Evaluation of NOx Reduction Effect and Impact on Asphalt Pavement of Surface Treatment Technology including TiO2 and Asphalt Rejuvenator
Abstract
:1. Introduction
2. Materials and Test Methods
2.1. Materials
2.1.1. Photocatalyst
2.1.2. Surface Treatment Agent
2.1.3. Materials for Asphalt Concrete Specimen
2.2. Experimental Methods
2.2.1. Specimen Fabrication
2.2.2. Photo Reactors Test
2.2.3. FT-IR Spectroscopy Analysis
2.2.4. SARA Analysis
3. Experimental Results and Analysis
3.1. Evaluation of NOx Removal Performance by Reactor Type
3.1.1. Bed Flow Photo Reactors Test Result
3.1.2. Mixed Tank Photo Reactor Test Result
3.2. Evaluation of NOx Removal Performance of the TiO2 Surface Treated Asphalt Specimens
3.3. Asphalt Aging Evaluation by UV
3.3.1. FT-IR Spectroscopy Analysis
3.3.2. SARA Analysis Result
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kan, H.; London, S.J.; Chen, G.; Zhang, Y.; Song, G.; Zhao, N.; Jiang, L.; Chen, B. Season, sex, age, and education as modifiers of the effects of outdoor air pollution on daily mortality in Shanghai, China: The Public Health and Air Pollution in Asia (PAPA) study. Environ. Health Perspect. 2008, 116, 1183–1188. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Hong, C.; Kan, H. Exposures and health outcomes from outdoor air pollutants in China. Toxicology 2004, 198, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.J.; Lee, S.W. An Experimental Study for the Construction of Photocatalytic Method Concrete Road Structure. J. Korean Soc. Road Eng. 2013, 15, 1–9. [Google Scholar] [CrossRef]
- Fujishima, A.; Rao, T.; Tryk, D.A. Titanium dioxide photocatalysis. J. Photochem. Photobiol. C Photochem. Rev. 2017, 1, 5525. [Google Scholar] [CrossRef]
- Henderson, M.A. A surface science perspective on TiO2 photocatalysis. Surf. Sci. Rep. 2011, 66, 185–297. [Google Scholar] [CrossRef]
- Guo, M.-Z.; Ling, T.-C.; Poon, C.-S. TiO2-based self-compacting glass mortar: Comparison of photocatalytic nitrogen oxide removal and bacteria inactivation. Build. Environ. 2012, 53, 1–6. [Google Scholar] [CrossRef]
- Guo, M.-Z.; Ling, T.-C.; Poon, C.-S. Nano-TiO2-based architectural mortar for NO removal and bacteria inactivation: Influence of coating and weathering conditions. Cem. Concr. Compos. 2013, 36, 101–108. [Google Scholar] [CrossRef]
- Jameel, Z.N.; Haider, A.J.; Taha, S.Y.; Gangopadhyay, S.; Bok, S. Evaluation of hybrid sol-gel incorporated with nanoparticles as nano paint. AIP Conf. Proc. 2016, 1758, 20001. [Google Scholar]
- Haider, A.J.; Materials, A.; Materials, A. Synthesis and Characterization of TiO2 Nanoparticles via Sol- Gel Method by Pulse Laser Ablation. Eng. Technol. J. 2015, 33, 761–771. [Google Scholar]
- Sirimahachai, U.; Phongpaichit, S.; Wongnawa, S. Evaluation of bactericidal activity of TiO2 photocatalysts: A comparative study of laboratory-made and commercial TiO2 samples. Songklanakarin J. Sci. Technol. 2009, 31, 517–525. [Google Scholar]
- Qi, M.; Yang, D.; Zhang, J.; Ai, H.J. Preparation and Characterization of Zn-Containing Hydroxyapatite/TiO2 Composite Coatings on Ti Alloys. Trans. Tech. Publ. 2011, 685, 367–370. [Google Scholar]
- Balbuena, J.; Sánchez, L.; Cruz-Yusta, M. Use of Steel Industry Wastes for the Preparation of Self-Cleaning Mortars. Materials 2019, 12, 621. [Google Scholar] [CrossRef] [Green Version]
- Poon, C.S.; Cheung, E. NO removal efficiency of photocatalytic paving blocks prepared with recycled materials. Constr. Build. Mater. 2007, 21, 1746–1753. [Google Scholar] [CrossRef]
- Chen, J.; Poon, C. Photocatalytic construction and building materials: From fundamentals to applications. Build. Environ. 2009, 44, 1899–1906. [Google Scholar] [CrossRef]
