Rheological Approaches of Wheat Flour Dough Enriched with Germinated Soybean and Lentil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Dough Rheological Properties
2.2.1. Empirical Dough Rheological Properties during Mixing and Extension
2.2.2. Empirical Dough Rheological Properties during Fermentation and Falling Number
2.2.3. Dynamic Dough Rheological Properties
2.3. Dough Microstructure
2.4. Statistical Analysis
3. Results
3.1. Flour Characteristics
3.2. Effects of SGF and LGF Levels on Falling Number and Dough Rheology
3.3. Optimization of LGF and SGF Addition Levels
3.3.1. Diagnostic Checking of the Models
3.3.2. Effects of SGF and LGF on Falling Number and Dough Rheological Properties during Mixing and Extension
3.3.3. Effects of SGF and LGF on Dough Fermentation and Dynamic Rheological Properties
3.3.4. Optimal and Control Samples Properties
3.4. Optimal and Control Dough Microstructure
4. Discussion
4.1. Effects of SGF and LGF on Falling Number and Dough Rheology
4.2. Optimal Addition Levels of SGF and LGF
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bojňanská, T.; Musilová, J.; Vollmannová, A. Effects of adding legume flours on the rheological and breadmaking properties of dough. Foods 2021, 10, 1087. [Google Scholar] [CrossRef] [PubMed]
- Ciudad-Mulero, M.; Barros, L.; Fernandes, Â.; Ferreira, I.C.F.R.; Callejo, M.J.; Matallana-González, M.C.; Fernández-Ruiz, V.; Morales, P.; Carrillo, J.M. Potential health claims of durum and bread wheat flours as functional ingredients. Nutrients 2020, 12, 504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mironeasa, S. Mironeasa Costel Dough bread from refined wheat flour partially replaced by grape peels: Optimizing the rheological properties. J. Food Process Eng. 2019, 42, e13207. [Google Scholar] [CrossRef]
- Yu, L.; Nanguet, A.L.; Beta, T. Comparison of antioxidant properties of refined and whole wheat flour and bread. Antioxidants 2013, 2, 370–383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brennstuhl, M.J.; Martignon, S.; Tarquinio, C. Diet and mental health: Food as a path to happiness? Nutr. Clin. Metab. 2021, 35, 168–183. [Google Scholar] [CrossRef]
- Bresciani, A.; Marti, A. Using Pulses in Baked Products: Lights, Shadows, and Potential Solutions. Foods 2019, 8, 451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belc, N.; Duta, D.E.; Culetu, A.; Stamatie, G.D. Type and amount of legume protein concentrate influencing the technological, nutritional, and sensorial properties of wheat bread. Appl. Sci. 2021, 11, 436. [Google Scholar] [CrossRef]
- Atudorei, D.; Codina, G.G. Perspectives on the use of germinated legumes in the bread making process, a review. Appl. Sci. 2020, 10, 6244. [Google Scholar] [CrossRef]
- Erbersdobler, H.; Barth, C.; Jahreis, G. Grain Legumes in the Human Nutrition Nutrient Content and Protein Quality of Pulses. Ernährungs-Umsch. Forsch. Prax. 2017, 64, 550–554. [Google Scholar] [CrossRef]
- Ma, Z.; Boye, J.I.; Hu, X. Nutritional quality and techno-functional changes in raw, germinated and fermented yellow field pea (Pisum sativum L.) upon pasteurization. LWT Food Sci. Technol. 2018, 92, 147–154. [Google Scholar] [CrossRef]
- Ohanenye, I.C.; Tsopmo, A.; Ejike, C.E.C.C.; Udenigwe, C.C. Germination as a bioprocess for enhancing the quality and nutritional prospects of legume proteins. Trends Food Sci. Technol. 2020, 101, 213–222. [Google Scholar] [CrossRef]
- Atudorei, D.; Stroe, S.G.; Codină, G.G. Impact of germination on the microstructural and physicochemical properties of different legume types. Plants 2021, 10, 592. [Google Scholar] [CrossRef] [PubMed]
- Kaczmarska, K.T.; Chandra-Hioe, M.V.; Frank, D.; Arcot, J. Enhancing wheat muffin aroma through addition of germinated and fermented Australian sweet lupin (Lupinus angustifolius L.) and soybean (Glycine max L.) flour. LWT 2018, 96, 205–214. [Google Scholar] [CrossRef]
