The Influence of the Addition of Rosehip Powder to Wheat Flour on the Dough Farinographic Properties and Bread Physico-Chemical Characteristics
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Proximate Compositions
2.3. Farinographic Measurements
2.4. The Breadmaking Procedure
2.5. Bread Characterization
2.6. Statistical Analysis
3. Results and Discussion
3.1. The Proximate Composition of the Flours
3.2. Dough Farinographic Properties
3.2.1. Water Absorption
3.2.2. Dough Development Time
3.2.3. Dough Stability
3.2.4. Softening Degree
3.2.5. The Farinograph Quality Number
3.3. Bread Characterization
3.3.1. Bread Dimensions
3.3.2. Bread Volume
3.3.3. Bread Moisture and Acidity
3.3.4. Bread Crumb Porosity and Elasticity
4. Conclusions
5. Patents
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cauvain, S.P. The Technology of Breadmaking, 3rd ed.; Springer International Publishing: Cham, Switzerland, 2015; pp. 1–2, 27–29. [Google Scholar]
- Scheuer, P.M.; Francisco, A.; Miranda, M.Z.; Ogilari, P.J.; Torres, G.; Limberger, V.; Montenegro, F.M.; Ruffi, C.R.; Biondi, S. Characterization of Brazilian wheat cultivars for specific technological applications. Food Sci. Technol. Brazil 2011, 31, 816–826. [Google Scholar] [CrossRef] [Green Version]
- Kurek, M.A.; Wyrwisz, J.; Piwińska, M.; Wierzbicka, A. Influence of the wheat flour extraction degree in the quality of bread made with high proportions of β-glucan. Food Sci. Technol. Brazil 2015, 35, 273–278. [Google Scholar] [CrossRef] [Green Version]
- Cauvain, S.P. Improving the texture of bread. In Texture in Food; Kilcast, D., Ed.; CRC Press: Boca Raton, FL, USA, 2004; Volume 2, pp. 432–450. [Google Scholar]
- Bordei, D. Tehnologia Modernă a Panificației (Modern Bakery Technology); AGIR Publishing House: Bucharest, Romania, 2004; pp. 86–87, 383–384, 517–518. [Google Scholar]
- Haghighat-Kharazi, S.; Milani, J.M.; Kasaai, M.R.; Khajeh, K. Use of encapsulated maltogenic amylase in malotodextrins with different formulations in making gluten-free breads. LWT 2019, 110, 182–189. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Z.; Qiao, Y.; Zhang, Y.; Zheng, W.; Zhao, Y.; Huang, Y.; Cui, Z. Improvement of the quality and shelf life of wheat bread by a maltohexaose producing α-amylase. J. Cereal Sci. 2019, 87, 165–171. [Google Scholar] [CrossRef]
- Jones, A.; Lamsa, M.; Frandsen, T.P.; Spendler, T.; Harris, P.; Sloma, A.; Xu, F.; Nielsen, J.B.; Cherry, J.R. Directed evolution of a maltogenic α-amylase from Bacillus sp. TS-25. J. Biotechnol. 2008, 134, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Woo, S.; Shin, Y.; Jeong, H.; Kim, J.; Ko, D.; Hong, J.S.; Choi, H.; Shim, J. Effects of maltogenic amylase from Lactobacillus plantarum on retrogradation of bread. J. Cereal Sci. 2020, 93, 102976. [Google Scholar] [CrossRef]
- Goesaert, H.; Slade, L.; Levine, H. Amylases and bread firming—An integrated view. J. Cereal Sci. 2009, 50, 345–352. [Google Scholar] [CrossRef]
