Durability and Safety Performance of Pavements with Added Photocatalysts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Characterization
2.2.2. Freeze-Thaw Resistance
2.2.3. Capillary Water Absorption
2.2.4. Slip Resistance (Standard EN-14231) and Surface Roughness
3. Results
3.1. Characterization
3.2. Mercury Intrusion Porosimetry (MIP)
3.3. Ultrasonic Pulse Transmission Time (UPTT)
3.4. Freeze-Thaw Resistance
3.5. Capillary Water Absorption
3.6. Slip Resistance and Roughness
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37. [Google Scholar] [CrossRef] [PubMed]
- Wrighton, M.S.; Ellis, A.B.; Wolczanski, P.T.; Morse, D.L.; Abrahamson, H.B.; Ginley, D.S. Strontium titanate photoelectrodes. Efficient photoassisted electrolysis of water at zero applied potential. J. Am. Chem. Soc. 1976, 98, 2774–2779. [Google Scholar] [CrossRef]
- Folli, A.; Jakobsen, U.; Guerrini, G.; Macphee, D. Rhodamine B discolouration on TiO2 in the cement environment: A look at fundamental aspects of the self-cleaning effect in concretes. J. Adv. Oxid. Technol. 2009, 12, 126–133. [Google Scholar] [CrossRef]
- Peruchon, L.; Puzenat, E.; Herrmann, J.; Guillard, C. Photocatalytic efficiencies of self-cleaning glasses. Influence of physical factors. Photochem. Photobiol. Sci. 2009, 8, 1040–1046. [Google Scholar] [CrossRef]
- Folli, A.; Pade, C.; Hansen, T.B.; De Marco, T.; Macphee, D.E. TiO2 photocatalysis in cementitious systems: Insights into self-cleaning and depollution chemistry. Cem. Concr. Res. 2012, 42, 539–548. [Google Scholar] [CrossRef]
- Diamanti, M.; Del Curto, B.; Ormellese, M.; Pedeferri, M. Photocatalytic and self-cleaning activity of colored mortars containing TiO2. Constr. Build. Mater. 2013, 46, 167–174. [Google Scholar] [CrossRef]
- Bengtsson, N.; Castellote, M. Heterogeneous photocatalysis on construction materials: Effect of catalyst properties on the efficiency for degrading NOx and self cleaning. Mater. Construcción 2014, 64, 13. [Google Scholar] [CrossRef] [Green Version]
- Cassar, L. Photocatalysis of cementitious materials: Clean buildings and clean air. MRS Bull. 2004, 29, 328–331. [Google Scholar] [CrossRef]
- Chen, J.; Poon, C.-s. Photocatalytic cementitious materials: Influence of the microstructure of cement paste on photocatalytic pollution degradation. J. Environ. Sci. Technol. 2009, 43, 8948–8952. [Google Scholar] [CrossRef]
- Hüsken, G.; Hunger, M.; Brouwers, H. Experimental study of photocatalytic concrete products for air purification. J. Build. Environ. 2009, 44, 2463–2474. [Google Scholar] [CrossRef]
- Bengtsson, N.; Castellote, M. Photocatalytic Activity for NO Degradation by Construction Materials: Parametric Study andMultivariable Correlations. J. Adv. Oxid. Technol. 2010, 13, 341–349. [Google Scholar] [CrossRef]
- Dillert, R.; Engel, A.; Große, J.; Lindner, P.; Bahnemann, D.W. Light intensity dependence of the kinetics of the photocatalytic oxidation of nitrogen (ii) oxide at the surface of TiO2. J. Phys. Chem. Chem. Phys. 2013, 15, 20876–20886. [Google Scholar] [CrossRef] [Green Version]