- Atudorei, D.; Atudorei, O.; Codină, G.G. Dough Rheological Properties, Microstructure and Bread Quality of Wheat-Germinated Bean Composite Flour. Foods 2021, 10, 1542. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Hatcher, D.W.; Toews, R.; Gawalko, E.J. Influence of cooking and dehulling on nutritional composition of several varieties of lentils (Lens culinaris). LWT Food Sci. Technol. 2009, 42, 842–848. [Google Scholar] [CrossRef]
- Monnet, A.F.; Laleg, K.; Michon, C.; Micard, V. Legume enriched cereal products: A generic approach derived from material science to predict their structuring by the process and their final properties. Trends Food Sci. Technol. 2019, 86, 131–143. [Google Scholar] [CrossRef]
- Romano, A.; Gallo, V.; Ferranti, P.; Masi, P. Lentil flour: Nutritional and technological properties, in vitro digestibility and perspectives for use in the food industry. Curr. Opin. Food Sci. 2021, 40, 157–167. [Google Scholar] [CrossRef]
- Asif, M.; Rooney, L.W.; Ali, R.; Riaz, M.N. Application and Opportunities of Pulses in Food System: A Review. Crit. Rev. Food Sci. Nutr. 2013, 53, 1168–1179. [Google Scholar] [CrossRef]
- García-Alonso, A.; Goñi, I.; Saura-Calixto, F. Resistant starch and potential glycaemic index of raw and cooked legumes (lentils, chickpeas and beans). Eur. Food Res. Technol. 1998, 206, 284–287. [Google Scholar] [CrossRef]
- Perri, G.; Coda, R.; Rizzello, C.G.; Celano, G.; Ampollini, M.; Gobbetti, M.; De Angelis, M.; Calasso, M. Sourdough fermentation of whole and sprouted lentil flours: In situ formation of dextran and effects on the nutritional, texture and sensory characteristics of white bread. Food Chem. 2021, 355, 129638. [Google Scholar] [CrossRef]
- Dhingra, S.; Jood, S. Organoleptic and nutritional evaluation of wheat breads supplemented with soybean and barley flour. Food Chem. 2002, 77, 479–488. [Google Scholar] [CrossRef]
- Osundahunsi, O.F.; Amosu, D.; Ifesan, B.O.T. Quality evaluation and acceptability of soy-yoghurt with different colours and fruit flavours. Am. J. Food Technol. 2007, 2, 273–280. [Google Scholar] [CrossRef] [Green Version]
- Bolarinwa, I.F.; Oyesiji, O.O. Gluten free rice-soy pasta: Proximate composition, textural properties and sensory attributes. Heliyon 2021, 7, e06052. [Google Scholar] [CrossRef]
- Hammond, E.G.; Murphy, P.A.; Johnson, L.A. SOY (SOYA) BEANS | Properties and Analysis. Encycl. Food Sci. Nutr. 2003, 5389–5392. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, R.; Tilley, M.; Siliveru, K.; Li, Y. Effect of pulse type and substitution level on dough rheology and bread quality of whole wheat–based composite flours. Processes 2021, 9, 1687. [Google Scholar] [CrossRef]
- Marchini, M.; Carini, E.; Cataldi, N.; Boukid, F.; Blandino, M.; Ganino, T.; Vittadini, E.; Pellegrini, N. The use of red lentil flour in bakery products: How do particle size and substitution level affect rheological properties of wheat bread dough? LWT 2021, 136, 110299. [Google Scholar] [CrossRef]
- Mashayekh, M.; Mahmoodi, M.R.; Entezari, M.H. Effect of fortification of defatted soy flour on sensory and rheological properties of wheat bread. Int. J. Food Sci. Technol. 2008, 43, 1693–1698. [Google Scholar] [CrossRef]
- Rosales-Juárez, M.; González-Mendoza, B.; López-Guel, E.C.; Lozano-Bautista, F.; Chanona-Pérez, J.; Gutiérrez-López, G.; Farrera-Rebollo, R.; Calderón-Domínguez, G. Changes on dough rheological characteristics and bread quality as a result of the addition of germinatedand non-germinated soybean flour. Food Bioprocess Technol. 2008, 1, 152–160. [Google Scholar] [CrossRef]
- López-Guel, E.C.; Lozano-Bautista, F.; Mora-Escobedo, R.; Farrera-Rebollo, R.R.; Chanona-Pérez, J.; Gutiérrez-López, G.F.; Calderón-Domínguez, G. Effect of Soybean 7S Protein Fractions, Obtained from Germinated and Nongerminated Seeds, on Dough Rheological Properties and Bread Quality. Food Bioprocess Technol. 2012, 5, 226–234. [Google Scholar] [CrossRef]
