Atrazine-Induced Hepato-Renal Toxicity in Adult Male Xenopus laevis Frogs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical and Reagents
2.2. Preparation of Treatment Solutions for Selected Atrazine Concentrations
2.3. Animals and Housing
2.4. Experimental Design and Procedure
2.5. Lipid Peroxidation (LPO) Evaluation
2.6. Measurement of Serum Biochemical Markers
2.7. Samples Preparation for Histological Analysis
2.8. Morphometry
2.9. Immunohistochemical Labelling of Caspase-3
2.10. Statistical Analyses
3. Results
3.1. Serum Levels of Liver, Kidneys Biomarkers and Lipid Peroxidation
3.2. Histopathology
3.2.1. Liver Histopathology
3.2.2. Kidney Histopathology
3.2.3. Liver and Kidney Caspase-3 Immunohistochemistry
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, A.; Kaur, C. Weed control with pre and post emergence herbicides application in spring planted sugarcane. Sugar Tech. 2004, 6, 93–94. [Google Scholar] [CrossRef]
- Singh, A.; Virk, A.S.; Singh, J.; Singh, J. Comparison of pre- and post-emergence application of herbicides for the control of weeds in sugarcane. Sugar Tech. 2001, 3, 109–112. [Google Scholar] [CrossRef]
- Mast, M.A.; Foreman, W.T.; Skaates, S.V. Current-use pesticides and organochlorine compounds in precipitation and lake sediment from two high-elevation national parks in the Western United States. Arch. Environ. Contam. Toxicol. 2007, 52, 294–305. [Google Scholar] [CrossRef] [PubMed]
- Sousa, A.S.; Duaví, W.C.; Cavalcante, R.M.; Milhome, M.A.L.; do Nascimento, R.F. Estimated levels of environmental contamination and health risk assessment for herbicides and insecticides in surface water of Ceará, Brazil. Bull. Environ. Contam. Toxicol. 2016, 96, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Parmar, T.K.; Rawtani, D.; Agrawal, Y.K. Bioindicators: The natural indicator of environmental pollution. Front. Life Sci. 2016, 9, 110–118. [Google Scholar] [CrossRef] [Green Version]
- Zaghloul, A.; Saber, M.; Gadow, S.; Awad, F. Biological indicators for pollution detection in terrestrial and aquatic ecosystems. Bull. Natl. Res. Cent. 2020, 44, 127. [Google Scholar] [CrossRef]
- IUCN SSC Amphibian Specialist Group (IUCN). IUCN Red List of Threatened Species: Xenopus laevis. 2016. Available online: https://www.iucnredlist.org/en (accessed on 22 November 2021).
- African Clawed Frog. AZ Animals. Available online: https://a-z-animals.com/animals/african-clawed-frog/ (accessed on 22 November 2021).
- Garvey, N. Xenopus laevis (African Clawed Frog). Animal Diversity Web. Available online: https://animaldiversity.org/accounts/Xenopus_laevis/ (accessed on 22 November 2021).
- Hayes, T.B.; Khoury, V.; Narayan, A.; Nazir, M.; Park, A.; Brown, T.; Adame, L.; Chan, E.; Buchholz, D.; Stueve, T.; et al. Atrazine induces complete feminization and chemical castration in male African clawed frogs (Xenopus laevis). Proc. Natl. Acad. Sci. USA 2010, 107, 4612–4617. [Google Scholar] [CrossRef] [Green Version]
- Jooste, A.M.; Du Preez, L.H.; Carr, J.A.; Giesy, J.P.; Gross, T.S.; Kendall, R.J.; Smith, E.E.; Van Der Kraak, G.L.; Solomon, K.R. Gonadal development of larval male Xenopus laevis exposed to atrazine in outdoor microcosms. Environ. Sci. Technol. 2005, 39, 5255–5261. [Google Scholar] [CrossRef]
- Coady, K.; Murphy, M.; Villeneuve, D.; Hecker, M.; Jones, P.; Carr, J.; Solomon, K.; Smith, E.; Van Der Kraak, G.; Kendall, R.; et al. Effects of atrazine on metamorphosis, growth, and gonadal development in the green frog (Rana clamitans). J. Toxicol. Environ. Health 2004, 67, 941–957. [Google Scholar] [CrossRef] [Green Version]