- Jimenez-Relinque, E.; Castellote, M. Influence of the inlet air in efficiency of photocatalytic devices for mineralization of VOCs in air-conditioning installations. Environ. Sci. Pollut. Res. 2014, 21, 11198–11207. [Google Scholar] [CrossRef]
- Jiménez-Relinque, E.; Hingorani, R.; Rubiano, F.; Grande, M.; Castillo, Á.; Castellote, M. In situ evaluation of the NOx removal efficiency of photocatalytic pavements: Statistical analysis of the relevance of exposure time and environmental variables. Environ. Sci. Pollut. Res. 2019, 26, 36088–36095. [Google Scholar] [CrossRef]
- Goswami, D.; Trivedi, D.; Block, S. Photocatalytic disinfection of indoor air. J. Sol. Energy Eng. 1997, 119, 92–96. [Google Scholar] [CrossRef]
- Sikora, P.; Cendrowski, K.; Markowska-Szczupak, A.; Horszczaruk, E.; Mijowska, E. The effects of silica/titania nanocomposite on the mechanical and bactericidal properties of cement mortars. J. Constr. Build. Mater. 2017, 150, 738–746. [Google Scholar] [CrossRef]
- Cannavale, A.; Fiorito, F.; Manca, M.; Tortorici, G.; Cingolani, R.; Gigli, G.J.B. Environment Multifunctional bioinspired sol-gel coatings for architectural glasses. J. Build. 2010, 45, 1233–1243. [Google Scholar] [CrossRef]
- Sapiña, M.; Jimenez-Relinque, E.; Castellote, M. Controlling the levels of airborne pollen: Can heterogeneous photocatalysis help? J. Environ. Sci. Technol. 2013, 47, 11711–11716. [Google Scholar] [CrossRef]
- Jimenez-Relinque, E.; Sapiña, M.; Nevshupa, R.; Roman, E.; Castellote, M. Photocatalytic decomposition of pollen allergenic extracts of Cupressus arizonica and Platanus hybrida. Chem. Eng. J. 2016, 286, 560–570. [Google Scholar] [CrossRef]
- Sapiña, M.; Jimenez-Relinque, E.; Nevshupa, R.; Roman, E.; Castellote, M. Degradation of pollen on nanofunctionalized photocatalytic materials. J. Chem. Technol. Biotechnol. 2017, 92, 210–216. [Google Scholar] [CrossRef]
- Sapiña, M.; Jimenez-Relinque, E.; Roman, E.; Nevshupa, R.; Castellote, M. Unusual photodegradation reactions of Asteraceae and Poaceae grass pollen enzymatic extracts on P25 photocatalyst. Environ. Sci. Pollut. Res. 2021, 28, 24206–24215. [Google Scholar] [CrossRef]
- Smits, M.; kit Chan, C.; Tytgat, T.; Craeye, B.; Costarramone, N.; Lacombe, S.; Lenaerts, S. Photocatalytic degradation of soot deposition: Self-cleaning effect on titanium dioxide coated cementitious materials. J. Chem. Eng. J. 2013, 222, 411–418. [Google Scholar] [CrossRef]
- Zhu, W.; Bartos, P.J.; Porro, A. Application of nanotechnology in construction. Mater. Struct. 2004, 37, 649–658. [Google Scholar] [CrossRef]
- Pacheco-Torgal, F.; Jalali, S.J.C. Nanotechnology: Advantages and drawbacks in the field of construction and building materials. J. Constr. Build. Mater. 2011, 25, 582–590. [Google Scholar] [CrossRef] [Green Version]
- Jayapalan, A.R.; Lee, B.Y.; Kurtis, K.E. Can nanotechnology be ‘green’? Comparing efficacy of nano and microparticles in cementitious materials. Cem. Concr. Compos. 2013, 36, 16–24. [Google Scholar] [CrossRef]