- Rasiah, I.A.; Sutton, K.H.; Low, F.L.; Lin, H.M.; Gerrard, J.A. Crosslinking wheat dough proteins by glucose oxidase and the resulting effects on bread and croissants. Food Chem. 2005, 89, 325–332. [Google Scholar] [CrossRef]
- Bhat, M.K. Cellulases and related enzymes in biotechnology. Biotechnol. Adv. 2000, 18, 355–383. [Google Scholar] [CrossRef]
- Dahiya, S.; Bajaj, B.K.; Kumar, A.; Tiwari, S.K.; Singh, B. A review on biotechnological potential of multifarious enzymes in bread making. Process. Biochem. 2020, 99, 290–306. [Google Scholar] [CrossRef]
- Al-Widyan, O.; Khataibeh, M.H.; Abu-Alruz, K. The use of xylanases from different microbial origin in bread baking and theie effects on bread qualities. J. Appl. Sci. 2008, 8, 672–676. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, Z.; Butt, M.S.; Ahmed, A.; Riaz, M.; Sabir, S.M.; Farooq, U.; Rehman, F.U. Effect of Aspergillus niger xylanase on dough characteristics and bread quality attributes. J. Food Sci. Technol. 2012, 51, 2445–2453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Y.; Gao, Z.; Xu, J.; Chang, S.; Wu, B.; He, B. A family 30 glucurono-xylanase from Bacillus subtilis LC9: Expression, characterization and its application in Chinese bread making. Int. J. Biol. Macromol. 2018, 117, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Melis, S.; Meza Morales, W.R.; Delcour, J.A. Lipases in wheat flour bread making: Importance of an appropriate balance between wheat endogenous lipids and their enzymatically released hydrolysis products. Food Chem. 2019, 298, 125002. [Google Scholar] [CrossRef] [PubMed]
- Boutte, T.; Skogerson, L. Stearoyl-2-lactylates and oleoyl lactylates. In Emulsifiers in Food Technology, 2nd ed.; Norn, V., Ed.; Wiley-Blackwell: Chichester, UK, 2015; pp. 251–270. [Google Scholar]
- Cottrell, T.; van Peij, J. Sorbitan esters and polysorbates. In Emulsifiers in Food Technology, 2nd ed.; Norn, V., Ed.; Wiley-Blackwell: Chichester, UK, 2015; pp. 271–275. [Google Scholar]
- Gaupp, R.; Adams, W. Diacetyl Tartaric Acids of Monoglycerides (DATEM) and associated emulsifiers in bread making. In Emulsifiers in Food Technology, 2nd ed.; Norn, V., Ed.; Wiley-Blackwell: Chichester, UK, 2015; pp. 121–145. [Google Scholar]
- Sahi, S.S. Ascorbic acid and redox agents in bakery systems. In Bakery Products Science and Technology, 2nd ed.; Zhou, W., Ed.; Wiley-Blackwell: Chichester, UK, 2014; pp. 183–197. [Google Scholar]
- IARC Potassium Bromate (Group 2B). In International Agency for Research on Cancer (IARC)—Summaries & Evaluations. 1999, Volume 73, p. 481. Available online: https://inchem.org/documents/iarc/vol73/73-17.html (accessed on 21 November 2020).
- Shanmugavel, V.; Santhi, K.K.; Kurup, A.H.; Kalakandan, S.; Anandharaj, A.; Rawson, A. Potassium bromate: Effects on bread components, health, environment and method of analysis: A review. Food Chem. 2020, 311, 125964. [Google Scholar] [CrossRef] [PubMed]
- Bakerpedia. L-Cysteine. Available online: https://bakerpedia.com/ingredients/l-cysteine/ (accessed on 17 November 2020).