- Murphy, M.; Hecker, M.; Coady, K.; Tompsett, A.; Jones, P.; Du Preez, L.; Everson, G.; Solomon, K.R.; Carr, J.; Smith, E.; et al. Atrazine concentrations, gonadal gross morphology and histology in ranid frogs collected in Michigan agricultural areas. Aquat. Toxicol. 2006, 76, 230–245. [Google Scholar] [CrossRef]
- Papoulias, D.M.; Tillitt, D.E.; Talykina, M.G.; Whyte, J.J.; Richter, C.A. Atrazine reduces reproduction in Japanese medaka (Oryzias latipes). Aquat. Toxicol. 2014, 154, 230–239. [Google Scholar] [CrossRef]
- Dornelles, M.F.; Oliveira, G.T. Effect of atrazine, glyphosate and quinclorac on biochemical parameters, lipid peroxidation and survival in bullfrog tadpoles (Lithobates catesbeianus). Arch. Environ. Contam. Toxicol. 2014, 66, 415–429. [Google Scholar] [CrossRef]
- Gao, S.; Wang, Z.; Zhang, C.; Jia, L.; Zhang, Y. Oral Exposure to Atrazine Induces Oxidative Stress and Calcium Homeostasis Disruption in Spleen of Mice. Oxidative Med. Cell. Longev. 2016, 2016, 7978219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Semren, T.Ž.; Žunec, S.; Pizent, A. Oxidative stress in triazine pesticide toxicity: A review of the main biomarker findings. Arch. Ind. Hyg. Toxicol. 2018, 69, 109–125. [Google Scholar] [CrossRef] [Green Version]
- Rohr, J.R. Atrazine and amphibians: Data re-analysis and a summary of the controversy. bioRxiv 2017, 164673. [Google Scholar] [CrossRef] [Green Version]
- Wirbisky, S.E.; Freeman, J.L. Atrazine Exposure and Reproductive Dysfunction through the Hypothalamus-Pituitary-Gonadal (HPG) Axis. Toxics 2015, 3, 414–450. [Google Scholar] [CrossRef] [Green Version]
- Slaninova, A.; Smutna, M.; Modra, H.; Svobodova, Z. A review: Oxidative stress in fish induced by pesticides. Neuroendocrinol. Lett. 2009, 30 (Suppl. 1), 2–12. [Google Scholar] [PubMed]
- Lykkesfeldt, J. Malondialdehyde as biomarker of oxidative damage to lipids caused by smoking. Clin. Chim. Acta 2007, 380, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Grotto, D.; Maria, L.S.; Valentini, J.; Paniz, C.; Schmitt, G.; Garcia, S.; Pomblum, V.J.; da Rocha, J.B.T.; Farina, M. Importance of the lipid peroxidation biomarkers and methodological aspects FOR malondialdehyde quantification. Química Nova 2009, 32, 169–174. [Google Scholar] [CrossRef] [Green Version]
- Redza-Dutordoir, M.; Averill-Bates, D.A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta 2016, 1863, 2977–2992. [Google Scholar] [CrossRef]
- Bayir, H.; Kagan, V.E. Bench-to-bedside review: Mitochondrial injury, oxidative stress and apoptosis—There is nothing more practical than a good theory. Crit. Care 2008, 12, 206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.; Du, Y.; Liu, J.; Wang, H.; Sun, D.; Liang, D.; Zhao, L.; Shang, J. Effects of atrazine on the oxidative damage of kidney in Wister rats. Int. J. Clin. Exp. Med. 2014, 7, 3235–3243. [Google Scholar]
- Jestadi, D.B.; Phaniendra, A.; Babji, U.; Srinu, T.; Shanmuganathan, B.; Periyasamy, L. Effects of Short Term Exposure of Atrazine on the Liver and Kidney of Normal and Diabetic Rats. J. Toxicol. 2014, 2014, e536759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campos-Pereira, F.D.; Oliveira, C.A.; Pigoso, A.A.; Silva-Zacarin, E.C.; Barbieri, R.; Spatti, E.F.; Marin-Morales, M.A.; Severi-Aguiar, G.D. Early cytotoxic and genotoxic effects of atrazine on Wistar rat liver: A morphological, immunohistochemical, biochemical, and molecular study. Ecotoxicol. Environ. Saf. 2012, 78, 170–177. [Google Scholar] [CrossRef]
- Freeman, J.L.; Rayburn, A.L. Developmental impact of atrazine on metamorphing Xenopus laevis as revealed by nuclear analysis and morphology. Environ. Toxicol. Chem. 2005, 24, 1648–1653. [Google Scholar] [CrossRef] [PubMed]