- Calia, A.; Lettieri, M.; Masieri, M. Durability assessment of nanostructured TiO2 coatings applied on limestones to enhance building surface with self-cleaning ability. J. Build. Environ. 2016, 110, 1–10. [Google Scholar] [CrossRef]
- Jimenez-Relinque, E.; Grande, M.; Duran, T.; Castillo, Á.; Castellote, M. Environmental impact of nano-functionalized construction materials: Leaching of titanium and nitrates from photocatalytic pavements under outdoor conditions. Sci. Total Environ. 2020, 744, 140817. [Google Scholar] [CrossRef]
- Yang, L.; Hakki, A.; Wang, F.; Macphee, D.E. Photocatalyst efficiencies in concrete technology: The effect of photocatalyst placement. J. Appl. Catal. B Environ. 2018, 222, 200–208. [Google Scholar] [CrossRef] [Green Version]
- Graziani, L.; Quagliarini, E.; Bondioli, F.; D’Orazio, M.J.B. Durability of self-cleaning TiO2 coatings on fired clay brick façades: Effects of UV exposure and wet & dry cycles. J. Build. Environ. 2014, 71, 193–203. [Google Scholar]
- Hassan, M.M.; Dylla, H.; Mohammad, L.N.; Rupnow, T. Evaluation of the durability of titanium dioxide photocatalyst coating for concrete pavement. J. Constr. Build. Mater. 2010, 24, 1456–1461. [Google Scholar] [CrossRef]
- Nevshupa, R.; Castellote, M.; Cornelio, J.A.C.; Toro, A. Triboemission of FINE and Ultrafine Aerosol Particles: A New Approach for Measurement and Accurate Quantification. Lubricants 2020, 8, 21. [Google Scholar] [CrossRef] [Green Version]
- Nevshupa, R.; Jimenez-Relinque, E.; Grande, M.; Martinez, E.; Castellote, M. Assessment of urban air pollution related to potential nanoparticle emission from photocatalytic pavements. J. Environ. Manag. 2020, 272, 111059. [Google Scholar] [CrossRef] [PubMed]
- Garciá, L.; Pastor, J.; Peña, J. Self cleaning and depolluting glass reinforced concrete panels: Fabrication, optimization and durability evaluation. J. Constr. Build. Mater. 2018, 162, 9–19. [Google Scholar] [CrossRef]
- Mendoza, C.; Valle, A.; Castellote, M.; Bahamonde, A.; Faraldos, M. TiO2 and TiO2–SiO2 coated cement: Comparison of mechanic and photocatalytic properties. Appl. Catal. B Environ. 2015, 178, 155–164. [Google Scholar] [CrossRef]
- Wang, D.; Leng, Z.; Hüben, M.; Oeser, M.; Steinauer, B. Photocatalytic pavements with epoxy-bonded TiO2-containing spreading material. Constr. Build. Mater. 2016, 107, 44–51. [Google Scholar] [CrossRef]
- Boonen, E.; Beeldens, A.; Dirkx, I.; Bams, V. Durability of Cementitious Photocatalytic Building Materials. Catal. Today 2017, 287, 196–202. [Google Scholar] [CrossRef]
- Chen, J.; Kou, S.-c.; Poon, C.-s. Hydration and properties of nano-TiO2 blended cement composites. Cem. Concr. Compos. 2012, 34, 642–649. [Google Scholar] [CrossRef]
- Zhang, R.; Cheng, X.; Hou, P.; Ye, Z. Influences of nano-TiO2 on the properties of cement-based materials: Hydration and drying shrinkage. Constr. Build. Mater. 2015, 81, 35–41. [Google Scholar] [CrossRef]
