The Evaluation of Software Security through Quantum Computing Techniques: A Durability Perspective
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pertinent Works
2.2. Software Durability and Quantum Security Technique
2.2.1. Human Trust
2.2.2. Dependability
2.2.3. Trustworthiness
2.2.4. Usability
- Availability: implies that the data is available for the approved clients as and when required. Availability, with regards a computer framework, alludes to the capacity of a client to get to data or assets for a predetermined term.
- Confidentiality: refers to allowing sanctioned admittance to susceptible and secure data.
- Authentication: the factor that answers for the personality of the client’s profile. It is the interaction of deciding if a client is, indeed, who the client claims to be.
- Maintainability: the possibility that secure software will maintain or repair in the available environment or situation.
- Accountability: implies that each individual client who works with the product ought to have explicit duties regarding security confirmation. These errands incorporate singular obligation, as a component of the general security plan, since programming may become powerless by a dependable individual, such as a designer.
2.3. Quantum Algorithm
2.3.1. Quantum Key Distribution [A1]
2.3.2. Lattice-Based Cryptography Algorithm [A2]
2.3.3. Fully Homomorphic Algorithm (FHA) [A3]
2.3.4. Quantum Hash Function [A4]
2.4. Unified Technique of FAHP and FTOPSIS
2.4.1. Fuzzy AHP Method
2.4.2. Fuzzy TOPSIS Method
3. Numerical Data Analysis
Sensitivity Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vijayan, J. Application Security Risk Report 2019: 6 Takeaways for Your Team, TechBeacon. Available online: https://techbeacon.com/security/application-security-risk-report-2019-6-takeaways-your-app-sec-team (accessed on 19 November 2021).
- Alashaikh, A.; Tipper, D.; Gomes, T. Embedded network design to support availability differentiation. Ann. Telecommun. 2019, 74, 605–623. [Google Scholar] [CrossRef]
- Song, L.; Zhang, J.; Mukherjee, B. Dynamic provisioning with availability guarantee for differentiated services in survivable mesh networks. IEEE J. Sel. Areas Commun. 2007, 25, 35–43. [Google Scholar] [CrossRef]
- Alenezi, M.; Kumar, R.; Agrawal, A.; Khan, R.A. Usable-security attribute evaluation using fuzzy analytic hierarchy process. ICIC Express Lett. 2019, 13, 453–460. [Google Scholar]
- Agrawal, A.; Alenezi, M.; Khan, S.A.; Kumar, R.; Khan, R.A. Multi-level Fuzzy system for usable-security assessment. J. King Saud Univ.-Comput. Inf. Sci. 2019. [Google Scholar] [CrossRef]
- Kumar, R.; Khan, A.I.; Abushark, Y.B.; Alam, M.M.; Agrawal, A.; Khan, R.A. An Integrated Approach of Fuzzy Logic, AHP and TOPSIS for Estimating Usable-Security of Web Applications. IEEE Access 2020, 8, 50944–50957. [Google Scholar] [CrossRef]
- Kelty, C.; Erickson, S. The Durability of Software; Meson Press: Lüneburg, Germany, 2015; pp. 1–13. [Google Scholar]
- Nathan, E. When Good Software Goes Bad: The Surprising Durability of an Ephemeral Technology. In Proceedings of the MICE (Mistakes, Ignorance, Contingency, and Error) Conference, Munich, Germany, 2–4 October 2014; pp. 1–16. [Google Scholar]