- Chen, J.; Poon, C.S. Photocatalytic activity of titanium dioxide modified concrete materials—Influence of utilizing recycled glass cullets as aggregates. J. Environ. Manag. 2009, 90, 3436–3442. [Google Scholar] [CrossRef]
- Guo, M.Z.; Poon, C.S. Photocatalytic NO removal of concrete surface layers intermixed with TiO2. Build. Environ. 2013, 70, 102–109. [Google Scholar] [CrossRef]
- Verdier, T.; Coutand, M.; Bertron, A.; Roques, C. Antibacterial activity of TiO2 photocatalyst alone or in coatings on E. coli: The influence of methodological aspects. Coatings 2014, 4, 670–686. [Google Scholar] [CrossRef]
- Ba-Abbad, M.M.; Kadhum, A.A.H.; Mohamad, A.B.; Takriff, M.S.; Sopian, K. Synthesis and catalytic activity of TiO2 nanoparticles for photochemical oxidation of concentrated chlorophenols under direct solar radiation. Int. J. Electrochem. Sci. 2012, 7, 4871–4888. [Google Scholar]
- Fang, C.; Yu, R.; Liu, S.; Li, Y. Nanomaterials applied in asphalt modification: A review. J. Mater. Sci. Technol. 2013, 29, 589–594. [Google Scholar] [CrossRef]
- Shafabakhsh, G.H.; Mirabdolazimi, S.M.; Sadeghnejad, M. Evaluation the effect of nano-TiO2 on the rutting and fatigue behavior of asphalt mixtures. Constr. Build. Mater. 2014, 54, 566–571. [Google Scholar] [CrossRef]
- Carneiro, J.O.; Azevedo, S.; Teixeira, V.; Fernandes, F.; Freitas, E.; Silva, H.M.R.D.; Oliveira, J. Development of photocatalytic asphalt mixtures by the deposition and volumetric incorporation of TiO2 nanoparticles. Constr. Build. Mater. 2013, 38, 594–601. [Google Scholar] [CrossRef]
- Nazari, H.; Naderi, K.; Nejad, F.M. Improving aging resistance and fatigue performance of asphalt binders using inorganic nanoparticles. Constr. Build. Mater. 2018, 170, 591–602. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, C.; Yu, J.; Shi, C.; Zhang, D. Influence of surface modification on physical and ultraviolet aging resistance of bitumen containing inorganic nanoparticles. Constr. Build. Mater. 2015, 98, 735–740. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, H.; Zhu, C. Effect of multi-scale nanocomposites on performance of asphalt binder and mixture. Constr. Build. Mater. 2020, 243, 118307. [Google Scholar] [CrossRef]
- Fan, W.; Chan, K.Y.; Zhang, C.; Leung, M.K. Advanced solar photocatalytic asphalt for removal of vehicular NOx. Energy Procedia 2017, 143, 811–816. [Google Scholar] [CrossRef]
- Osborn, D.; Hassan, M.; Asadi, S.; White, J.R. Durability quantification of TiO2 surface coating on concrete and asphalt pavements. J. Mater. Civ. Eng. 2014, 26, 331–337. [Google Scholar] [CrossRef]
- Li, L.; Qian, C. A lab study of photo-catalytic oxidation and removal of nitrogen oxides in vehicular emissions and its fieldwork on Nanjing No. 3 bridge of Yangtze River. Technical note. Int. J. Pavement Res. Technol. 2009, 2, 218–222. [Google Scholar]
- Hassan, M.; Mohammad, L.N.; Asadi, S.; Dylla, H.; Cooper, S., III. Sustainable photocatalytic asphalt pavements for mitigation of nitrogen oxide and sulfur dioxide vehicle emissions. J. Mater. Civ. Eng. 2013, 25, 365–371. [Google Scholar] [CrossRef]
- Hassan, M.M.; Dylla, H.; Asadi, S.; Mohammad, L.N.; Cooper, S. Laboratory evaluation of environmental performance of photocatalytic titanium dioxide warm-mix asphalt pavements. J. Mater. Civ. Eng. 2012, 24, 599–605. [Google Scholar] [CrossRef]
- Brovelli, C.; Crispino, M. Photocatalytic suspension for road pavements: Investigation on wearing and contaminant effects. J. Mater. Civ. Eng. 2013, 25, 548–554. [Google Scholar] [CrossRef]