- Stoica, A.; Popescu, C.; Barascu, E.; Iordan, M. L-cysteine influence on the physical properties of bread from high extraction flours with normal gluten. Ann. Food Sci. Technol. 2010, 11, 6–10. [Google Scholar]
- Wieser, H. The use of redox agents in breadmaking. In Breadmaking: Improving Quality, 2nd ed.; Cauvain, S.P., Ed.; Woodhead Publishing: Oxford, UK, 2012; pp. 447–469. [Google Scholar]
- Belitz, H.-D.; Grosch, W.; Schieberle, P. Food Chemistry, 4th ed.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 716–718. [Google Scholar]
- Campbel, G.M.; Martin, P.J. Bread aeration and dough rheology: An introduction. In Breadmaking: Improving Quality, 2nd ed.; Woodhead Publishing: Oxford, UK, 2012; pp. 299–336. [Google Scholar]
- Carr, A.C.; Vissers, M.C.M. Synthetic or food-derived vitamin C—Are they equally bioavailable? Nutrients 2013, 5, 4284–4304. [Google Scholar] [CrossRef] [Green Version]
- Verbruggen, R. Food additives in the European Union. In Food Additives, 2nd ed.; Branen, A.L., Davidson, P.M., Salminen, S., Thorngate, J.H., III, Eds.; Marcel Dekker: New York, NY, USA, 2002; pp. 109–197. [Google Scholar]
- Sahi, S.S. Applications of natural ingredients in baked goods. In Natural Food Additives, Ingredients and Flavourings; Baines, D., Seal, R., Eds.; Woodhead Publishing: Oxford, UK, 2012; pp. 318–332. [Google Scholar]
- Ziegler, S.J.; Meier, B.; Sticher, O. Fast and Selective Assay of l-Ascorbic Acid in Rose Hips by RP-HPLC Coupled with Electrochemical and/or Spectrophotometric Detection. Planta Med. 1986, 52, 383–387. [Google Scholar] [CrossRef] [PubMed]
- Czyzowska, A.; Klewicka, E.; Pogorzelski, E.; Nowak, A. Polyphenols, vitamin C and antioxidant activity in wines from Rosa canina L. and Rosa rugosa Thunb. J. Food Compost. Anal. 2014, 39, 62–68. [Google Scholar] [CrossRef]
- Hua, L. Beauty-Maintaining Bread by Utilizing Roses and Chayote and Preparation Method. Thereof. Patent CN 105341087 A, 24 February 2016. [Google Scholar]
- Kaiyun, L. Eye-Protecting Anti-Radiation Pineapple Bread and Preparation Method. Thereof. Patent CN 105341087 A, 24 February 2016. [Google Scholar]
- Krolevets, A.A. Bread Production Method Comprising Nanostructured Extract of Dry. rosehip. Patent RU 2630250-C1, 6 September 2017. [Google Scholar]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists, 15th ed.; Helrich, K., Ed.; Methods 920.183, 967.21, 983.23; Association of Official Analytical Chemists: Arlington, VA, USA, 1990. [Google Scholar]
- AACC International. Approved Methods of Analysis, 11th ed.; Methods 46-11.02, 54-21; American Association of Cereal Chemists International: St. Paul, MN, USA, 2000. [Google Scholar]
- ASRO. Romanian Standards Catalog for Cereal and Milling Products Analysis; SR 90:2007, SR 91:2007, SR EN ISO 20483:2014, SR EN ISO 21415-1:2007, SR EN ISO 21415-3:2007, SR EN ISO 2171:2010 abd SR EN ISO 5530-1:2015; ASRO: Bucharest, Romania, 2008. [Google Scholar]
- Ercisli, S. Chemical composition of fruits in some rose (Rosa spp.) species. Food Chem. 2007, 104, 1379–1384. [Google Scholar] [CrossRef]