- ICC. Standard Methods of the International Association for Cereal Chemistry. Methods 104/1, 110/1, 136, 105/2, 171, 121, 107/1; International Association for Cereal Chemistry: Vienna, Austria, 2010. [Google Scholar]
- SR ISO 7954:2001. Microbiology—General Guidance for Enumeration of Yeasts and Moulds—Colony Count Technique at 25 Degrees C; ANSI: New York, NY, USA, 2001. [Google Scholar]
- SR EN ISO 7932:2005. Microbiology of Food and Feed. Horizontal Method for Counting Presumptive Bacillus Cereus. Colony Counting Technique at 30 Degrees C; National Standards Authority of Ireland: Dublin, Ireland, 2005. [Google Scholar]
- SR 90:2007. Wheat Flour. Analysis Method; Romanian Standards Association: Bucharest, Romania, 2007. [Google Scholar]
- AACC. Approved Methods of Analysis, 11th Edition—AACC Method 89-01.01. Cereals & Grains Association. Yeast Activity, Gas Production; Cereals & Grains Association: St. Paul, MN, USA, 2000. [Google Scholar]
- Codină, G.G.; Zaharia, D.; Stroe, S. Influence of calcium ions addition from gluconate and lactate salts on refined wheat flour dough rheological properties. CyTA J. Food 2018, 16, 884–891. [Google Scholar] [CrossRef]
- Iuga, M.; Mironeasa, S. Grape seeds effect on refined wheat flour dough rheology: Optimal amount and particle size. Ukr. Food J. 2019, 8, 799–814. [Google Scholar] [CrossRef]
- Mironeasa, S.; Codină, G.G. Dough Rheological Behavior and Microstructure Characterization of Composite Dough with Wheat and Tomato Seed Flours. Foods 2019, 8, 626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mironeasa, S.; Codină, G. Influence of Mixing Speed on Dough Microstructure and Rheology. Food Technol. Biotechnol. 2013, 51, 509–519. [Google Scholar]
- Codină, G.G.; Dabija, A.; Oroian, M. Prediction of pasting properties of dough from mixolab measurements using artificial neuronal networks. Foods 2019, 8, 447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Comission Recommendation (EC) 2006/576. Off. J. Eur. Union 2006, L285, 30–50.
- European Comission Regulation (EC) No. 1881/2006. Off. J. Eur. Union 2006, 364, 5.
- Pereira, P.M.; Oliveira, J.C. Measurement of glass transition in native wheat flour by dynamic mechanical thermal analysis (DMTA). Int. J. Food Sci. Technol. 2000, 35, 183–192. [Google Scholar] [CrossRef]
- Mudawi, H.A.; Mohamed, S.; Abdelrahim, K.; Musa, R.; Elawad, O.; Yang, T.A.; Halim, A.; Ahmed, R.; Elnur, K.; Ishag, A. Chemical composition and functional properties of wheat bread containing wheat and legumes bran. Int. J. Food Sci. Nutr. 2016, 1, 2455–4898. [Google Scholar]
- Chinachoti, P.; Vodovotz, Y. Bread Staling; CRC Press: Boca Raton, FL, USA, 2018; ISBN 1351078798. [Google Scholar]
- Mironeasa, S.; Codină, G.G.; Mironeasa, C. The effects of wheat flour substitution with grape seed flour on the rheological parameters of the dough assessed by mixolab. J. Texture Stud. 2012, 43, 40–48. [Google Scholar] [CrossRef]
- Hejri-Zarifi, S.; Ahmadian-Kouchaksaraei, Z.; Pourfarzad, A.; Khodaparast, M.H.H. Dough performance, quality and shelf life of flat bread supplemented with fractions of germinated date seed. J. Food Sci. Technol. 2014, 51, 3776–3784. [Google Scholar] [CrossRef] [Green Version]
- Marti, A.; Cardone, G.; Pagani, M.A.; Casiraghi, M.C. Flour from sprouted wheat as a new ingredient in bread-making. LWT Food Sci. Technol. 2018, 89, 237–243. [Google Scholar] [CrossRef] [Green Version]
- Dapcevic, T.; Pojic, M.; Hadnaev, M.; Torbic, A. The Role of Empirical Rheology in Flour Quality Control. Wide Spectra Qual. Control 2011, 335–360. [Google Scholar] [CrossRef] [Green Version]
- Eissa, H.; Hussein, A.; Mostafa, B. Rheological Properties and Quality Evaluation of Egyptian Balady Bread and Biscuits Supplemented With Flours of Ungerminated and Germinated Legume Seeds or Mushroom. Pol. J. Food Nutr. Sci. 2007, 57, 487–496. [Google Scholar]