- Firesmith, D.G. Common Concepts Underlying Safety. Security and Survivability Engineering; Technical Note CMU/SEI2003-TN033; Software Engineering Institute: Pittsburg, PA, USA, 2003; Volume 1, pp. 1–75. [Google Scholar]
- Becker, S.; Boskovic, M.; Dhama, A. Trustworthy Software Systems: A Discussion of Basic Concepts and Terminology. ACM SIGSOFT Softw. Eng. Notes 2006, 31, 1–18. [Google Scholar] [CrossRef]
- Arute, F.; Arya, K.; Babbush, R. Quantum supremacy using a programmable superconducting processor. Nature 2019, 574, 505–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shor, P.W. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. SIAM J. Comput. 1997, 26, 1484–1509. [Google Scholar] [CrossRef] [Green Version]
- Mitra, S.; Jana, B.; Bhattacharya, S.; Pal, P.; Poray, J. Quantum cryptography: Overview, security issues and future challenges. In Proceedings of the 4th International Conference on Opto-Electronics and Applied Optics (Optronix), Kolkata, India, 2–3 November 2017; pp. 1–7. [Google Scholar]
- Abomhara, M.; Køien, G.M. Cyber security and the internet of things: Vulnerabilities, threats, intruders and attacks. J. Cyber Secur. Mobil. 2015, 1, 65–88. [Google Scholar] [CrossRef]
- Ma, X.; Zeng, P.; Zhou, H. Phase-matching quantum key distribution. Phys. Rev. X 2018, 8, 031043. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Ding, D.S.; Sheng, Y.B.; Zhou, L.; Shi, S.B.; Guo, G.C. Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 2017, 118, 220501. [Google Scholar] [CrossRef] [PubMed]
- Pang, X.L.; Qiao, L.F.; Sun, K.; Liu, Y.; Yang, A.L.; Jin, X.M. Experimental Quantum-enhanced Cryptographic Remote Control. Sci. Rep. 2019, 9, 5809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ajtai, M. Generating hard instances of lattice problems. In Complexity of Computations and Proofs, Quad; Weizmann Institute of Science: Rehovot, Israel, 2004; Volume 16, pp. 1–32. [Google Scholar]
- Sen, J. Homomorphic Encryption—Theory and Practice of Cryptography and Network Security Protocols and Technologies; IntechOpen: London, UK, 2013; Volume 1, pp. 1–10. [Google Scholar]
- Bernstein, D.J. Introduction to Post-Quantum Cryptography; Springer: Berlin/Heidelberg, Germany, 2009; Volume 1, pp. 1–10. [Google Scholar]
- Alzahrani, F.A.; Ahmad, M.; Nadeem, M.; Kumar, R.; Khan, R.A. Integrity assessment of medical devices for improving hospital services. Comput. Mater. Contin. 2021, 67, 3619–3633. [Google Scholar] [CrossRef]
- Ladd, T.; Jelezko, F.; Laflamme, R. Quantum computers. Nature 2010, 464, 45–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernstein, D.; Lange, T. Post-quantum cryptography. Nature 2017, 549, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Hoffstein, J.; Pipher, J.; Silverman, J.H. Lattices and Cryptography. In An Introduction to Mathematical Cryptography. Undergraduate Texts in Mathematics; Springer: New York, NY, USA, 2014. [Google Scholar]
- Micciancio, D.; Regev, O. Lattice-Based Cryptography; Springer: Berlin/Heidelberg, Germany, 2017; pp. 1–20. [Google Scholar]
- Howe, J.; Khalid, A.; Rafferty, C.; Regazzoni, F.; O’Neill, M. On Practical Discrete Gaussian Samplers for Lattice-Based Cryptography. IEEE Trans. Comput. 2018, 67, 322–334. [Google Scholar] [CrossRef] [Green Version]