- Wang, D.; Leng, Z.; Yu, H.; Hüben, M.; Kollmann, J.; Oeser, M. Durability of epoxy-bonded TiO2-modified aggregate as a photocatalytic coating layer for asphalt pavement under vehicle tire polishing. Wear 2017, 382, 1–7. [Google Scholar] [CrossRef]
- Hassan, M.M.; Mohammad, L.N.; Cooper, S.B., III; Dylla, H. Evaluation of nano–titanium dioxide additive on asphalt binder aging properties. Transp. Res. Rec. 2011, 2207, 11–15. [Google Scholar] [CrossRef]
- Hu, J.; Wu, S.; Liu, Q.; García Hernández, M.I.; Zeng, W.; Nie, S.; Wan, S.; Zhang, D.; Li, Y. The effect of ultraviolet radiation on bitumen aging depth. Materials 2018, 11, 747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minero, C.; Bedini, A.; Minella, M. On the standardization of the photocatalytic gas/solid tests. Int. J. Chem. React. Eng. 2013, 11, 717–732. [Google Scholar] [CrossRef]
- Matsuda, S.; Hatano, H. Photocatalytic removal of NOx in a circulating fluidized bed system. Powder Technol. 2005, 151, 61–67. [Google Scholar] [CrossRef]
- Menéndez-Flores, V.M.; Bahnemann, D.W.; Ohno, T. Visible light photocatalytic activities of S-doped TiO2-Fe3+ in aqueous and gas phase. Appl. Catal. B 2011, 103, 99–108. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kim, C.S.; Chang, H.K.; Kim, T.O. Effects of ZrO2 addition on phase stability and photocatalytic activity of ZrO2/TiO2 nanoparticles. Adv. Powder Technol. 2010, 21, 141–144. [Google Scholar] [CrossRef]
- Signoretto, M.; Ghedini, E.; Trevisan, V.; Bianchi, C.L.; Ongaro, M.; Cruciani, G. TiO2–MCM-41 for the photocatalytic abatement of NOx in gas phase. Appl. Catal. B 2010, 95, 130–136. [Google Scholar] [CrossRef]
- Lee, S.H.; Yamasue, E.; Okumura, H.; Ishihara, K.N. Effect of oxygen and nitrogen concentration of nitrogen doped TiOx film as photocatalyst prepared by reactive sputtering. Appl. Catal. A Gen. 2009, 371, 179–190. [Google Scholar] [CrossRef]
- Bianchi, C.L.; Pirola, C.; Galli, F.; Vitali, S.; Minguzzi, A.; Stucchi, M.; Manent, F.; Capucci, V. NOx degradation in a continuous large-scale reactor using full-size industrial photocatalytic tiles. Catal. Sci. Technol. 2016, 6, 2261–2267. [Google Scholar] [CrossRef] [Green Version]
- Murata, Y.; Kamitani, K.; Takeuchi, K. Air Purifying Blocks Based on Photocatalysis; Japan Interlocking Block Pavement Engineering Association (JIBPEA): Tokyo, Japan, 2000. [Google Scholar]
- Guo, M.-Z.; Ling, T.-C.; Poon, C.S. Photocatalytic NOx degradation of concrete surface layers intermixed and spray-coated with nano-TiO2: Influence of experimental factors. Cem. Concr. Compos. 2017, 83, 279–289. [Google Scholar] [CrossRef]
- Jafari, H.; Afshar, S. Improved photodegradation of organic contaminants using nano-TiO2 and TiO2–SiO2 deposited on Portland cement concrete blocks. Photochem. Photobiol. 2016, 92, 87–101. [Google Scholar] [CrossRef]
- Noor, L.; Wasiuddin, N.M.; Mohammad, L.N.; Salomon, D. Use of Fourier Transform Infrared (FT-IR) Spectroscopy to Determine the Type and Quantity of Rejuvenator Used in Asphalt Binder. In Recent Developments in Pavement Engineering: Proceedings of the 3rd GeoMEast International Congress and Exhibition, Egypt 2019 on Sustainable Civil Infrastructures—The Official International Congress of the Soil-Structure Interaction Group in Egypt (SSIGE); Springer: Berlin/Heidelberg, Germany, 2020; Volume 1, pp. 70–84. [Google Scholar]
- Hou, X.; Lv, S.; Chen, Z.; Xiao, F. Applications of Fourier transform infrared spectroscopy technologies on asphalt materials. Measurement 2018, 121, 304–316. [Google Scholar] [CrossRef]
- Wu, S.; Zhao, Z.; Xiao, Y.; Yi, M.; Chen, Z.; Li, M. Evaluation of mechanical properties and aging index of 10-year field aged asphalt materials. Constr. Build. Mater. 2017, 155, 1158–1167. [Google Scholar] [CrossRef]