- Nojavan, S.; Khalilian, F.; Kiaie, F.M.; Rahimi, A.; Arabanian, A.; Chalavi, S. Extraction and quantitative determination of ascorbic acid during different maturity stages of Rosa canina L. fruit. J. Food Compost. Anal. 2008, 21, 300–305. [Google Scholar] [CrossRef]
- Roman, I.; Stănilă, A.; Stănilă, S. Bioactive compounds and antioxidant activity of Rosa canina L. biotypes from spontaneous flora of Transylvania. Chem. Cent. J. 2013, 7, 73–82. [Google Scholar] [CrossRef] [Green Version]
- Bhave, A.; Schulzova, V.; Chmelarova, H.; Mrnka, L.; Hajslova, J. Assessment of rosehips based on the content of their biologically active compounds. J. Food Drug Anal. 2017, 25, 681–690. [Google Scholar] [CrossRef] [Green Version]
- Banu, I.; Stoenescu, G.; Ionescu, V.S.; Aprodu, I. Effect of the addition of wheat bran stream on dough rheology and bread quality. Ann. Univ. Dunarea Jos Galati Fascicle VI Food Technol. 2012, 36, 39–52. [Google Scholar]
- Al-Attabi, Z.H.; Merghani, T.M.; Ali, A.; Rahman, M.S. Effect of barley flour addition on the physico-chemical properties of dough and structure of bread. J. Cereal Sci. 2017, 75, 61–68. [Google Scholar] [CrossRef]
- Koletta, P.; Irakli, M.; Papageorgiou, M.; Skendi, A. Physicochemical and technological properties of highly enriched wheat breads with wholegrain non wheat flours. J. Cereal Sci. 2014, 60, 561–568. [Google Scholar] [CrossRef]
- Cvetković, B.R.; Filipčev, B.V.; Bodroža-Solarov, M.I.; Bardić, Ž.M.; Sakač, M.B. Chemical composition of dried fruits as a value added ingredient in bakery product. Food Proc. Qual. Saf. 2009, 36, 15–19. [Google Scholar]
- Van Hung, P.; Maeda, T.; Morita, N. Dough and bread qualities of flours with whole waxy wheat flour substitution. Food Res. Int. 2007, 40, 273–279. [Google Scholar] [CrossRef]
- Dall’Asta, C.; Cirlini, M.; Morini, E.; Rinaldi, M.; Ganino, T.; Chiavaro, E. Effect of chestnut flour supplementation on physico-chemical properties and volatiles in bread making. LWT 2013, 53, 233–239. [Google Scholar] [CrossRef]
- Sun, R.; Zhang, Z.; Hu, X.; Xing, Q.; Zhuo, W. Effect of wheat germ flour addition on wheat flour, dough and Chinese steamed bread properties. J. Cereal Sci. 2015, 64, 153–158. [Google Scholar] [CrossRef]
- Pınarlı, İ.; İbanoğlu, Ș.; Öner, M.D. Effect of storage on the selected properties of macaroni enriched with wheat germ. J. Food Eng. 2004, 64, 249–256. [Google Scholar] [CrossRef]
- Arshad, M.U.; Anjum, F.M.; Zahoor, T. Nutritional assessment of cookies supplemented with defatted wheat germ. Food Chem. 2007, 102, 123–128. [Google Scholar] [CrossRef]
- Mirsaeedghazi, H.; Emam-Djomeh, Z.; Mousavi, S.M.A. Rheometric measurement of dough rheological characteristics and factors affecting it. Int. J. Agric. Biol. 2008, 10, 112–119. [Google Scholar]
- Mohammed, M.I.O.; Mustafa, A.I.; Osman, G.A.M. Evaluation of wheat breads supplements with Teff (Eragrostis tef ZUCC. Trotter) grain flour. Aust. J. Crop. Sci. 2009, 3, 207–212. [Google Scholar]
