Organic Nanostructured Materials for Sustainable Application in Next Generation Solar Cells
Abstract
:1. Introduction
1.1. Bulk Heterojunction (BHJ) Nanomaterial in OPVs
1.2. The Operatzion Principle of OPVs
1.2.1. Light Absorption and Exciton Generation
1.2.2. Exciton Diffusion and Charge Dissociation
1.2.3. Free Charge Carriers Transport
1.2.4. Collection of the Charge Carriers at the Electrodes
2. Types of Organic Solar Cells
2.1. Small-Molecule OPV Cells
2.2. Polymer-Based OPV Cells
3. The Performance of Nanostructured Organic Devices
3.1. Polymer-Based Nanostructures in the OPVs
3.2. Organic Solar Cells Based on Small Molecule Donor and Polymer Acceptor
4. Next Generation Applications of OPVs
4.1. Organic Photovoltaics Spearheading Sustainable Agricultural Processes
4.2. Future Design of Nanomaterial-Based Photovoltaic Systems for Land and Agricultural Use
5. Future Insights
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharma, A.; Pathak, D.; Wagner, T. Organic photovoltaic materials: A review on synthesis, structure and properties. J. Optoelectron. Adv. Mater. 2014, 16, 1257–1268. [Google Scholar]
- Snoke, D.; Denev, S.; Liu, Y.; Pfeiffer, L.N.; West, K. Letters To Nature. Nature 2002, 418, 754–757. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Wang, K.; Batmunkh, M.; Bati, A.S.R.; Yang, D.; Jiang, Y.; Hou, Y.; Shapter, J.G.; Priya, S. Multifunctional nanostructured materials for next generation photovoltaics. Nano Energy 2020, 70. [Google Scholar] [CrossRef]
- Phillip, D.J. Fossil Fuels are Bad for Your Health and Harmful in Many Ways besides Climate Change; The Conversation: Melbourne, Australia, 2019; Volume 1. [Google Scholar]
- Zhang, T.; Yang, H. High efficiency plants and building integrated renewable energy systems: Building-integrated photovoltaics (BIPV). In Handbook of Energy Efficiency in Buildings; Elsevier: Amsterdam, The Netherlands, 2018; ISBN 9780128128176. [Google Scholar]
- Mehreen, G.; Yash, K.; Tariq, M. Review on recent trend of solar photovoltaic technology. Coast. Estuar. Process. 2016. [Google Scholar] [CrossRef] [Green Version]
- Speller, E.M.; Clarke, A.J.; Aristidou, N.; Wyatt, M.F.; Francàs, L.; Fish, G.; Cha, H.; Lee, H.K.H.; Luke, J.; Wadsworth, A.; et al. Toward improved environmental stability of polymer: Fullerene and polymer:Non-fullerene organic solar cells: A common energetic origin of light—A nd oxygen-induced degradation. ACS Energy Lett. 2019, 4, 846–852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- GreenMatch. Organic Solar Cells—Compare Prices Here. 2021. Available online: https://www.greenmatch.co.uk/solar-energy/solar-panels/photovoltaic-cells/organic (accessed on 29 July 2021).
- Kibria, M.T.; Ahammed, A.; Sony, S.M.; Hossain, F. A Review: Comparative studies on different generation solar cells technology. In Proceedings of the International Conference on Environmental Aspects of Bangladesh, Dhaka, Bangladesh, 23–24 May 2014; pp. 51–53. [Google Scholar]
- Chandler, D.L. Researchers improve efficiency of next-generation solar cell material. MIT News, 24 February 2021. [Google Scholar]
- Nayak, P.K.; Mahesh, S.; Snaith, H.J.; Cahen, D. Photovoltaic solar cell technologies: Analysing the state of the art. Nat. Rev. Mater. 2019, 4, 269–285. [Google Scholar] [CrossRef]
- Yeh, N.; Yeh, P. Organic solar cells: Their developments and potentials. Renew. Sustain. Energy Rev. 2013, 21, 421–431. [Google Scholar] [CrossRef]