- Kloas, W.; Lutz, I.; Urbatzka, R.; Springer, T.; Krueger, H.; Wolf, J.; Holden, L.; Hosmer, A. Does atrazine affect larval development and sexual differentiation of South African clawed frogs? Ann. N. Y. Acad. Sci. 2009, 1163, 437–440. [Google Scholar] [CrossRef] [PubMed]
- Cooper, R.L.; Stoker, T.E.; Tyrey, L.; Goldman, J.M.; McElroy, W.K. Atrazine disrupts the hypothalamic control of pituitary-ovarian function. Toxicol. Sci. 2000, 53, 297–307. [Google Scholar] [CrossRef] [Green Version]
- Zaya, R.M.; Amini, Z.; Whitaker, A.S.; Kohler, S.L.; Ide, C.F. Atrazine exposure affects growth, body condition and liver health in Xenopus laevis tadpoles. Aquat. Toxicol. 2011, 104, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Rimayi, C.; Odusanya, D.; Weiss, J.M.; de Boer, J.; Chimuka, L.; Mbajiorgu, F. Effects of environmentally relevant sub-chronic atrazine concentrations on African clawed frog (Xenopus laevis) survival, growth and male gonad development. Aquat. Toxicol. 2018, 199, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Asouzu Johnson, J.; Ihunwo, A.; Chimuka, L.; Mbajiorgu, E.F. Cardiotoxicity in African clawed frog (Xenopus laevis) sub-chronically exposed to environmentally relevant atrazine concentrations: Implications for species survival. Aquat. Toxicol. 2019, 213, 105218. [Google Scholar] [CrossRef]
- Asouzu Johnson, J.; Nkomozepi, P.; Opute, P.; Felix, M. Cardiac and Cerebellar Histomorphology and Inositol 1,4,5-Trisphosphate (IP3R) Perturbations in Adult Xenopus laevis Following Atrazine Exposure. Appl. Sci. 2021, 11, 10006. [Google Scholar] [CrossRef]
- Karatas, F.; Karatepe, M.; Baysar, A. Determination of free malondialdehyde in human serum by high-performance liquid chromatography. Anal. Biochem. 2002, 311, 76–79. [Google Scholar] [CrossRef]
- Reitman, S.; Frankel, S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am. J. Clin. Pathol. 1957, 28, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Tietz, N.W.; Burtis, C.A.; Duncan, P.; Ervin, K.; Petitclerc, C.J.; Rinker, A.D.; Shuey, D.; Zygowicz, E.R. A reference method for measurement of alkaline phosphatase activity in human serum. Clin Chem. 1983, 29, 751–761. [Google Scholar] [CrossRef] [PubMed]
- Larsen, K. Creatinine assay in the presence of protein with LKB 8600 Reaction Rate Analyser. Clin. Chim. Acta 1972, 38, 475–476. [Google Scholar] [CrossRef]
- Coulombe, J.J.; Favreau, L. A New Simple Semimicro Method for Colorimetric Determination of Urea. Clin. Chem. 1963, 9, 102–108. [Google Scholar] [CrossRef]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dornelles, M.F.; Oliveira, G.T. Toxicity of atrazine, glyphosate, and quinclorac in bullfrog tadpoles exposed to concentrations below legal limits. Environ. Sci. Pollut. Res. Int. 2016, 23, 1610–1620. [Google Scholar] [CrossRef]
- Abarikwu, S.O. Protective Effect of Quercetin on Atrazine-Induced Oxidative Stress in the Liver, Kidney, Brain, and Heart of Adult Wistar Rats. Toxicol. Int. 2014, 21, 148–155. [Google Scholar] [CrossRef]
- Soror, A.; Hozyen, H.; Eldebaky, H.; Soror, A.H.; Shalaby, H.M. Protective Role of Selenium Against Adverse Effects of Atrazine Toxicity in Male Rats: Biochemical, Histopathological and Molecular Changes. Glob. Vet. 2015, 15, 357–365. [Google Scholar] [CrossRef]
- Wani, G.P.; Vibhandik, A.M. Effect of Atrazine (herbicide) on Histology and Protein Content of the Freshwater Teleost Barbus carnaticus. J. Ecobiol. 2011, 29, 257–265. [Google Scholar]