- Sadowska, J.; Błaszczak, W.; Fornal, J.; Vidai-Valverde, C.; Frias, J. Changes of wheat dough and bread quality and structure as a result of germinated pea flour addition. Eur. Food Res. Technol. 2003, 216, 46–50. [Google Scholar] [CrossRef]
- Kohajdová, Z.; Karovičová, J.; Magala, M. Effect of lentil and bean flours on rheological and baking properties of wheat dough. Chem. Pap. 2013, 67, 398–407. [Google Scholar] [CrossRef]
- Mohammed, I.; Ahmed, A.R.; Senge, B. Effects of chickpea flour on wheat pasting properties and bread making quality. J. Food Sci. Technol. 2014, 51, 1902–1910. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, I.; Ahmed, A.R.; Senge, B. Dough rheology and bread quality of wheat-chickpea flour blends. Ind. Crops Prod. 2012, 36, 196–202. [Google Scholar] [CrossRef]
- Guardianelli, L.; Puppo, M.C.; Salinas, M.V. Influence of pistachio by-product from edible oil industry on rheological, hydration, and thermal properties of wheat dough. LWT 2021, 150, 111917. [Google Scholar] [CrossRef]
- Ouazib, M.; Garzon, R.; Zaidi, F.; Rosell, C.M. Germinated, toasted and cooked chickpea as ingredients for breadmaking. J. Food Sci. Technol. 2016, 53, 2664–2672. [Google Scholar] [CrossRef] [Green Version]
- Bau, H.M.; Villaume, C.; Nicolas, J.P.; Méjean, L. Effect of germination on chemical composition, biochemical constituents and antinutritional factors of soya bean (Glycine max) seeds. J. Sci. Food Agric. 1997, 73, 1–9. [Google Scholar] [CrossRef]
- Hernandez-Aguilar, C.; Dominguez-Pacheco, A.; Palma Tenango, M.; Valderrama-Bravo, C.; Soto Hernández, M.; Cruz-Orea, A.; Ordonez-Miranda, J. Lentil sprouts: A nutraceutical alternative for the elaboration of bread. J. Food Sci. Technol. 2020, 57, 1817–1829. [Google Scholar] [CrossRef] [PubMed]
- Ficco, D.B.M.; Muccilli, S.; Padalino, L.; Giannone, V.; Lecce, L.; Giovanniello, V.; Del Nobile, M.A.; De Vita, P.; Spina, A. Durum wheat breads ‘high in fibre’ and with reduced in vitro glycaemic response obtained by partial semolina replacement with minor cereals and pulses. J. Food Sci. Technol. 2018, 55, 4458–4467. [Google Scholar] [CrossRef]
- Kumar, D.; Mu, T.; Ma, M. Effects of potato flour on dough properties and quality of potato-wheat-yogurt pie bread. Nutr. Food Sci. 2020, 50, 885–901. [Google Scholar] [CrossRef]
- Sanz Penella, J.M.; Collar, C.; Haros, M. Effect of wheat bran and enzyme addition on dough functional performance and phytic acid levels in bread. J. Cereal Sci. 2008, 48, 715–721. [Google Scholar] [CrossRef]
- Suárez-Estrella, D.; Cardone, G.; Buratti, S.; Pagani, M.A.; Marti, A. Sprouting as a pre-processing for producing quinoa-enriched bread. J. Cereal Sci. 2020, 96, 103111. [Google Scholar] [CrossRef]
- Singh, H.; Singh, N.; Kaur, L.; Saxena, S.K. Effect of sprouting conditions on functional and dynamic rheological properties of wheat. J. Food Eng. 2001, 47, 23–29. [Google Scholar] [CrossRef]
- Patrascu, L.; Vasilean, I.; Turtoi, M.; Garnai, M.; Aprodu, I. Pulse germination as tool for modulating their functionality in wheat flour sourdoughs. Qual. Assur. Saf. Crop. Foods 2019, 11, 269–282. [Google Scholar] [CrossRef]
- Kun, G.; Yanxiang, L.; Bin, T.; Xiaohong, T.; Duqin, Z.; Liping, W. An insight into the rheology and texture assessment: The influence of sprouting treatment on the whole wheat flour. Food Hydrocoll. 2021, 107248. [Google Scholar] [CrossRef]
- Iuga, M.; Boestean, O.; Ghendov-Mosanu, A.; Mironeasa, S. Impact of Dairy Ingredients on Wheat Flour Dough Rheology and Bread Properties. Foods 2020, 9, 828. [Google Scholar] [CrossRef]
- Weipert, D. 13 Fundamentals of Rheology and Spectrometry. Fundam. Rheol. Spectrom. 1980, 117–146. Available online: https://www.scribd.com/document/312893026/Bra%C5%A1no-Rheology (accessed on 29 November 2021).