- Liu, W.; Liu, N.; Ji, S.; Hua, H.; Ma, Y.; Hu, R.; Zhang, J.; Chu, L.; Li, X.; Huang, W. Perfection of Perovskite Grain Boundary Passivation by Rhodium Incorporation for Efficient and Stable Solar Cells. Nano Micro Lett. 2020, 12, 1–11. [Google Scholar] [CrossRef]
- Sharma, K.; Sharma, V.; Sharma, S.S. Dye-Sensitized Solar Cells: Fundamentals and Current Status. Nanoscale Res. Lett. 2018, 13, 381. [Google Scholar] [CrossRef]
- De Angelis, F. Modeling materials and processes in hybrid/organic photovoltaics: From dye-sensitized to perovskite solar cells. Acc. Chem. Res. 2014, 47, 3349–3360. [Google Scholar] [CrossRef]
- Bhattacharya, S.; John, S. Beyond 30% Conversion Efficiency in Silicon Solar Cells: A Numerical Demonstration. Sci. Rep. 2019, 9, 1–15. [Google Scholar] [CrossRef]
- Archer, M.D.; Hill, R.; Firm, K. Clean Electricity from Photovoltaics; Imperial College Press: London, UK, 2001; Volume 1. [Google Scholar]
- Gan, X.; Wang, O.; Liu, K.; Du, X.; Guo, L.; Liu, H. 2D homologous organic-inorganic hybrids as light-absorbers for planer and nanorod-based perovskite solar cells. Sol. Energy Mater. Sol. Cells 2017, 162, 93–102. [Google Scholar] [CrossRef]
- Ilmi, R.; Haque, A.; Khan, M.S. High efficiency small molecule-based donor materials for organic solar cells. Org. Electron. 2018, 58, 53–62. [Google Scholar] [CrossRef]
- Kalowekamo, J.; Baker, E. Estimating the manufacturing cost of purely organic solar cells. Sol. Energy 2009, 83, 1224–1231. [Google Scholar] [CrossRef]
- Mari-Louise, J.W.; Cameron, M. “Renewable Energy State of”, Dep. Energy, Matimba House, 192 Visag. Str, Corner Paul Kruger Visag. Str, Pretoria, South Africa, 2017. Available online: www.energy.gov.za (accessed on 5 July 2021).
- Complete Solid-State Dye-Sensitized Solar Cell. Global | Ricoh. Available online: https://www.ricoh.com/technology/tech/066_dssc (accessed on 5 July 2021).
- Xie, F.; Chen, C.C.; Wu, Y.; Li, X.; Cai, M.; Liu, X.; Yang, X.; Han, L. Vertical recrystallization for highly efficient and stable formamidinium-based inverted-structure perovskite solar cells. Energy Environ. Sci. 2017, 10, 1942–1949. [Google Scholar] [CrossRef]
- 1.10: Pi Conjugation—Chemistry LibreTexts. Available online: https://chem.libretexts.org/Courses/Purdue/Purdue%3A_Chem_26505%3A_Organic_Chemistry_I_(Lipton)/Chapter_1._Electronic_Structure_and_Chemical_Bonding/1.10%3A_Pi_Conjugation (accessed on 12 July 2021).
- Rafique, S.; Abdullah, S.M.; Sulaiman, K.; Iwamoto, M. Fundamentals of bulk heterojunction organic solar cells: An overview of stability/degradation issues and strategies for improvement. Renew. Sustain. Energy Rev. 2018, 84, 43–53. [Google Scholar] [CrossRef]
- Facchetti, A. Polymer donor-polymer acceptor (all-polymer) solar cells. Mater. Today 2013, 16, 123–132. [Google Scholar] [CrossRef]
- Deibel, C.; Dyakonov, V. Polymer-fullerene bulk heterojunction solar cells. Rep. Prog. Phys. 2010, 73, 096401. [Google Scholar] [CrossRef] [Green Version]
- Mayer, A.C.; Scully, S.R.; Hardin, B.E.; Rowell, M.W.; McGehee, M.D. Polymer-based solar cells. Mater. Today 2007, 10, 28–33. [Google Scholar] [CrossRef]
- Siddiki, M.K.; Li, J.; Galipeau, D.; Qiao, Q. A review of polymer multijunction solar cells. Energy Environ. Sci. 2010, 3, 867–883. [Google Scholar] [CrossRef]
- Dhankhar, M.; Om Pal Singh, V.N.S.N. Power Plant Emitin Smoke Steam Stock Photo (Edit Now) 1555865300. Available online: https://www.shutterstock.com/image-photo/power-plant-emitin-smoke-steam-1555865300 (accessed on 29 June 2021).