- Meng, T.; Yu, Y.; Qian, X.; Zhan, S.; Qian, K. Effect of nano-TiO2 on the mechanical properties of cement mortar. Constr. Build. Mater. 2012, 29, 241–245. [Google Scholar] [CrossRef]
- Nazari, A.; Riahi, S.; Riahi, S. Improvement the mechanical properties of the cementitious composite by using TiO2 nanoparticles. J. Am. Sci. 2010, 6, 98–101. [Google Scholar]
- Lucas, S.S.; Ferreira, V.M.; de Aguiar, J.L.B. Incorporation of titanium dioxide nanoparticles in mortars—Influence of microstructure in the hardened state properties and photocatalytic activity. Cem. Concr. Res. 2013, 43, 112–120. [Google Scholar] [CrossRef] [Green Version]
- Jimenez-Relinque, E.; Rodriguez-Garcia, J.; Castillo, A.; Castellote, M. Characteristics and efficiency of photocatalytic cementitious materials: Type of binder, roughness and microstructure. Cem. Concr. Res. 2015, 71, 124–131. [Google Scholar] [CrossRef]
- Macphee, D.E.; Folli, A. Photocatalytic concretes—The interface between photocatalysis and cement chemistry. Cem. Concr. Res. 2016, 85, 48–54. [Google Scholar] [CrossRef]
- Folli, A.; Pochard, I.; Nonat, A.; Jakobsen, U.H.; Shepherd, A.M.; Macphee, D.E. Engineering photocatalytic cements: Understanding TiO2 surface chemistry to control and modulate photocatalytic performances. J. Am. Ceram. Soc. 2010, 93, 3360–3369. [Google Scholar] [CrossRef]
- Calvo, J.G.; Carballosa, P.; Castillo, A.; Revuelta, D.; Gutiérrez, J.; Castellote, M. Expansive concretes with photocatalytic activity for pavements: Enhanced performance and modifications of the expansive hydrates composition. Constr. Build. Mater. 2019, 218, 394–403. [Google Scholar] [CrossRef]
- Zhang, M.-H.; Li, H. Pore structure and chloride permeability of concrete containing nano-particles for pavement. Constr. Build. Mater. 2011, 25, 608–616. [Google Scholar] [CrossRef]
- Fiore, A.; Marano, G.C.; Monaco, P.; Morbi, A. Preliminary experimental study on the effects of surface-applied photocatalytic products on the durability of reinforced concrete. J. Constr. Build. Mater. 2013, 48, 137–143. [Google Scholar] [CrossRef]
- Attaur, R.; Qudoos, A.; Kim, G.H.; Ryou, J.-S. Influence of Titanium Dioxide Nanoparticles on the Sulfate Attack upon Ordinary Portland Cement and Slag-Blended Mortars. Materials 2018, 11, 356. [Google Scholar] [CrossRef] [Green Version]
- Diamanti, M.V.; Lollini, F.; Pedeferri, M.P.; Bertolini, L. Mutual interactions between carbonation and titanium dioxide photoactivity in concrete. Build. Environ. 2013, 62, 174–181. [Google Scholar] [CrossRef]
- Jimenez-Relinque, E.; Rubiano, F.; Hingorani, R.; Grande, M.; Castillo, A.; Nevshupa, R.; Castellote, M. A New Holistic Conceptual Framework for Assessment of Photocatalytic Pavements Performance. Front. Chem. 2020, 8, 743. [Google Scholar] [CrossRef]
- Hingorani, R.; Jiménez-Relinque, E.; Grande, M.; Castillo, A.; Nevshupa, R.; Castellote, M.J.C.E.J. From analysis to decision: Revision of a multifactorial model for the in situ assessment of NOx abatement effectiveness of photocatalytic pavements. Chem. Eng. J. 2020, 402, 126250. [Google Scholar] [CrossRef]