- Zech, P.; Felderer, M.; Breu, R. Towards Risk—Driven Security Testing of Service Centric Systems. In Proceedings of the 2012 12th International Conference on Quality Software, Xi’an, China, 27–29 August 2012; pp. 140–143. [Google Scholar] [CrossRef]
- Alenezi, M.; Nadeem, M.; Agrawal, A.; Kumar, R.; Khan, R.A. Fuzzy multi criteria decision analysis method for assessing security design tactics for web applications. Int. J. Intell. Eng. Syst. 2020, 13, 181–196. [Google Scholar] [CrossRef]
- Memari, A.; Dargi, A.; Jokar, M.R.A.; Ahmad, R.; Rahim, A.R.A. Sustainable supplier selection: A multi-criteria intuitionistic fuzzy TOPSIS method. J. Manuf. Syst. 2019, 50, 9–24. [Google Scholar] [CrossRef]
- Solanki, R.; Gulati, G.; Tiwari, A.; Lohani, Q.M.D. A correlation based Intuitionistic fuzzy TOPSIS method on supplier selection problem. In Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Vancouver, BC, Canada, 24–29 July 2016; pp. 2106–2112. [Google Scholar]
- Jalali, M.S.; Razak, S.; Gordon, W.; Perakslis, E.; Madnick, S. Health care and cybersecurity: Bibliometric analysis of the literature. J. Med Internet Res. 2019, 21, e12644. [Google Scholar] [CrossRef] [PubMed]
- Pujolle, G.; Serhrouchni, A.; Ayadi, I. Secure session management with cookies. In Proceedings of the 7th International Conference on Information, Communications and Signal Processing (ICICS), Macau, China, 8–10 December 2009; pp. 1–6. [Google Scholar]
- Li, Q. An Improved fuzzy AHP approach to evaluating conductor joint alternatives. In Proceedings of the Seventh International Conference on Fuzzy Systems and Knowledge Discovery, Yantai, China, 10–12 August 2010; pp. 811–814. [Google Scholar]
- Öztaysi, B.; Onar, S.Ç.; Boltürk, E.; Kahraman, C. Hesitant fuzzy analytic hierarchy process. In Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Istanbul, Turkey, 2–5 August 2015; pp. 1–7. [Google Scholar]
Linguistic Terms | TFN |
---|---|
Equal | (1, 1, 1) |
Not Bad | (2, 3, 4) |
Good | (4, 5, 6) |
Very Good | (6, 7, 8) |
Perfect | (9, 9, 9) |
Weak Advantage | (1, 2, 3) |
Preferable | (3, 4, 5) |
Fairly Good | (5, 6, 7) |
Absolute | (7, 8, 9) |
Variable | TFN |
---|---|
Very scanty | (0, 1, 3) |
Scanty | (1, 3, 5) |
Light | (3, 5, 7) |
Satisfactory | (5, 7, 9) |
Very satisfactory | (7, 9,10) |
A1 | A2 | A3 | A4 | |
---|---|---|---|---|
F11 | 2.4500, 4.2700, 6.2700 | 1.3600, 3.3600, 5.3600 | 0.6400, 2.2700, 4.2700 | 2.4500, 4.2700, 6.2700 |
F12 | 4.6400, 6.6400, 8.5500 | 0.8200, 2.6400, 4.6400 | 5.3600, 7.3006, 8.7300 | 4.6400, 6.6400, 8.5500 |
F13 | 5.3600, 7.3006, 8.7300 | 5.5500, 7.5500, 8.9100 | 2.4500, 4.2700, 6.2700 | 5.3600, 7.3006, 8.7300 |
F21 | 3.7300, 5.5500, 7.2700 | 4.4500, 6.4500, 8.1800 | 4.6400, 6.6400, 8.5500 | 3.7300, 5.5500, 7.2700 |
F22 | 2.3600, 4.2700, 6.2700 | 2.4500, 4.2700, 6.2700 | 5.3600, 7.3006, 8.7300 | 2.3600, 4.2700, 6.2700 |
F23 | 5.3600, 7.3006, 8.7300 | 5.5500, 7.5500, 8.9100 | 3.7300, 5.5500, 7.2700 | 5.3600, 7.3006, 8.7300 |
F24 | 3.7300, 5.5500, 7.2700 | 4.4500, 6.4500, 8.1800 | 2.3600, 4.2700, 6.2700 | 3.7300, 5.5500, 7.2700 |
F31 | 2.4500, 4.2700, 6.2700 | 1.3600, 3.3600, 5.3600 | 5.3600, 7.3006, 8.7300 | 5.5500, 7.5500, 8.9100 |