- Scharber, M.C.; Sariciftci, N.S. Efficiency of bulk-heterojunction organic solar cells. Prog. Polym. Sci. 2013, 38, 1929–1940. [Google Scholar] [CrossRef] [Green Version]
- Tang, W.; Ke, L.; Tan, L.; Lin, T.; Kietzke, T.; Chen, Z.K. Conjugated copolymers based on fluorene-thieno[3,2-b]thiophene for light-emitting diodes and photovoltaic cells. Macromolecules 2007, 40, 6164–6171. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, J.; Zhou, Y.; Liu, H.; Xue, Q.; Li, X.; Chueh, C.C.; Yip, H.L.; Zhu, Z.; Jen, A.K.Y. Highly efficient all-inorganic perovskite solar cells with suppressed non-radiative recombination by a Lewis base. Nat. Commun. 2020, 11, 1–9. [Google Scholar] [CrossRef]
- Mazzio, K.A.; Luscombe, C.K. The future of organic photovoltaics. Chem. Soc. Rev. 2015, 44, 78–90. [Google Scholar] [CrossRef] [PubMed]
- Green, M.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E.; Barkhouse, D.; Gunawan, O.; Gokmen, T.; Todorov, T.; Mitzi, D. Solar cell efficiency tables (version 40). IEEE Trans Fuzzy Syst 2012, 20, 1114–1129. [Google Scholar] [CrossRef]
- Zhou, Y.; Eck, M.; Krüger, M. Bulk-heterojunction hybrid solar cells based on colloidal nanocrystals and conjugated polymers. Energy Environ. Sci. 2010, 3, 1851–1864. [Google Scholar] [CrossRef]
- Hoang, N.V.; Nikolis, V.C.; Baisinger, L.; Vandewal, K.; Pshenichnikov, M.S. Diffusion-enhanced exciton dissociation in single-material organic solar cells. Phys. Chem. Chem. Phys. 2021, 23, 20848–20853. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Deng, W. Introduction to organic solar cells. Org. Hybrid Sol. Cells 2014, 9783319108, 1–18. [Google Scholar] [CrossRef]
- Blom, P.W.M.; Mihailetchi, V.D.; Koster, L.J.A.; Markov, D.E. Device physics of polymer:Fullerene bulk heterojunction solar cells. Adv. Mater. 2007, 19, 1551–1566. [Google Scholar] [CrossRef] [Green Version]
- Hou, W.; Xiao, Y.; Han, G.; Lin, J.Y. The applications of polymers in solar cells: A review. Polymers 2019, 11, 143. [Google Scholar] [CrossRef] [Green Version]
- Primrose Magama, C.I.; Lebotsa, S. Renewable Energy and Physics; Agrucultural Research Council—Institute for Agri: Pretoria, South Africa, 2017. [Google Scholar]
- Van Vuuren, P.J.; Pineo, C.; Basson, L. Solar Energy in Agri-Processing. In Proceedings of the Southern African Solar Energy Conference, Stellenbosch, South Africa, 31 Octotber–2 November 2016. [Google Scholar]
- Zhang, H.; Liu, Y.; Sun, Y.; Li, M.; Kan, B.; Ke, X.; Zhang, Q.; Wan, X.; Chen, Y. Developing high-performance small molecule organic solar cells via a large planar structure and an electron-withdrawing central unit. Chem. Commun. 2017, 53, 451–454. [Google Scholar] [CrossRef]
- Collins, S.D.; Ran, N.A.; Heiber, M.C.; Nguyen, T.Q. Small is Powerful: Recent Progress in Solution-Processed Small Molecule Solar Cells. Adv. Energy Mater. 2017, 7, 1602242. [Google Scholar] [CrossRef]
- Chem, J.M.; Duan, C.; Huang, F.; Cao, Y. Recent development of push—Pull conjugated polymers for bulk-heterojunction photovoltaics: Rational design and fine tailoring of molecular structures. J. Mater. Chem. 2012, 22, 10416–10434. [Google Scholar] [CrossRef]
- Zhang, H.; Yao, H.; Hou, J.; Zhu, J.; Zhang, J.; Li, W.; Yu, R. Over 14% Efficiency in Organic Solar Cells Enabled by Chlorinated-Small-Molecule Acceptors. Adv. Mater. 2018, 1800613, 1–7. [Google Scholar] [CrossRef] [PubMed]
- There Are Grounds for Concern about Solar Power; Climate Change; Al Jazeera. Available online: https://www.aljazeera.com/opinions/2021/4/7/there-are-grounds-for-concern-about-solar-power (accessed on 29 June 2021).