- He, H.; Hoseney, R.C. Differences in gas retention, protein solubility, and rheological properties between flours of different baking quality. Cereal Chem. 1991, 68, 526–530. [Google Scholar]
- Jan, R.; Saxena, D.C.; Singh, S. Comparative study of raw and germinated Chenopodium (Chenopodium album) flour on the basis of thermal, rheological, minerals, fatty acid profile and phytocomponents. Food Chem. 2018, 269, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Frias, J.; Fornal, J.; Ring, S.G.; Vidal-Valverde, C. Effect of germination on physico-chemical properties of lentil starch and its components. LWT Food Sci. Technol. 1998, 31, 228–236. [Google Scholar] [CrossRef]
Run | Coded Values | Real Values | ||
---|---|---|---|---|
A | B | SGF (%) | LGF (%) | |
1 | −1.00 | −1.00 | 0.00 | 0.00 |
2 | −1.00 | −0.50 | 0.00 | 2.50 |
3 | −1.00 | 0.00 | 0.00 | 5.00 |
4 | −1.00 | 0.50 | 0.00 | 7.50 |
5 | −1.00 | 1.00 | 0.00 | 10.00 |
6 | −0.50 | −1.00 | 5.00 | 0.00 |
7 | −0.50 | −0.50 | 5.00 | 2.50 |
8 | −0.50 | 0.00 | 5.00 | 5.00 |
9 | −0.50 | 0.50 | 5.00 | 7.50 |
10 | −0.50 | 1.00 | 5.00 | 10.00 |
11 | 0.00 | −1.00 | 10.00 | 0.00 |
12 | 0.00 | −0.50 | 10.00 | 2.50 |
13 | 0.00 | 0.00 | 10.00 | 5.00 |
14 | 0.00 | 0.50 | 10.00 | 7.50 |
15 | 0.00 | 1.00 | 10.00 | 10.00 |
16 | 0.50 | −1.00 | 15.00 | 0.00 |
17 | 0.50 | −0.50 | 15.00 | 2.50 |
18 | 0.50 | 0.00 | 15.00 | 5.00 |
19 | 0.50 | 0.50 | 15.00 | 7.50 |
20 | 0.50 | 1.00 | 15.00 | 10.00 |
21 | 1.00 | −1.00 | 20.00 | 0.00 |
22 | 1.00 | −0.50 | 20.00 | 2.50 |
23 | 1.00 | 0.00 | 20.00 | 5.00 |
24 | 1.00 | 0.50 | 20.00 | 7.50 |
25 | 1.00 | 1.00 | 20.00 | 10.00 |
Variable | Goal | Lower Limit | Upper Limit | Importance |
---|---|---|---|---|
A: SGF (%) | is in range | 0.00 | 20.00 | 3 |
B: LGF (%) | is in range | 0.00 | 10.00 | 3 |
WA (%) | is in range | 50.70 | 54.30 | 3 |
Tol (s) | maximize | 128.00 | 232.00 | 3 |
D250 (mb) | minimize | 270.00 | 644.00 | 3 |
D450 (mb) | minimize | 819.00 | 1117.00 | 3 |
P (mm) | is in range | 88.00 | 132.00 | 3 |
L (mm) | is in range | 25.00 | 75.00 | 3 |
W (10−4 J) | is in range | 141.00 | 301.00 | 3 |
P/L (adim.) | is in range | 1.38 | 5.04 | 3 |
G′ (Pa) | is in range | 29,290.00 | 72,310.00 | 3 |
G″ (Pa) | is in range | 10,780.00 | 31,460.00 | 3 |
tan δ (adim.) | minimize | 0.34 | 0.50 | 3 |
Ti (°C) | is in range | 47.60 | 53.50 | 3 |
Tmax (°C) | is in range | 73.40 | 77.40 | 3 |
FN (s) | minimize | 185.00 | 350.00 | 3 |
H’m (mL) | maximize | 62.60 | 77.00 | 3 |