- Amjid, M.R.; Shehzad, A.; Hussain, S.; Shabbir, M.A.; Khan, M.R.; Shoaib, M. A comprehensive review on wheat flour dough rheology. Pak. J. Food Sci. 2013, 23, 105–123. [Google Scholar]
- Berton, B.; Scher, J.I.; Villieras, F.D.R.; Hardy, J.I. Measurement of hydration capacity of wheat flour: Influence of composition and physical characteristics. Powder Technol. 2002, 128, 326–331. [Google Scholar] [CrossRef]
- Coțovanu, I.; Mironeasa, S. Buckwheat seeds: Impact of milling fractions and addition level on wheat bread dough rheology. Appl. Sci. 2021, 11, 1731. [Google Scholar] [CrossRef]
- Michel, S.; Löschenberger, F.; Ametz, C.; Pachler, B.; Sparry, E.; Bürstmayr, H. Combining grain yield, protein content and protein quality by multi-trait genomic selection in bread wheat. Theor. Appl. Genet. 2019, 132, 2767–2780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paraskevopoulou, A.; Provatidou, E.; Tsotsiou, D.; Kiosseoglou, V. Dough rheology and baking performance of wheat flour-lupin protein isolate blends. Food Res. Int. 2010, 43, 1009–1016. [Google Scholar] [CrossRef]
- Hefnawy, T.M.H.; El-Shourbagy, G.A.; Ramadan, M.F. Impact of adding chickpea (Cicer arietinum L.) flour to wheat flour on the rheological properties of toast bread. Int. Food Res. J. 2012, 19, 521–525. [Google Scholar]
- Mohammed, I.; Ahmeda, A.R.; Senge, B. Dough rheology and bread quality of wheat-chickpea flour blends. Ind. Crops Prod. 2012, 36, 196–202. [Google Scholar] [CrossRef]
- Gómez, M.; Ronda, F.; Blanco, C.; Caballero, P.; Apesteguia, A. Effect of dietary fibre on dough rheology and bread quality. Eur. Food Res. Technol. 2003, 216, 51–56. [Google Scholar] [CrossRef]
- Lauková, M.; Kohajdová, Z.; Karovičová, J. Effect of hydrated apple powder on dough rheology and cookies quality. Potravin. Slovak J. Food Sci. 2016, 10, 506–511. [Google Scholar] [CrossRef] [Green Version]
- Kohajdová, Z.; Karovičová, J.; Jurasová, M. Influence of carrot pomace powder on the rheological characteristics of wheat flour dough and on wheat rolls quality. Acta Sci. Pol. Technol. Aliment. 2012, 11, 381–387. [Google Scholar]
- Ajila, C.M.; Leelavathi, K.U.J.S.; Rao, U.P. Improvement of dietary fiber content and antioxidant properties in soft dough biscuits with the incorporation of mango peel powder. J. Cereal Sci. 2008, 48, 319–326. [Google Scholar] [CrossRef]
- Sudha, M.L.; Baskaran, V.; Leelavathi, K. Apple pomace as a source of dietary fiber and polyphenols and its effect on the rheological characteristics and cake making. Food Chem. 2007, 104, 686–692. [Google Scholar] [CrossRef]
- Kohajdová, Z.; Karovičová, J.; Magala, M.; Kuchtová, V. Effect of apple pomace powder addition on farinographic properties of wheat dough and biscuits quality. Chem. Zvesti 2014, 68, 1059–1065. [Google Scholar] [CrossRef]
- Kučerová, J.; Šottníková, V.; Nemodová, Š. Influence of dietary fibre addition on the rheological and sensory properties of dough and bakery products. Czech. J. Food Sci. 2013, 31, 340–346. [Google Scholar] [CrossRef] [Green Version]
