham, A.D.; Ngo, N.T.; Truong, T.T.H.; Huynh, N.T.; Truong, N.S. Predicting energy consumption in multiple buildings using machine learning for improving energy efficiency and sustainability. J. Clean. Prod. 2020, 260, 121082. [Google Scholar] [CrossRef]
- Galicia, A.; Talavera-Llames, R.; Troncoso, A.; Koprinska, I.; Martínez-Álvarez, F. Multi-step forecasting for big data time series based on ensemble learning. Knowl. Based Syst. 2019, 163, 830–841. [Google Scholar] [CrossRef]
- Khairalla, M.A.; Ning, X.; Al-Jallad, N.T.; El-Faroug, M.O. Short-term forecasting for energy consumption through stacking heterogeneous ensemble learning model. Energies 2018, 11, 1605. [Google Scholar] [CrossRef] [Green Version]
- Jallal, M.A.; Gonzalez-Vidal, A.; Skarmeta, A.F.; Chabaa, S.; Zeroual, A. A hybrid neuro-fuzzy inference system-based algorithm for time series forecasting applied to energy consumption prediction. Appl. Energy 2020, 268, 114977. [Google Scholar] [CrossRef]
- Bandara, K.; Bergmeir, C.; Hewamalage, H. LSTM-MSNet: Leveraging forecasts on sets of related time series with multiple seasonal patterns. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 1586–1599. [Google Scholar] [CrossRef] [Green Version]
- Abbasimehr, H.; Paki, R. Improving time series forecasting using LSTM and attention models. J. Ambient Intell. Hum. Comput. 2021, 1–19. [Google Scholar] [CrossRef]
- Sajjad, M.; Khan, Z.A.; Ullah, A.; Hussain, T.; Ullah, W.; Lee, M.Y.; Baik, S.W. A novel CNN-GRU-based hybrid approach for short-term residential load forecasting. IEEE Access 2020, 8, 143759–143768. [Google Scholar] [CrossRef]
- Khan, N.; Haq, I.U.; Khan, S.U.; Rho, S.; Lee, M.Y.; Baik, S.W. DB-Net: A novel dilated CNN based multi-step forecasting model for power consumption in integrated local energy systems. Int. J. Electr. Power Energy Syst. 2021, 133, 107023. [Google Scholar] [CrossRef]
- Khan, Z.A.; Ullah, A.; Ullah, W.; Rho, S.; Lee, M.; Baik, S.W. Electrical Energy Prediction in Residential Buildings for Short-Term Horizons Using Hybrid Deep Learning Strategy. Appl. Sci. 2020, 10, 8634. [Google Scholar] [CrossRef]
- Mocanu, E.; Nguyen, P.H.; Gibescu, M.; Kling, W.L. Deep learning for estimating building energy consumption. Sustain. Energy Grids Netw. 2016, 6, 91–99. [Google Scholar] [CrossRef]
- Candanedo, L.M.; Feldheim, V.; Deramaix, D. Data driven prediction models of energy use of appliances in a low-energy house. Energy Build. 2017, 140, 81–97. [Google Scholar] [CrossRef]
- Kim, T.Y.; Cho, S.B. Predicting residential energy consumption using CNN-LSTM neural networks. Energy 2019, 182, 72–81. [Google Scholar] [CrossRef]
- Ullah, A.; Muhammad, K.; Hussain, T.; Baik, S.W. Conflux LSTMs network: A novel approach for multi-view action recognition. Neurocomputing 2021, 435, 321–329. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Arora, S.; Singh, S. Butterfly optimization algorithm: A novel approach for global optimization. Soft Comput. 2019, 23, 715–734. [Google Scholar] [CrossRef]
Attributes | Information | Units |
---|---|---|
Dew point | Outside dew point recorded from Chievres Weather Station (CWS) | C |
Visibility | Outside visibility recorded from CWS | Km |
Wind speed | Outside wind speed recorded from CWS | m/s |
Rho | Outside humidity recorded from CWS | % |
Pressure | Outside pressure recorded from CWS | Mm Hg |
To | Outside temperature recorded from CWS | C |
RH1 | Humidity of parents’ room | % |
T1 | Temperature of parents’ room | C |
RH2 | Humidity of teenager’s room | % |
T2 | Temperature of teenager’s room | C |
RH3 | Humidity of ironing room | % |
T3 | Temperature of ironing room | C |
RH4 | Outside humidity of building | % |
T4 | Outside temperature of building | C |
RH5 | Humidity of bathroom | % |
T5 | Temperature of bathroom | C |
RH6 | Humidity of office room | % |
T6 | Temperature of office room | C |
RH7 | Humidity of laundry room | % |
T7 | Temperature of laundry room | C |
RH8 | Humidity of living room | % |