VT (mL) | maximize | 1268.00 | 1886.00 | 3 |
VR (mL) | maximize | 1070.00 | 1369.00 | 3 |
CR (%) | maximize | 64.30 | 86.90 | 3 |
Sample | FN (s) | WA (%) | Tol (s) | D250 (mb) | D450 (mb) | P (mm) | L (mm) | W (10−4 J) | P/L (adim.) |
---|---|---|---|---|---|---|---|---|---|
C | 350 ± 2.83 aA | 54.3 ± 0.14 aA | 214 ± 2.83 bA | 394 ± 1.41 aD | 943 ± 4.24 aC | 104 ± 1.41 dB | 72 ± 2.83 aA | 301 ± 4.24 aA | 1.44 ± 0.04 dB |
SGF 5 | 323 ± 2.83 b | 54.0 ± 0.14 ab | 223 ± 5.66 ab | 293 ± 2.83 c | 881 ± 1.41 b | 115 ± 1.41 c | 53 ± 2.83 b | 241 ± 4.24 b | 2.17 ± 0.08 c |
SGF 10 | 305 ± 2.83 c | 53.7 ± 0.14 ab | 232 ± 2.83 a | 270 ± 5.66 d | 819 ± 4.24 d | 119.5 ± 0.71 bc | 46 ± 1.41 b | 219 ± 4.24 c | 2.59 ± 0.09 c |
SGF 15 | 275 ± 4.24 c | 53.4 ± 0.28 bc | 217 ± 4.24 ab | 272 ± 2.83 d | 858 ± 4.24 c | 124 ± 2.83 ab | 35 ± 2.83 c | 186 ± 2.83 d | 3.54 ± 0.21 b |
SGF 20 | 243 ± 1.41 e | 52.8 ± 0.14 c | 191 ± 5.66 c | 319 ± 2.83 b | 878 ± 1.41 b | 128 ± 2.83 a | 31 ± 1.41 c | 170 ± 4.24 d | 4.15 ± 0.07 a |
One-way ANOVA p values | |||||||||
p < 0.0001 | p < 0.003 | p < 0.002 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 | |
LGF 2.5 | 295 ± 4.24 B | 53.7 ± 0.14 B | 191 ± 5.66 B | 406 ± 7.07 CD | 1000 ± 7.07 B | 109 ± 0.00 B | 75 ± 1.41 A | 285 ± 2.83 B | 1.45 ± 0.03 B |
LGF 5 | 274 ± 4.24 C | 53.1 ± 0.14 C | 177 ± 4.24 BC | 418 ± 5.66 BC | 1015 ± 7.07 AB | 115 ± 1.41 A | 68 ± 1.41 AB | 269 ± 4.24 C | 1.69 ± 0.01 A |
LGF 7.5 | 252 ± 2.83 D | 52.6 ± 0.14 CD | 166 ± 5.66 C | 435 ± 4.24 B | 1020 ± 4.24 AB | 91 ± 1.41 C | 63 ± 1.41 B | 183 ± 2.83 D | 1.44 ± 0.06 B |
LGF 10 | 229 ± 4.24 E | 52.2 ± 0.00 D | 161 ± 2.83 C | 571 ± 4.24 A | 1029 ± 5.66 A | 88 ± 1.41 C | 50 ± 1.41 C | 173 ± 2.83 D | 1.76 ± 0.08 A |
One-way ANOVA p values | |||||||||
p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.002 |
Sample | H’m (mL) | VT (mL) | VR (mL) | CR (%) | G′ (Pa) | G″ (Pa) | tan δ (adim.) | Ti (°C) | Tmax (°C) |
---|---|---|---|---|---|---|---|---|---|
C | 65.9 ± 0.14 cE | 1532 ± 4.24 cE | 1228 ± 2.83 bC | 80.15 ± 0.07 bA | 29,290 ± 5.66 eE | 10,780 ± 4.24 eE | 0.368 ± 0.00 bD | 51.9 ± 0.14 aB | 73.4 ±0.28 dD |
SGF 5 | 68.7 ± 0.14 a | 1665 ± 5.66 a | 1335 ± 1.41 a | 80.15 ± 0.21 b | 39,190 ± 4.24 d | 13,440 ± 2.83 d | 0.343 ± 0.00 e | 51.4 ± 0.14 a | 74.1 ± 0.28 cd |
SGF 10 | 67.3 ± 0.14 b | 1567 ± 2.83 b | 1200 ± 2.83 c | 76.55 ± 0.07 c | 44,120 ± 5.66 c | 16,670 ± 2.83 c | 0.378 ± 0.00 a | 49.7 ± 0.14 b | 74.8 ± 0.14 bc |