- Han, G.; Yi, Y. Rationalizing Small-Molecule Donor Design toward High-Performance Organic Solar Cells: Perspective from Molecular Architectures. Adv. Theory Simul. 2018, 1, 1800091. [Google Scholar] [CrossRef]
- Pandolfi, F.; Rocco, D.; Mattiello, L. Synthesis and characterization of new D-π-A and A-π-D-π-A type oligothiophene derivatives. Org. Biomol. Chem. 2019, 17, 3018–3025. [Google Scholar] [CrossRef] [PubMed]
- Bennett, T.D.; Yue, Y.; Li, P.; Qiao, A.; Tao, H.; Greaves, N.G.; Richards, T.; Lampronti, G.I.; Redfern, S.A.T.; Blanc, F.; et al. Melt-Quenched Glasses of Metal-Organic Frameworks. J. Am. Chem. Soc. 2016, 138, 3484–3492. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Jiang, Y.; Jin, K.; Qin, J.; Xu, J.; Li, W.; Xiong, J.; Liu, J.; Xiao, Z.; Sun, K.; et al. 18% Efficiency organic solar cells. Sci. Bull. 2020, 65, 272–275. [Google Scholar] [CrossRef] [Green Version]
- Johnson, J. Rational Design of High Performance Conjugated; University of North Carolina at Chapel Hill: Chapel Hill, NC, USA, 2011. [Google Scholar]
- Nakabayashi, K.; Mori, H. Donor-acceptor block copolymers: Synthesis and solar cell applications. Materials 2014, 7, 3274–3290. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Yao, H.; Zhang, J.; Zhang, T.; Wang, Y.; Hong, L.; Xian, K.; Xu, B.; Zhang, S.; Peng, J.; et al. Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages. Nat. Commun. 2019, 10, 1–8. [Google Scholar] [CrossRef]
- Ossila Group. Y7 (BTP-4Cl); Non-Fullerene Electron Acceptor (NFA); Ossila Ltd.: Sheffield, UK, 2019; Available online: https://www.ossila.com/products/y7 (accessed on 13 August 2021).
- Ossila Group. Y6 (BTP-4F); Non-Fullerene Electron Acceptor, 2304444-49-1; Ossila Ltd.: Sheffield, UK, 2019; Available online: https://www.ossila.com/products/y6 (accessed on 13 August 2021).
- Wang, M.; Wang, W.; Ma, B.; Shen, W.; Liu, L.; Cao, K.; Chen, S.; Huang, W. Lead-Free Perovskite Materials for Solar Cells; Springer: Singapore, 2021; Volume 13, ISBN 0123456789. [Google Scholar]
- Banerjee, J.; Dutta, K.; Rana, D. Carbon Nanomaterials in Renewable Energy Production and Storage Applications; Springer: Berlin, Germany, 2019; ISBN 9783030044749. [Google Scholar]
- Salame, P.H.; Pawade, V.B.; Bhanvase, B.A. Engineered Nanomaterials for Renewable Energy; Elsevier Inc.: Amsterdam, The Netherlands, 2018; ISBN 9780128133514. [Google Scholar]
- Intertek. Optical Properties of Polymers. 2020. Available online: https://www.intertek.com/polymers/optical-properties/ (accessed on 7 October 2021).
- Takakuwa, M.; Heo, S.W.; Fukuda, K.; Tajima, K.; Park, S.; Umezu, S.; Someya, T. Nanograting Structured Ultrathin Substrate for Ultraflexible Organic Photovoltaics. Small Methods 2020, 4, 1–8. [Google Scholar] [CrossRef]
- Chen, Y.; Elshobaki, M.; Ye, Z.; Park, J.M.; Noack, M.A.; Ho, K.M.; Chaudhary, S. Microlens array induced light absorption enhancement in polymer solar cells. Phys. Chem. Chem. Phys. 2013, 15, 4297–4302. [Google Scholar] [CrossRef] [PubMed]
- Nalwa, K.S.; Park, J.M.; Ho, K.M.; Chaudhary, S. On realizing higher efficiency polymer solar cells using a textured substrate platform. Adv. Mater. 2011, 23, 112–116. [Google Scholar] [CrossRef]