- Recommendation, F. Slab test: Freeze/thaw resistance of concrete–Internal deterioration. J. Draft Mater. Struct. 2001, 34, 526–531. [Google Scholar]
- De Rincón, O.T.; Sánchez, M.; Millano, V.; Fernández, R.; de Partidas, E.; Andrade, C.; Martínez, I.; Castellote, M.; Barboza, M.; Irassar, F.J.C.S. Effect of the marine environment on reinforced concrete durability in Iberoamerican countries: DURACON project/CYTED. J. Corros. Sci. 2007, 49, 2832–2843. [Google Scholar] [CrossRef]
- Chang, W.-R. The effect of surface roughness on the measurement of slip resistance. Int. J. Ind. Ergon. 1999, 24, 299–313. [Google Scholar] [CrossRef]
- Lindseth, I.; Bardal, A. Quantitative topography measurements of rolled aluminium surfaces by atomic force microscopy and optical methods. Surf. Coat. Technol. 1999, 111, 276–286. [Google Scholar] [CrossRef]
- Karaca, Z.; Gürcan, S.; Gökçe, M.V.; Sivrikaya, O.J.C. Assessment of the results of the pendulum friction tester (EN 14231) for natural building stones used as floor-coverings. J. Constr. Build. Mater. 2013, 47, 1182–1187. [Google Scholar] [CrossRef]
Substrate | Commercial Photocatalytic Material | Initial RNOx (%) | Label |
---|---|---|---|
Asphalt (A) | - | - | Ref-A |
Slurry 1 | 26.91 | S1-A | |
Slurry 2 | 7.22 | S2-A | |
Emulsion 1 | 2.78 | E1-A | |
Emulsion 2 | 6.36 | E2-A | |
Emulsion 3 | 13.63 | E3-A | |
Paving tile (T) | - | - | Ref-T |
Emulsion 1 | 10.84 | E1-T | |
Emulsion 2 | 18.97 | E2-T | |
Emulsion 3 | 29.71 | E3-T | |
Untreated paving tile 1 | - | - | Ref-T1 |
Paving tile 1 | Incorporated in tile | 4.6 | T1 |
Untreated paving tile 2 | - | - | Ref-T2 |
Paving tile 2 | Incorporated in tile | 22.93 | T2 |
Relative UPTT, γ | <100% | 100%~110% | 110%~120% | >120% |
Test finding | Not deteriorated | Possibly deteriorated | Deteriorated | Severely deteriorated |
Resistance class | Good | Intermediate | Poor | Very poor |
Parameter Procedure or Standard | Value |
---|---|
Bitumen binder referred to total mix (%) | 4.9 |
Bitumen binder referred to aggregate (%) | 5.1 |
Gravel 6 mm–12 mm (%)/type of aggregate | 18.4/porphyry |
Sand 0 mm–2 mm (%)/type of aggregate | 76.7/limestone-based |
Filler-Contribution (%)/type of aggregate | 3.9/limestone-based |
Filler-Recovering (%)/type of aggregate | 1/limestone and siliceous-based |
Soluble bitumen binder content referred to total mix (%) Centrifuge extraction | 4.25 |
Soluble bitumen binder content-aggregate (%) Centrifuge extraction | 4.44 |
Filler/bitumen binder ratio Centrifuge extraction | 0.79 |
Bitumen binder content (%) UNE EN 12697-6:2003 | 4.25 |
Bitumen binder density (g/m3) UNE EN 12697-6:2003 | 1.03 |
Air voids UNE EN 12697-08:2008 | 24.6 |
Bitumen binder-filled voids UNE EN 12697-08:2008 | 32.5 |
Aggregate-filled voids UNE EN 12697-08:2008 | 24.16 |
Compressive strength (kPa) | 394.68 |
Indirect tensile strength ratio (ITSR) (%) | 82.3 |