SGF 15 | 65.9 ± 0.14 c | 1534 ± 4.24 c | 1235 ± 2.83 b | 80.45 ± 0.07 b | 55,060 ± 2.83 b | 19,750 ± 2.83 b | 0.359 ± 0.00 c | 48.9 ± 0.28 c | 75.5 ± 0.14 ab |
SGF 20 | 62.6 ± 0.14 d | 1360 ± 7.07 d | 1176 ± 2.83 d | 86.45 ± 0.21 a | 64,920 ± 2.83 a | 23,050 ± 4.24 a | 0.355 ± 0.00 d | 47.6 ± 0.14 d | 76.3 ± 0.14 a |
One-way ANOVA p values | |||||||||
p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 | |
LGF 2.5 | 69.1 ± 0.14 D | 1631 ± 2.83 D | 1281 ± 4.24 B | 78.55 ± 0.35 B | 31,480 ± 2.83 D | 11,810 ± 4.24 D | 0.375 ± 0.00 B | 50.3 ± 0.00 C | 74.6 ± 0.14 C |
LGF 5 | 73.3 ± 0.14 B | 1836 ± 5.66 B | 1369 ± 5.66 A | 74.50 ± 0.57 C | 32,160 ± 5.66 C | 12,500 ± 2.83 C | 0.389 ± 0.00 A | 52.3 ± 0.14 B | 75.3 ± 0.14 B |
LGF 7.5 | 77.0 ± 0.28 A | 1886 ± 4.24 A | 1282 ± 4.24 B | 67.95 ± 0.35 D | 40,600 ± 2.83 A | 14,700 ± 5.66 A | 0.362 ± 0.00 E | 52.7 ±0.28 AB | 75.8 ± 0.00 B |
LGF 10 | 70.7 ± 0.14 C | 1799 ± 4.24 C | 1172 ± 5.66 D | 65.10 ± 0.14 E | 38,100 ± 2.83 B | 14,130 ± 4.24 B | 0.371 ± 0.00 C | 53.5 ± 0.28 A | 76.9 ± 0.00 A |
One-way ANOVA p values | |||||||||
p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 | p < 0.0001 |
Factors | Parameters | ||||||||
---|---|---|---|---|---|---|---|---|---|
FN (s) | WA (%) | Tol (s) | D250 (mb) | D450 (mb) | P (mm) | L (mm) | W (10−4 J) | P/L (adim.) | |
Constant | 254.50 | 52.72 | 191.11 | 372.23 | 933.41 | 114.85 | 46.72 | 196.66 | 2.49 |
A | −27.20 *** | −0.64 *** | −7.48 | −18.12 | −19.36 | −10.66 | −17.84 *** | −46.28 *** | 1.09 *** |
B | −47.40 *** | −0.92 *** | −34.60 *** | 116.88 *** | 77.04 *** | −7.93 | −4.96 ** | −30.56 *** | 0.48 * |
A × B | 11.48 ** | −0.12 | −6.44 | 42.60 | 37.64 * | 3.00 | 2.56 | 26.08 ** | 0.65 * |
A2 | −0.6857 | −13.31 | 4.97 | 37.03 | −3.37 | 1.20 | 0.08 | ||
B2 | −2.80 | −5.31 | 75.77 * | 13.60 | 2.23 | −0.9143 | 0.19 | ||
A2B | −5.54 | ||||||||
AB2 | 12.06 * | ||||||||
A3 | 114.85 * | ||||||||
B3 | −10.66 | ||||||||
Model evaluation | |||||||||
R2 | 0.96 | 0.74 | 0.74 | 0.66 | 0.75 | 0.77 | 0.87 | 0.86 | 0.74 |
Adj.-R2 | 0.95 | 0.70 | 0.67 | 0.57 | 0.69 | 0.64 | 0.85 | 0.82 | 0.68 |
p-value | 0.0001 | 0.0001 | 0. 0001 | 0.0005 | 0.0001 | 0.0017 | 0.0001 | 0.0001 | 0.0001 |
Factors | Parameters | ||||||||
---|---|---|---|---|---|---|---|---|---|
H’m (mL) | VT (mL) | VR (mL) | CR (%) | G′ (Pa) | G″ (Pa) | tan δ (adim.) | Ti (°C) | Tmax (°C) | |
Constant | 69.57 | 1609.22 | 1283.41 | 79.77 | 49460.86 | 20268.40 | 0.4143 | 50.77 | 75.57 |
A | −3.22 *** | −151.59 | −68.28 *** | −0.3634 | 16590.80 *** | 7117.60 *** | 0.0104 | −1.65 *** | 1.94 *** |