- Min, K.E.; Jeong, H.M. Structures and properties of semi-blown petroleum asphalt. Appl. Chem. Eng. 2011, 22, 664–671. [Google Scholar]
Physical Properties | Type-1 | Type-2 | Type-3 |
---|---|---|---|
Constituent | Anatase (80%) + Rutile (20%) | Anatase (100%) | Anatase (100%) |
Purity (%) | <99 | <99 | <94 |
Surface area (m2/g) | 35–65 | 60–70 | 78 |
Apparent density (g/mL) | 0.1–0.18 | 0.45 | 0.6 |
Particle size (nm) | 20–30 | 20–30 | 20–30 |
Properties | Results | Test Method | |
---|---|---|---|
Specific gravity | 0.85~0.95 | ASTM D-1298 | |
Water | 1% Max | ASTM D-95 | |
Distillation residue | Temp. (°C) | Distillate (%) | ASTM D-158 |
170 | 0–40 | ||
270 | 0–5 | ||
300 | 0–5 | ||
Viscosity | 10–50 Sec @ 122 °F | ASTM D 88 | |
Flash point | 110 °F | ||
Percent volatile | 5–40 |
Chemical Compositions (%) | |
---|---|
D-Limonene | 75 |
Soybean oil, methyl ester | 20 |
Reactive polymer | 5 |
Properties | Results | Test Method |
---|---|---|
Penetration (1/10 mm) | 71 | ASTM D 5 |
Density (g/cm3) | 1.036 | ASTM D 70 |
Flash point (°C) | 338 | ASTM D 95 |
Softening point (°C) | 44 | ASTM D 158 |
Ductility (15 °C) | 150+ | ASTM D 113 |
Solubility in trichloroethylene (%) | 99.78 | ASTM D 2042 |
Mass change after thin-film oven test (%) | −0.02 | ASTM D 2872 |
Retained penetration after thin-film oven test (%) | 69.0 | ASTM D 2872 |
Nominal Maximum Aggregate Size (mm) | Density (g/cm3) | Absorption (%) | Abrasion (%) | Flat or Elongated Particle Ratio (wt.%) |
---|---|---|---|---|
20 | 2.72 | 0.52 | 13.8 | 7.5 |
Test ID | Total NO (umol) | Total Removed No (umol) | Total Removed No (%) |
---|---|---|---|
Type-1 | 13.59 | 3.59 | 26.06 |
Type-2 | 13.55 | 2.51 | 18.52 |
Type-3 | 13.71 | 2.99 | 21.82 |
Test ID | Total NO (umol) | Total Removed NO (umol) | Total Removed NO (%) |
---|---|---|---|
Type-1 | 38.74 | 16.92 | 43.66 |
Type-2 | 37.62 | 11.82 | 31.41 |
Type-3 | 38.27 | 15.94 | 41.65 |
Test ID | Total NO (umol) | Total Removed NO (umol) | Total Removed NO (%) |
---|---|---|---|
Type-1 | 37.44 | 0.95 | 2.54 |
Type-2 | 37.07 | 2.20 | 5.94 |
Type-3 | 37.54 | 2.94 | 7.83 |
Constituent | Before UV Irradiation | After UV Irradiation |
---|---|---|
Asphaltene | 14.6 | 50.1 |
Resin | 10.2 | 4.4 |
Aromatic | 48.2 | 33.1 |
Saturate | 29.4 | 11.4 |
Constituent | Before UV Irradiation | After UV Irradiation |
---|---|---|
Asphaltene | 16.8 | 35.6 |
Resin | 12.1 | 37.4 |
Aromatic | 44.8 | 22.9 |
Saturate | 29.2 | 4.1 |
Constituent | Before UV Irradiation | After UV Irradiation |
---|---|---|
Asphaltene | 16.8 | 19.3 |
Resin | 12.1 | 11.4 |
Aromatic | 44.8 | 42.3 |
Saturate | 29.2 | 27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.-W.; Baek, C. Evaluation of NOx Reduction Effect and Impact on Asphalt Pavement of Surface Treatment Technology including TiO2 and Asphalt Rejuvenator. Appl. Sci. 2021, 11, 11571. https://doi.org/10.3390/app112311571
Lee J-W, Baek C. Evaluation of NOx Reduction Effect and Impact on Asphalt Pavement of Surface Treatment Technology including TiO2 and Asphalt Rejuvenator. Applied Sciences. 2021; 11(23):11571. https://doi.org/10.3390/app112311571
Chicago/Turabian StyleLee, Jong-Won, and Cheolmin Baek. 2021. "Evaluation of NOx Reduction Effect and Impact on Asphalt Pavement of Surface Treatment Technology including TiO2 and Asphalt Rejuvenator" Applied Sciences 11, no. 23: 11571. https://doi.org/10.3390/app112311571
APA StyleLee, J. -W., & Baek, C. (2021). Evaluation of NOx Reduction Effect and Impact on Asphalt Pavement of Surface Treatment Technology including TiO2 and Asphalt Rejuvenator. Applied Sciences, 11(23), 11571. https://doi.org/10.3390/app112311571