- Nikolić, N.; Saka, M.; Mastilovi, J. Effect of buckwheat flour addition to wheat flour on acylglycerols and fatty acids composition and rheology properties. LWT-Food Sci. Technol. 2011, 44, 650–655. [Google Scholar] [CrossRef]
- Fu, L.; Tian, J.-C.; Sun, C.-L.; Li, C. RVA and farinograph properties study on blends of resistant starch and wheat flour. Agric. Sci. China 2008, 7, 812–822. [Google Scholar] [CrossRef]
- Nassar, A.G.; Abdel-Hamied, A.A.; El-Naggar, E.A. Effect of citrus by-products flour incorporation on chemical, rheological and organoleptic characteristics of biscuits. World J. Agric. Sci. 2008, 4, 612–616. [Google Scholar]
- Kohajdová, Z.; Karovičová, J.; Jurasová, M.; Kukurová, K. Effect of the addition of commercial apple fibre powder on the baking and sensory properties of cookies. Acta Chim. Slov. 2011, 4, 88–97. [Google Scholar]
- Rosell, C.M.; Santos, E.; Penella, J.M.S.; Haros, M. Wholemeal wheat bread: A comparison of different breadmaking processes and fungal phytase addition. J. Cereal Sci. 2009, 50, 272–277. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.-L.; Mu, T.-H.; Sun, H.-N.; Zhang, M.; Chen, J.-W. Influence of potato flour on dough rheological properties and quality of steamed bread. J. Integr. Agric. 2016, 15, 2666–2676. [Google Scholar] [CrossRef] [Green Version]
- Anil, M. Using of hazelnut testa as a source of dietary fiber in breadmaking. J. Food Eng. 2007, 80, 61–67. [Google Scholar] [CrossRef]
- Stojceska, V.; Ainsworth, P. The effect of different enzymes on the quality of high-fibre enriched brewer’s spent grain breads. Food Chem. 2008, 110, 865–872. [Google Scholar] [CrossRef] [PubMed]
- Bchir, B.; Rabetafika, H.N.; Paquot, M.; Blecker, C. Effect of pear, apple and date fibres from cooked fruit by-products on dough performance and bread quality. Food Bioproc. Technol. 2014, 7, 1114–1127. [Google Scholar] [CrossRef]
- Hathorn, C.S.; Biswas, M.A.; Gichuhi, P.N.; Bovell-Benjamin, A.C. Comparison of chemical, physical, micro-structural, and microbial properties of breads supplemented with sweet potato flour and high-gluten dough enhancers. LWT 2008, 41, 803–815. [Google Scholar] [CrossRef]
- Tronsmo, K.M.; Faergestad, E.M.; Schofield, J.D.; Magnus, S. Wheat protein quality in relation to baking performance evaluated by the Chorleywood bread process and a hearth bread baking test. J. Cereal Sci. 2003, 38, 205–215. [Google Scholar] [CrossRef]
- Gallagher, E.; Kunkel, A.; Gormley, T.R.; Arendt, E.K. The effect of dairy and rice powder addition on loaf and crumb characteristics, and on shelf life (intermediate and long-term) of gluten-free breads stored in a modified atmosphere. Eur. Food Res. Technol. 2003, 218, 44–48. [Google Scholar] [CrossRef]
- Osuna, M.B.; Romero, C.A.; Romero, A.M.; Judis, M.A.; Bertola, N.C. Proximal composition, sensorial properties and effect of ascorbic acid and α-tocopherol on oxidative stability of bread made with whole flours and vegetable oils. LWT 2018, 98, 54–61. [Google Scholar] [CrossRef] [Green Version]