Air WTS * (rolling) (%) | 0.049 |
Air PRD ** (rolling) (%) | 17.802 |
RD (rolling) (mm) | 10.681 |
Particle loss (%) UNE EN 12697-17:2006+A1:2007 | 91.4 |
Parameter Procedure or Standard | Results |
---|---|
Length (mm) UNE EN 1339:2003 | 150 |
Width (mm) UNE EN 1339:2003 | 10 |
Thickness (mm) UNE EN 1339:2003 | 33 |
Bending strength (MPa) UNE EN 1339:2003 | 8.3 |
Failure load (N) UNE EN 1339:2003 | 8995 |
Height of first fissure (mm) UNE EN 127748-2:2006 | >1000 |
Height of failure point (mm) UNE EN 127748-2:2006 | 800 |
Abrasion test track length (mm) UNE EN 1339:2004 | 70.0 |
Abrasion test track width (mm) UNE EN 1339:2004 | 15.5 |
Sample | Porosity (% Vol) | Mean Pore Diameter (4 V/A) (µm) | Bulk Density (g/mL) | UPTT (µs) |
---|---|---|---|---|
Ref-A | 0.73 | 7.337 | 2.64 | 82.8 |
S1-A | 2.64 | 0.583 | 2.46 | 73.1 |
S2-A | 4.92 | 0.065 | 2.28 | 47.6 |
E1-A | 1.10 | 5.287 | 2.53 | 87.9 |
E2-A | 0.82 | 9.403 | 2.50 | 71.0 |
E3-A | 0.84 | 6.408 | 2.58 | 147.2 |
Ref-T | 10.75 | 0.140 | 2.25 | 44.2 |
E1-T | 12.70 | 0.071 | 2.19 | 64.5 |
E2-T | 8.87 | 0.072 | 2.27 | 61.9 |
E3-T | 9.62 | 0.062 | 2.26 | 57.9 |
Ref-T1 | 0.45 | 0.948 | 2.34 | 27.0 |
T1 | 0.24 | 0.788 | 2.37 | 16.7 |
Ref-T2 | 10.09 | 0.103 | 2.25 | 26.3 |
T2 | 12.50 | 0.084 | 2.19 | 39.8 |
Sample | Freeze-Thaw Resistance [52] | Ultrasounds Δt (%) Cores Slabs | Intake of Water Δεe (%) Δk (%) | Slip Resistance ΔSR (%) ΔRa (%) | |||
---|---|---|---|---|---|---|---|
S1-A | Intermediate | 46.3 | 11.7 | −825 | −1020 | −0.39 | 50.16 |
S2-A | Good | 66.0 | 42.5 | −494 | −619 | 33.73 | 80.26 |
E1-A | Good | −23.1 | −6.1 | −267 | −295 | 6.51 | 1.52 |
E2-A | Good | −8.2 | 14.3 | −85 | −14 | 5.33 | −1.90 |
E3-A | Intermediate/Good | −50.6 | −77.7 | −156 | −104 | 5.13 | 27.38 |
E1-T | Poor/Very poor | 32.4 | −45.9 | 4 | −9 | −3.44 | 25.98 |
E2-T | Poor | 21.8 | −40.0 | 41 | 64 | −10.97 | −0.62 |
E3-T | Poor | 25.0 | −30.9 | 14 | 10 | −9.68 | 12.63 |
T1 | Intermediate/Poor | 18.8 | 38.2 | ----- | ------- | −10.83 | −5.74 |
T2 | Good | −9.9 | −51.2 | −27 | −28 | −1.78 | 34.52 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jimenez-Relinque, E.; Grande, M.; Rubiano, F.; Castellote, M. Durability and Safety Performance of Pavements with Added Photocatalysts. Appl. Sci. 2021, 11, 11277. https://doi.org/10.3390/app112311277
Jimenez-Relinque E, Grande M, Rubiano F, Castellote M. Durability and Safety Performance of Pavements with Added Photocatalysts. Applied Sciences. 2021; 11(23):11277. https://doi.org/10.3390/app112311277
Chicago/Turabian StyleJimenez-Relinque, Eva, Maria Grande, Francisco Rubiano, and Marta Castellote. 2021. "Durability and Safety Performance of Pavements with Added Photocatalysts" Applied Sciences 11, no. 23: 11277. https://doi.org/10.3390/app112311277
APA StyleJimenez-Relinque, E., Grande, M., Rubiano, F., & Castellote, M. (2021). Durability and Safety Performance of Pavements with Added Photocatalysts. Applied Sciences, 11(23), 11277. https://doi.org/10.3390/app112311277