F32 | 4.6400, 6.6400, 8.5500 | 0.8200, 2.6400, 4.6400 | 3.7300, 5.5500, 7.2700 | 4.4500, 6.4500, 8.1800 |
F33 | 5.3600, 7.3006, 8.7300 | 5.5500, 7.5500, 8.9100 | 1.6400, 3.5500, 5.5500 | 3.7300, 5.5500, 7.2700 |
F41 | 3.7300, 5.5500, 7.2700 | 4.4500, 6.4500, 8.1800 | 1.3600, 3.3600, 5.3600 | 2.3600, 4.2700, 6.2700 |
F42 | 2.3600, 4.2700, 6.2700 | 2.4500, 4.2700, 6.2700 | 0.8200, 2.6400, 4.6400 | 4.8200, 6.8200, 8.5500 |
F43 | 5.3600, 7.3006, 8.7300 | 5.5500, 7.5500, 8.9100 | 5.3600, 7.3600, 8.7300 | 1.4500, 3.3600, 5.3600 |
A1 | A2 | A3 | A4 | |
---|---|---|---|---|
F11 | 0.5900, 0.8000, 0.9600 | 0.4600, 0.6800, 0.8800 | 0.5900, 0.8000, 0.9600 | 0.4600, 0.6800, 0.8800 |
F12 | 0.5400, 0.7500, 0.9200 | 0.5200, 0.7400, 0.9300 | 0.5400, 0.7500, 0.9200 | 0.5400, 0.7500, 0.9200 |
F13 | 0.5400, 0.7500, 0.9200 | 0.5200, 0.7400, 0.9200 | 0.5400, 0.7500, 0.9200 | 0.5400, 0.7500, 0.9200 |
F21 | 0.5900, 0.8000, 0.9600 | 0.4600, 0.6800, 0.8800 | 0.3500, 0.5800, 0.8100 | 0.3500, 0.5800, 0.8100 |
F22 | 0.5400, 0.7500, 0.9200 | 0.5200, 0.7400, 0.9300 | 0.4600, 0.6700, 0.8600 | 0.4600, 0.6700, 0.8600 |
F23 | 0.5400, 0.7500, 0.9200 | 0.5400, 0.7500, 0.9200 | 0.5200, 0.7400, 0.9300 | 0.5000, 0.7100, 0.8900 |
F24 | 0.3500, 0.5800, 0.8100 | 0.5400, 0.7500, 0.9200 | 0.5200, 0.7400, 0.9200 | 0.4600, 0.6700, 0.8600 |
F31 | 0.4600, 0.6700, 0.8600 | 0.3500, 0.5800, 0.8100 | 0.4200, 0.6900, 0.9900 | 0.5000, 0.7100, 0.8900 |
F32 | 0.5000, 0.7100, 0.8900 | 0.4600, 0.6700, 0.8600 | 0.5200, 0.7400, 0.9200 | 0.5400, 0.7500, 0.9200 |
F33 | 0.4600, 0.6700, 0.8600 | 0.5000, 0.7100, 0.8900 | 0.4600, 0.6800, 0.8800 | 0.3500, 0.5800, 0.8100 |
F41 | 0.5000, 0.7100, 0.8900 | 0.4600, 0.6700, 0.8600 | 0.5200, 0.7400, 0.9300 | 0.4600, 0.6700, 0.8600 |
F42 | 0.5000, 0.7100, 0.8900 | 0.5000, 0.7100, 0.8900 | 0.5400, 0.7500, 0.9200 | 0.5200, 0.7400, 0.9300 |
F43 | 0.4600, 0.6700, 0.8600 | 0.3800, 0.6000, 0.8000 | 0.5400, 0.7500, 0.9200 | 0.5200, 0.7400, 0.9300 |
A1 | A2 | A3 | A4 | |
---|---|---|---|---|
F11 | 0.00200, 0.00600, 0.02000 | 0.00300, 0.01200, 0.04200 | 0.00200, 0.00900, 0.03000 | 0.00200, 0.01000, 0.03500 |
F12 | 0.00200, 0.00800, 0.02500 | 0.00200, 0.00600, 0.02000 | 0.00200, 0.00600, 0.02000 | 0.00300, 0.01200, 0.04200 |
F13 | 0.00200, 0.00700, 0.02200 | 0.00200, 0.00800, 0.02500 | 0.00200, 0.00800, 0.02500 | 0.00200, 0.00600, 0.02000 |
F21 | 0.00200, 0.00600, 0.02000 | 0.00200, 0.00700, 0.02200 | 0.00200, 0.00700, 0.02200 | 0.00200, 0.00800, 0.02500 |
F22 | 0.00200, 0.00800, 0.02500 | 0.00200, 0.00600, 0.02000 | 0.00200, 0.00600, 0.02000 | 0.00200, 0.00700, 0.02200 |
F23 | 0.00300, 0.01200, 0.04100 | 0.00200, 0.00800, 0.02500 | 0.00200, 0.00800, 0.02500 | 0.00200, 0.00600, 0.02000 |
F24 | 0.00300, 0.01200, 0.04200 | 0.00200, 0.00700, 0.02200 | 0.00300, 0.01200, 0.04100 | 0.00200, 0.00800, 0.02500 |
F31 | 0.00200, 0.00600, 0.02000 | 0.00200, 0.00600, 0.02000 | 0.00300, 0.01200, 0.04200 | 0.00300, 0.01200, 0.04100 |
F32 | 0.00300, 0.01200, 0.04100 | 0.00200, 0.00800, 0.02500 | 0.00200, 0.00600, 0.02000 | 0.00300, 0.01200, 0.04200 |
F33 | 0.00300, 0.01200, 0.04200 | 0.00300, 0.01200, 0.04100 | 0.00200, 0.00600, 0.02000 | 0.00200, 0.00600, 0.02000 |