- Hallén, E.; İbanoğlu, S.; Ainsworth, P. Effect of fermented/germinated cowpea flour addition on the rheological and baking properties of wheat flour. J. Food Eng. 2004, 63, 177–184. [Google Scholar] [CrossRef]
- McWaters, K.H.; Phillips, R.D.; Walker, S.L.; McCullough, S.E.; Mensa-Wilmot, Y.; Saalia, F.K.; Hung, Y.-C.; Patterson, S.P. Baking performance and consumer acceptability of raw and extruded cowpea flour breads. J. Food Qual. 2004, 27, 337–351. [Google Scholar] [CrossRef]
- Yamsaengsung, R.; Schoenlechner, R.; Berghofer, E. The effects of chickpea on the functional properties of white and whole wheat bread. Int. J. Food Sci. Technol. 2010, 45, 610–620. [Google Scholar] [CrossRef]
- Sheikholeslami, Z.; Karimi, M.; Komeili, H.R.; Mahfouzi, M. A new mixed bread formula with improved physicochemical properties by using hull-less barley flour at the presence of guar gum and ascorbic acid. LWT 2018, 93, 628–633. [Google Scholar] [CrossRef]
- Seguchi, M.; Morimoto, N.; Abe, M.; Yoshino, Y. Effect of Maitake (Grifola frondosa) mushroom powder on bread properties. J. Food Sci. 2001, 66, 261–264. [Google Scholar] [CrossRef]
- Miyazaki, M.; Maeda, T.; Morita, N. Effect of various dextrin substitution for wheat flour on dough properties and bread qualities. J. Food Res. Int. 2004, 37, 59–65. [Google Scholar] [CrossRef]
- Bhise, S.; Kaur, A. Baking quality, sensory properties and shelf life of breads with polyols. J. Food Sci. Technol. 2014, 51, 2054–2061. [Google Scholar] [CrossRef] [Green Version]
- Sidhu, J.S.; Al-Hooti, S.N.; Al-Saqer, J.M. Effect of adding wheat bran and germ fractions on the chemical composition of high-fiber toast bread. Food Chem. 1999, 67, 365–371. [Google Scholar] [CrossRef]
Samples | Moisture, % | Ash, % | Proteins, % | Wet Gluten, % | Carbohydrates, % | Fibres, % | Vitamin C, mg/100 g |
---|---|---|---|---|---|---|---|
Rp | 13.40 ± 0.15 a | 6.50 ± 0.07 b | 4.89 ± 0.11 a | – | 73.66 ± 0.19 b | 8.63 ± 0.12 b | 420 ± 16.09 b |
WF | 14.15 ± 0.06 b | 0.55 ± 0.01 a | 13.45 ± 0.03 b | 34.10 ± 0.07 c | 70.68 ± 0.29 a | 0.10 ± 0.07 a | – |
WF–Rp 0.5% | 14.14 ± 0.01 b | 0.59 ± 0.04 a | 13.42 ± 0.05 b | 33.93 ± 0.16 bc | 70.74 ± 0.51 a | 0.12 ± 0.05 a | 2.0 ± 0.20 a |
WF–Rp 1.0% | 14.14 ± 0.01 b | 0.61 ± 0.04 a | 13.36 ± 0.04 b | 33.76 ± 0.09 abc | 70.83 ± 0.32 a | 0.14 ± 0.11 a | 4.0 ± 0.36 a |
WF–Rp 1.5% | 14.14 ± 0.01 b | 0.64 ± 0.06 a | 13.32 ± 0.07 b | 33.59 ± 0.15 abc | 70.85 ± 0.15 a | 0.16 ± 0.07 a | 6.0 ± 0.30 a |
WF–Rp 2.0% | 14.13 ± 0.02 b | 0.67 ± 0.06 a | 13.27 ± 0.05 b | 33.42 ± 0.19 ab | 71.00 ± 0.17 a | 0.18 ± 0.09 a | 8.0 ± 0.17 a |
WF–Rp 2.5% | 14.13 ± 0.01 b | 0.70 ± 0.07 a | 13.21 ± 0.04 b | 33.25 ± 0.07 a | 71.04 ± 0.23 a | 0.20 ± 0.06 a | 10 ± 0.26 a |
WF–AA | 14.15 ± 0.05 b | 0.55 ± 0.02 a | 13.45 ± 0.04 b | 34.10 ± 0.09 c | 70.68 ± 0.14 a | 0.10 ± 0.06 a | 2.0 ± 0.00 a |
Samples | Water Absorption (500 BU), % | Dough Development Time, min | Stability, min | Softening Degree (12 min after Maximum), BU | Farinograph Quality Number |