- He, X.; Gao, F.; Tu, G.; Hasko, D.; Hüttner, S.; Steiner, U.; Greenham, N.C.; Friend, R.H.; Huck, W.T.S. Formation of nanopatterned polymer blends in photovoltaic devices. Nano Lett. 2010, 10, 1302–1307. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Miao, J.; Ding, Z.; Kan, B.; Lin, B.; Wan, X.; Ma, W.; Chen, Y.; Long, X.; Dou, C.; et al. Efficient and thermally stable organic solar cells based on small molecule donor and polymer acceptor. Nat. Commun. 2019, 10, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Ding, Z.; Long, X.; Dou, C.; Liu, J.; Wang, L. Organic solar cells based on a polymer acceptor and a small molecule donor with a high open-circuit voltage. J. Mater. Chem. C 2017, 5, 6812–6819. [Google Scholar] [CrossRef]
- Efficiency for Access Coalition(IFC); International Renewable Energy Agency (IRENA). Power for All: Fact Sheet; Power for All: San Francisco, CA, USA, 2020; pp. 32–33. [Google Scholar]
- Hassanien, R.H.E.; Li, M.; Dong Lin, W. Advanced applications of solar energy in agricultural greenhouses. Renew. Sustain. Energy Rev. 2016, 54, 989–1001. [Google Scholar] [CrossRef]
- Sulev, M.; Observatory, T.; Frederic, B. Photosynthetically Active Radiation: Measurement and Modeling. In Encyclopedia of Sustainability Science and Technology; Springer: Berlin, Germany, 2012; pp. 7970–8000. [Google Scholar] [CrossRef]
- Zisis, C.; Pechlivani, E.M.; Tsimikli, S.; Mekeridis, E.; Laskarakis, A.; Logothetidis, S. Organic photovoltaics on greenhouse rooftops: Effects on plant growth. Mater. Today Proc. 2020, 21, 65–72. [Google Scholar] [CrossRef]
- Meitzner, R.; Schubert, U.S.; Hoppe, H. Agrivoltaics—The Perfect Fit for the Future of Organic Photovoltaics. Adv. Energy Mater. 2021, 11, 1–7. [Google Scholar] [CrossRef]
- Jin, Y.; Fan, X.; Li, X.; Zhang, Z.; Sun, L.; Fu, Z.; Lavoie, M.; Pan, X.; Qian, H. Distinct physiological and molecular responses in Arabidopsis thaliana exposed to aluminum oxide nanoparticles and ionic aluminum. Environ. Pollut. 2017, 228, 517–527. [Google Scholar] [CrossRef]
- Mittal, D.; Kaur, G.; Singh, P.; Yadav, K.; Ali, S.A. Nanoparticle-Based Sustainable Agriculture and Food Science: Recent Advances and Future Outlook. Front. Nanotechnol. 2020, 2. [Google Scholar] [CrossRef]
- Nuruzzaman, M.; Rahman, M.M.; Liu, Y.; Naidu, R. Nanoencapsulation, Nano-guard for Pesticides: A New Window for Safe Application. J. Agric. Food Chem. 2016, 64, 1447–1483. [Google Scholar] [CrossRef] [PubMed]
Type of Material | λmax (nm) | Eg (eV) | HOMO (eV) | LUMO (eV) | Jsc (mA/cm2) | VOC (V) | FF | PCE (%) |
---|---|---|---|---|---|---|---|---|
IT-2Cl | 720 | 1.69 | –5.68 | –3.99 | 22.03 | 0.842 | 0.764 | 14.18 |
IT-4Cl | 746 | 1.66 | –5.75 | –4.09 | 22.67 | 0.790 | 0.752 | 13.45 |
BTP-4F | 732 | 1.41 | −5.60 | −3.55 | 24.9 | 0.834 | 0.753 | 15.3 |
BTP-4Cl | 746 | 1.40 | −5.65 | −3.63 | 25.4 | 0.867 | 0.750 | 16.5 |
D18 | 625 | 1.98 | −5.51 | −2.77 | 27.70 | 0.859 | 0.766 | 18.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mabindisa, R.; Tambwe, K.; Mciteka, L.; Ross, N. Organic Nanostructured Materials for Sustainable Application in Next Generation Solar Cells. Appl. Sci. 2021, 11, 11324. https://doi.org/10.3390/app112311324
Mabindisa R, Tambwe K, Mciteka L, Ross N. Organic Nanostructured Materials for Sustainable Application in Next Generation Solar Cells. Applied Sciences. 2021; 11(23):11324. https://doi.org/10.3390/app112311324
Chicago/Turabian StyleMabindisa, Rorisang, Kevin Tambwe, Lulama Mciteka, and Natasha Ross. 2021. "Organic Nanostructured Materials for Sustainable Application in Next Generation Solar Cells" Applied Sciences 11, no. 23: 11324. https://doi.org/10.3390/app112311324
APA StyleMabindisa, R., Tambwe, K., Mciteka, L., & Ross, N. (2021). Organic Nanostructured Materials for Sustainable Application in Next Generation Solar Cells. Applied Sciences, 11(23), 11324. https://doi.org/10.3390/app112311324