T8 | Temperature of living room | C |
RH9 | Humidity of kitchen | % |
T9 | Temperature of kitchen | C |
Light | Total energy consumption by lights | Watt-hour (Wh) |
Appliances | Total energy consumption by appliances | Wh |
Attributes | Information |
---|---|
Sub metering 1 | Energy utilized in kitchen (Wh) |
Sub metering 2 | Energy utilized in laundry room (Wh) |
Sub metering 3 | Energy utilized by water heater (Wh) |
Date | dd/mm/yyyy |
Time | hh:mm:ss |
Voltage | Minute averaged voltage of household (volt) |
Global reactive voltage | Minute averaged global reactive voltage of household (kilowatt (kW)) |
Global active voltage | Minute averaged global active voltage of household (kW) |
Global intensity | Minute averaged global intensity of household (ampere) |
Models | MAPE | MAE | RMSE | MSE | Predicting Time (s) |
---|---|---|---|---|---|
Linear regression | 1.54 | 1.99 | 2.12 | 1.24 | 38 |
CNN | 0.34 | 0.40 | 1.02 | 0.49 | 29 |
SVR | 0.72 | 0.88 | 1.92 | 0.82 | 49 |
LSTM network | 0.28 | 0.17 | 0.92 | 0.29 | 21 |
Bi-LSTM network | 0.24 | 0.13 | 0.78 | 0.14 | 18 |
Metaheuristic based on the LSTM network | 0.09 | 0.07 | 0.13 | 0.05 | 12 |
LSTM Network | |||||
---|---|---|---|---|---|
Optimizers | MAPE | MAE | RMSE | MSE | Predicting Time (s) |
GWO | 0.23 | 0.18 | 0.56 | 0.15 | 30 |
PSO | 0.19 | 0.09 | 0.31 | 0.11 | 43 |
GA | 0.26 | 0.13 | 0.82 | 0.19 | 64 |
ACO | 0.22 | 0.17 | 0.44 | 0.13 | 29 |
ABC | 0.12 | 0.11 | 0.37 | 0.08 | 25 |
BOA | 0.09 | 0.07 | 0.13 | 0.05 | 12 |
Models | MAPE | MAE | RMSE | MSE | Predicting Time (s) |
---|---|---|---|---|---|
Linear regression | 0.82 | 0.62 | 0.90 | 0.23 | 34 |
CNN | 0.13 | 0.14 | 0.29 | 0.17 | 22 |
SVR | 0.47 | 0.26 | 0.82 | 0.38 | 29 |
LSTM network | 0.11 | 0.12 | 0.31 | 0.19 | 19 |
Bi-LSTM network | 0.09 | 0.12 | 0.19 | 0.11 | 18.20 |
Metaheuristic based on the LSTM network | 0.05 | 0.04 | 0.16 | 0.04 | 13 |
LSTM Network | |||||
---|---|---|---|---|---|
Optimizers | MAPE | MAE | RMSE | MSE | Predicting Time (s) |
GWO | 0.12 | 0.23 | 0.29 | 0.11 | 18 |
PSO | 0.18 | 0.12 | 0.23 | 0.17 | 18.20 |
GA | 0.09 | 0.07 | 0.20 | 0.07 | 17 |
ACO | 0.12 | 0.21 | 0.20 | 0.11 | 16 |
ABC | 0.14 | 0.17 | 0.18 | 0.12 | 14 |
BOA | 0.05 | 0.04 | 0.16 | 0.04 | 13 |
Models | Dataset | MAPE | MAE | RMSE | MSE |
---|---|---|---|---|---|
Bi-LSTM with CNN [16] | IHEPC | 21.28 | 0.18 | 0.22 | 0.05 |
Ensemble-based deep learning model [17] | IHEPC | 0.78 | 0.31 | 0.35 | 0.21 |
CNN with GRU model [32] | IHEPC | - | 0.33 | 0.47 | 0.22 |
AEP | - | 0.24 | 0.31 | 0.09 | |
Bi-LSTM with dilated CNN [33] | IHEPC | 0.86 | 0.66 | 0.74 | 0.54 |
Multilayer bidirectional GRU with CNN [34] | IHEPC | - | 0.29 | 0.42 | 0.18 |
AEP | - | 0.23 | 0.29 | 0.10 | |
Metaheuristic based on the LSTM network | IHEPC | 0.05 | 0.04 | 0.16 | 0.04 |
AEP | 0.09 | 0.07 | 0.13 | 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hora, S.K.; Poongodan, R.; de Prado, R.P.; Wozniak, M.; Divakarachari, P.B. Long Short-Term Memory Network-Based Metaheuristic for Effective Electric Energy Consumption Prediction. Appl. Sci. 2021, 11, 11263. https://doi.org/10.3390/app112311263
Hora SK, Poongodan R, de Prado RP, Wozniak M, Divakarachari PB. Long Short-Term Memory Network-Based Metaheuristic for Effective Electric Energy Consumption Prediction. Applied Sciences. 2021; 11(23):11263. https://doi.org/10.3390/app112311263
Chicago/Turabian StyleHora, Simran Kaur, Rachana Poongodan, Rocío Pérez de Prado, Marcin Wozniak, and Parameshachari Bidare Divakarachari. 2021. "Long Short-Term Memory Network-Based Metaheuristic for Effective Electric Energy Consumption Prediction" Applied Sciences 11, no. 23: 11263. https://doi.org/10.3390/app112311263
APA StyleHora, S. K., Poongodan, R., de Prado, R. P., Wozniak, M., & Divakarachari, P. B. (2021). Long Short-Term Memory Network-Based Metaheuristic for Effective Electric Energy Consumption Prediction. Applied Sciences, 11(23), 11263. https://doi.org/10.3390/app112311263