- Mela, M.; Guiloski, I.; Doria, H.B.; Randi, M.; Ribeiro, C.O.; Pereira, L.; Maraschi, A.; Prodocimo, V.; Freire, C.; de Assis, H.S. Effects of the herbicide atrazine in neotropical catfish (Rhamdia quelen). Ecotoxicol. Environ. Saf. 2013, 93, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, U.; Groscurth, P. Morphological features of cell death. Physiology 2004, 19, 124–128. [Google Scholar] [CrossRef] [PubMed]
- Kaware, M. Changes in Liver and Body Weight of Mice Exposed to Toxicant. Int. J. Sci. Eng. 2013, 3, 92–95. [Google Scholar]
- Kakar, S.; Kamath, P.S.; Burgart, L.J. Sinusoidal dilatation and congestion in liver biopsy: Is it always due to venous outflow impairment? Arch. Pathol. Lab. Med. 2004, 128, 901–904. [Google Scholar] [CrossRef]
- Houck, A.; Sessions, S.K. Could Atrazine Affect the Immune System of the Frog, Rana pipiens? Bios 2006, 77, 107–112. [Google Scholar] [CrossRef]
- Brodkin, M.A.; Madhoun, H.; Rameswaran, M.; Vatnick, I. Atrazine is an immune disruptor in adult northern leopard frogs (Rana pipiens). Environ. Toxicol. Chem. 2007, 26, 80–84. [Google Scholar] [CrossRef]
- Rohr, J.R.; Schotthoefer, A.M.; Raffel, T.R.; Carrick, H.J.; Halstead, N.; Hoverman, J.; Johnson, C.; Johnson, L.B.; Lieske, C.; Piwoni, M.D.; et al. Agrochemicals increase trematode infections in a declining amphibian species. Nature 2008, 455, 1235–1239. [Google Scholar] [CrossRef] [PubMed]
- Agius, C.; Roberts, R.J. Melano-macrophage centres and their role in fish pathology. J. Fish Dis. 2003, 26, 499–509. [Google Scholar] [CrossRef]
- Khan, M.Z.; Yasmeen, G.; Parveen, S.; Akbar, A.; Zehra, A.; Hussain, B. Induced Effect of Permakil (Pyrethroid) and Sandaphos (Organophosphate) on Liver and Kidney Cells of Euphlyctis cyanophlyctis. Can. J. Pure Appl. Sci. 2010, 5, 1615. [Google Scholar]
- Medina, M.F.; González, M.E.; Klyver, S.M.R.; Odstrcil, I.M.A. Histopathological and biochemical changes in the liver, kidney, and blood of amphibians intoxicated with cadmium. Turk. J. Biol. 2016, 40, 229–238. [Google Scholar] [CrossRef]
- Matovinovic, M.S. 3. Podocyte injury in glomerular diseases. EJIFCC 2009, 20, 21–27. [Google Scholar] [PubMed]
- Ohse, T.; Pippin, J.W.; Chang, A.M.; Krofft, R.D.; Miner, J.H.; Vaughan, M.R.; Shankland, S.J. The enigmatic parietal epithelial cell is finally getting noticed: A review. Kidney Int. 2009, 76, 1225–1238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mount, D.B. Thick Ascending Limb of the Loop of Henle. Clin. J. Am. Soc. Nephrol. 2014, 9, 1974–1986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alkhouri, N.; Carter-Kent, C.; Feldstein, A.E. Apoptosis in nonalcoholic fatty liver disease: Diagnostic and therapeutic implications. Expert Rev. Gastroenterol. Hepatol. 2011, 5, 201–212. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sena, L.; Asouzu Johnson, J.; Nkomozepi, P.; Mbajiorgu, E.F. Atrazine-Induced Hepato-Renal Toxicity in Adult Male Xenopus laevis Frogs. Appl. Sci. 2021, 11, 11776. https://doi.org/10.3390/app112411776
Sena L, Asouzu Johnson J, Nkomozepi P, Mbajiorgu EF. Atrazine-Induced Hepato-Renal Toxicity in Adult Male Xenopus laevis Frogs. Applied Sciences. 2021; 11(24):11776. https://doi.org/10.3390/app112411776
Chicago/Turabian StyleSena, Lynette, Jaclyn Asouzu Johnson, Pilani Nkomozepi, and Ejikeme Felix Mbajiorgu. 2021. "Atrazine-Induced Hepato-Renal Toxicity in Adult Male Xenopus laevis Frogs" Applied Sciences 11, no. 24: 11776. https://doi.org/10.3390/app112411776
APA StyleSena, L., Asouzu Johnson, J., Nkomozepi, P., & Mbajiorgu, E. F. (2021). Atrazine-Induced Hepato-Renal Toxicity in Adult Male Xenopus laevis Frogs. Applied Sciences, 11(24), 11776. https://doi.org/10.3390/app112411776