B | 0.50 | −104.84 | −19.32 | 3.84 | 4064.80 *** | 3569.60 *** | 0.0391 *** | 0.92 *** | 0.51 * |
A × B | −1.06 | −66.40 | −3.52 | 2.55 | −688.80 | 1040.00 ** | 0.0115 | 0.15 | −0.44 *** |
A2 | 0.21 | 41.77 | −50.57 * | 79.77 * | 1932.00 * | −0.0288 * | −0.33 | 0.45 ** | |
B2 | −3.29 * | −101.66 * | −43.60 | −0.3634 | 194.29 | −0.0008 | 0.12 | −0.09 | |
A2B | 185.14 ** | 3.84 *** | 0.39 * | ||||||
AB2 | −39.43 | 2.55 | 75.57 | ||||||
A3 | 36.40 | 1.94 *** | |||||||
B3 | 11.47 | 0.51 | |||||||
Model evaluation | |||||||||
R2 | 0.62 | 0.78 | 0.62 | 0.61 | 0.98 | 0.98 | 0.71 | 0.83 | 0.96 |
Adj.-R2 | 0.53 | 0.66 | 0.53 | 0.45 | 0.98 | 0.98 | 0.64 | 0.79 | 0.93 |
p-value | 0.0013 | 0.0010 | 0.0012 | 0.0113 | <0.0001 | <0.0001 | 0.0001 | <0.0001 | <0.0001 |
Variable | Optimal Sample | Control |
---|---|---|
A: SGF (%) | 5.60 | 0.00 |
B: LGF (%) | 3.62 | 0.00 |
FN (s) | 280.51 b | 350.00 a |
WA (%) | 53.25 b | 54.30 a |
Tol (s) | 200.19 b | 214.00 a |
D250 (mb) | 359.80 b | 394.00 a |
D450 (mb) | 933.32 b | 943.00 a |
P (mm) | 119.95 a | 104.00 b |
L (mm) | 56.20 b | 72.00 a |
W (10−4 J) | 228.64 b | 301.00 a |
P/L (adim.) | 1.99 a | 1.43 b |
H’m (mL) | 70.50 a | 65.90 b |
VT (mL) | 1684.98 a | 1532.00 b |
VR (mL) | 1305.19 a | 1228.00 b |
CR (%) | 78.78 b | 80.10 a |
G′ (Pa) | 41,384.57 a | 29,290.00 b |
G″ (Pa) | 16,296.27 a | 10,780.00 b |
tan δ (adim.) | 0.39 a | 0.37 a |
Ti (°C) | 51.20 b | 51.90 a |
Tmax (°C) | 74.67 a | 73.40 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ungureanu-Iuga, M.; Atudorei, D.; Codină, G.G.; Mironeasa, S. Rheological Approaches of Wheat Flour Dough Enriched with Germinated Soybean and Lentil. Appl. Sci. 2021, 11, 11706. https://doi.org/10.3390/app112411706
Ungureanu-Iuga M, Atudorei D, Codină GG, Mironeasa S. Rheological Approaches of Wheat Flour Dough Enriched with Germinated Soybean and Lentil. Applied Sciences. 2021; 11(24):11706. https://doi.org/10.3390/app112411706
Chicago/Turabian StyleUngureanu-Iuga, Mădălina, Denisa Atudorei, Georgiana Gabriela Codină, and Silvia Mironeasa. 2021. "Rheological Approaches of Wheat Flour Dough Enriched with Germinated Soybean and Lentil" Applied Sciences 11, no. 24: 11706. https://doi.org/10.3390/app112411706
APA StyleUngureanu-Iuga, M., Atudorei, D., Codină, G. G., & Mironeasa, S. (2021). Rheological Approaches of Wheat Flour Dough Enriched with Germinated Soybean and Lentil. Applied Sciences, 11(24), 11706. https://doi.org/10.3390/app112411706