---|---|---|---|---|---|
WF | 58.20 ± 0.00 a | 6.70 ± 0.00 a | 11.00 ± 0.00 a | 58.00 ± 0.00 a | 116.00 ± 0.00 a |
WF–Rp 0.5% | 59.70 ± 0.14 b | 6.75 ± 0.49 a | 11.50 ± 0.42 a | 58.50 ± 0.71 a | 125.50 ± 6.36 a |
WF–Rp 1.0% | 60.35 ± 0.07 c | 6.60 ± 0.14 a | 11.30 ± 0.71 a | 65.00 ± 2.83 a | 122.50 ± 0.71 a |
WF–Rp 1.5% | 60.80 ± 0.00 d | 6.70 ± 0.42 a | 11.20 ± 1.13 a | 78.00 ± 1.41 b | 118.00 ± 0.00 a |
WF–Rp 2.0% | 61.25 ± 0.07 e | 7.10 ± 0.14 a | 10.55 ± 0.07 a | 87.00 ± 1.41 c | 116.50 ± 0.71 a |
WF–Rp 2.5% | 61.90 ± 0.00 f | 7.20 ± 0.14 a | 9.70 ± 0.14 a | 91.00 ± 1.41 c | 115.50 ± 4.95 a |
WF–AA | 58.20 ± 0.00 a | 6.60 ± 0.14 a | 11.20 ± 0.00 a | 60.00 ± 1.41 a | 121.00 ± 1.41 a |
Samples | Height, mm | Volume, cm3 | Weight, g | Specific Volume, cm3/100 g |
---|---|---|---|---|
WF | 100.10 ± 0.14 b | 486 ± 4.24 a | 340.30 ± 1.84 ab | 142.82 a |
WF–Rp 0.5% | 98.75 ± 0.49 a | 481 ± 5.66 a | 338.10 ± 1.56 ab | 142.27 a |
WF–Rp 1.0% | 113.05 ± 0.07 e | 588 ± 4.24 bc | 339.00 ± 1.41 ab | 173.45 c |
WF–Rp 1.5% | 115.50 ± 0.14 f | 601 ± 5.66 c | 344.50 ± 2.12 b | 174.46 c |
WF–Rp 2.0% | 111.15 ± 0.21 d | 575 ± 4.95 bc | 333.00 ± 1.41 a | 172.52 c |
WF–Rp 2.5% | 108.25 ± 0.07 c | 564 ± 5.66 b | 337.60 ± 1.56 ab | 167.06 b |
WF–AA | 113.90 ± 0.28 e | 588 ± 4.24 bc | 336.90 ± 0.85 ab | 174.53 c |
Samples | Moisture, % | Acidity, Degree | Porosity, % | Elasticity, % |
---|---|---|---|---|
WF | 41.81 ± 0.40 a | 2.00 ± 0.00 a | 87.75 ± 1.06 a | 93.30 ± 0.58 d |
WF–Rp 0.5% | 42.64 ± 0.33 abc | 2.10 ± 0.00 a | 87.50 ± 0.71 a | 91.70 ± 0.58 bcd |
WF–Rp 1.0% | 42.92 ± 0.22 abc | 2.15 ± 0.07 a | 90.00 ± 0.71 a | 91.50 ± 0.50 bcd |
WF–Rp 1.5% | 43.31 ± 0.10 bc | 2.15 ± 0.07 a | 90.70 ± 0.99 a | 91.00 ± 0.50 bc |
WF–Rp 2.0% | 43.92 ± 0.15 c | 2.20 ± 0.14 a | 89.00 ± 0.71 a | 90.30 ± 0.58 ab |
WF–Rp 2.5% | 42.51 ± 0.34 abc | 2.25 ± 0.07 a | 89.40 ± 0.57 a | 88.50 ± 0.50 a |
WF–AA | 42.06 ± 0.16 ab | 2.15 ± 0.07 a | 88.60 ± 1.56 a | 92.30 ± 0.58 cd |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vartolomei, N.; Turtoi, M. The Influence of the Addition of Rosehip Powder to Wheat Flour on the Dough Farinographic Properties and Bread Physico-Chemical Characteristics. Appl. Sci. 2021, 11, 12035. https://doi.org/10.3390/app112412035
Vartolomei N, Turtoi M. The Influence of the Addition of Rosehip Powder to Wheat Flour on the Dough Farinographic Properties and Bread Physico-Chemical Characteristics. Applied Sciences. 2021; 11(24):12035. https://doi.org/10.3390/app112412035
Chicago/Turabian StyleVartolomei, Nicoleta, and Maria Turtoi. 2021. "The Influence of the Addition of Rosehip Powder to Wheat Flour on the Dough Farinographic Properties and Bread Physico-Chemical Characteristics" Applied Sciences 11, no. 24: 12035. https://doi.org/10.3390/app112412035
APA StyleVartolomei, N., & Turtoi, M. (2021). The Influence of the Addition of Rosehip Powder to Wheat Flour on the Dough Farinographic Properties and Bread Physico-Chemical Characteristics. Applied Sciences, 11(24), 12035. https://doi.org/10.3390/app112412035