F41 | 0.00200, 0.00600, 0.02000 | 0.00300, 0.01200, 0.04200 | 0.00200, 0.00800, 0.02500 | 0.00200, 0.00600, 0.02000 |
F42 | 0.00200, 0.00800, 0.02500 | 0.00200, 0.00600, 0.02000 | 0.00200, 0.00700, 0.02200 | 0.00200, 0.00800, 0.02500 |
F43 | 0.00200, 0.00700, 0.02200 | 0.00200, 0.00700, 0.02200 | 0.00200, 0.00700, 0.02200 | 0.00200, 0.00700, 0.02200 |
Alternatives | d+i | d-i | Gap Degree of CC+i | Satisfaction Degree of CC-i | |
---|---|---|---|---|---|
Alternative 1 | A1 | 0.0548547 | 0.03685647 | 0.365886957 | 0.625232141 |
Alternative 2 | A2 | 0.0648599 | 0.03556857 | 0.524658547 | 0.644223521 |
Alternative 3 | A3 | 0.0488574 | 0.05455658 | 0.569775847 | 0.444112547 |
Alternative 4 | A4 | 0.0496587 | 0.03688574 | 0.256112365 | 0.527001245 |
Experiments | Weights/Alternatives | A1 | A2 | A3 | A4 | |
---|---|---|---|---|---|---|
Experiment-0 | Original Weights | Satisfaction Degree (CC-i) | 0.625232141 | 0.644223521 | 0.444112547 | 0.527001245 |
Experiment-1 | F11 | 0.664114542 | 0.542556587 | 0.489455487 | 0.672775847 | |
Experiment-2 | F12 | 0.659558471 | 0.534525471 | 0.499556587 | 0.607125524 | |
Experiment-3 | F13 | 0.549554874 | 0.407635257 | 0.396885471 | 0.521223254 | |
Experiment-4 | F21 | 0.549885674 | 0.407658254 | 0.395565547 | 0.593556587 | |
Experiment-5 | F22 | 0.659556547 | 0.535226535 | 0.498554745 | 0.607652511 | |
Experiment-6 | F23 | 0.581112547 | 0.407965587 | 0.396122011 | 0.485556571 | |
Experiment-7 | F24 | 0.549225635 | 0.431563547 | 0.383526587 | 0.607652113 | |
Experiment-8 | F31 | 0.549885684 | 0.728854474 | 0.541225474 | 0.521001245 | |
Experiment-9 | F32 | 0.656525471 | 0.535556587 | 0.499565241 | 0.607235264 | |
Experiment-10 | F33 | 0.581225358 | 0.445223525 | 0.427002154 | 0.522265254 | |
Experiment-11 | F41 | 0.5495568574 | 0.408547444 | 0.396322154 | 0.485885474 | |
Experiment-12 | F42 | 0.6598854741 | 0.431556587 | 0.383565225 | 0.607852145 | |
Experiment-13 | F43 | 0.5812235654 | 0.728855564 | 0.540000154 | 0.520025214 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alyami, H.; Nadeem, M.; Alharbi, A.; Alosaimi, W.; Ansari, M.T.J.; Pandey, D.; Kumar, R.; Khan, R.A. The Evaluation of Software Security through Quantum Computing Techniques: A Durability Perspective. Appl. Sci. 2021, 11, 11784. https://doi.org/10.3390/app112411784
Alyami H, Nadeem M, Alharbi A, Alosaimi W, Ansari MTJ, Pandey D, Kumar R, Khan RA. The Evaluation of Software Security through Quantum Computing Techniques: A Durability Perspective. Applied Sciences. 2021; 11(24):11784. https://doi.org/10.3390/app112411784
Chicago/Turabian StyleAlyami, Hashem, Mohd Nadeem, Abdullah Alharbi, Wael Alosaimi, Md Tarique Jamal Ansari, Dhirendra Pandey, Rajeev Kumar, and Raees Ahmad Khan. 2021. "The Evaluation of Software Security through Quantum Computing Techniques: A Durability Perspective" Applied Sciences 11, no. 24: 11784. https://doi.org/10.3390/app112411784
APA StyleAlyami, H., Nadeem, M., Alharbi, A., Alosaimi, W., Ansari, M. T. J., Pandey, D., Kumar, R., & Khan, R. A. (2021). The Evaluation of Software Security through Quantum Computing Techniques: A Durability Perspective. Applied Sciences, 11(24), 11784. https://doi.org/10.3390/app112411784