Mathematical Tool Based on Breakthrough Curves to Evaluate the Economic Advantages of Chemical Regeneration of Activated Carbon in Power Plants: A Comparative Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Target Scenarios in the Power Plant
2.2. GAC Samples
2.3. Synthetic Water
2.4. Adsorption (Exhaustion) Experiments
2.5. Desorption (Regeneration) Experiments
2.6. Scaling down the GAC Water Filter
2.7. Breakthrough Curves
Desorption and Adsorption Experiments
- I.
- Measurement of the pH of the solution: (1) original solution of 7.4 wt.% HCl giving (initial concentration of H+); (2) every 20 min, sampling 1 mL of the effluent after elution through GAC; (3) sample was diluted into 100 mL of Milli-Q water to measure the pH (results are displayed in Table 2).
- II.
- The equivalent law is applied according to Equation (7) to determine the actual concentration of the H+ ions in the initial solution () using the measured H+ ions concentration in the diluted solution ().
- III.
- Construction of the breakthrough curve ( versus time.
- I.
- Relationship between hardness of synthetic water (in mg CaCO3/L) and the conductivity (in µS/cm) results in a calibration curve with excellent linear relationship with high regression coefficient of 99.17% (see Figure 2).
- II.
- Conductivity measurements: every 15 min, 1 mL of the effluent solution of the eluent passing through GAC was sampled and diluted into 100 mL of Milli-Q water to measure the conductivity. Initial solution properties are displayed in Table 2.
- III.
- The equivalent law is applied according to Equation (8) to determine the real hardness of the synthetic water solution (in mg CaCO3/L) as function of time:
- IV.
- Construction of the breakthrough curve using the following relation: C/Co (water hardness after filtration)/(initial water hardness) versus time.
3. Results and Discussion
3.1. Dynamic Regeneration of Exhausted GAC
3.2. Economic Tool to Evaluate the Advantages of Regeneration
3.3. Exhaustion-Regeneration Performance Equilibria
3.4. Economic Assessment Based on the Proposed Tool
3.5. General Considerations about Other Needed Investment for GAC Regeneration
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bansal, R.C.; Goyal, M. Activated Carbon Adsorption; Taylor & Francis Group: Boca Raton, FL, USA, 2020. [Google Scholar]
- Baker, F.S.; Miller, C.E.; Repik, A.J.; Tolles, E.D. Activated Carbon. In Kirk-Othmer Encyclopedia of Chemical Technology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2000; pp. 741–761. [Google Scholar]
- Report, M.R. Activated Carbon Market Size, Share & Trends Analysis Report by Product (Powdered, Granular), by Application (Liquid, Gas), by End Use (Water Treatment, Air Purification), by Region, and Segment Forecasts, 2019–2025. Mark. Res. 2019, 5785355. Available online: https://www.giiresearch.com/report/grvi361254-activated-carbon-market-analysis-by-product.html (accessed on 20 August 2021).
- Dias, J.M.; Alvim-Ferraz, M.C.; Almeida, M.F.; Rivera-Utrilla, J.; Sanchez-Polo, M. Waste materials for activated carbon preparation and its use in aqueous-phase treatment: A review. J. Environ. Manag. 2007, 85, 833–846. [Google Scholar] [CrossRef]
- Xu, G.; Zhang, L.; Yu, W.; Sun, Z.; Guan, J.; Zhang, J.; Lin, J.; Zhou, J.; Fan, J.; Murugadoss, V. Low optical dosage heating-reduced viscosity for fast and large-scale cleanup of spilled crude oil by reduced graphene oxide melamine nanocomposite adsorbents. Nanotechnology 2020, 31, 225402. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Ma, P.; Dai, L.; Li, S.; Yu, W.; Guan, J. In situ crystallization and growth of TiO2 nanospheres between MXene layers for improved adsorption and visible light photocatalysis. Catal. Sci. Technol. 2021, 11, 3834–3844. [Google Scholar] [CrossRef]
- Boruah, P.K.; Sharma, B.; Hussain, N.; Das, M.R. Magnetically recoverable Fe3O4/graphene nanocomposite towards efficient removal of triazine pesticides from aqueous solution: Investigation of the adsorption phenomenon and specific ion effect. Chemosphere 2017, 168, 1058–1067. [Google Scholar] [CrossRef]
- Fraga, T.J.M.; de Lima, L.E.M.; de Souza, Z.S.B.; Carvalho, M.N.; de Luna Freire, E.M.P.; da Motta, M.A. Amino-Fe3O4-functionalized graphene oxide as a novel adsorbent of Methylene Blue: Kinetics, equilibrium, and recyclability aspects. Environ. Sci. Pollut. Res. 2019, 26, 28593–28602. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Gholamirad, F.; Yu, M.; Park, C.M.; Jang, A.; Jang, M.; Taheri-Qazvini, N.; Yoon, Y. Enhanced adsorption performance for selected pharmaceutical compounds by soni-cated Ti3C2TX MXene. Chem. Eng. J. 2021, 406, 126789. [Google Scholar] [CrossRef]
- Zhu, J.; Ha, E.; Zhao, G.; Zhou, Y.; Huang, D.; Yue, G.; Hu, L.; Sun, N.; Wang, Y.; Lee, L.Y.S. Recent advance in MXenes: A promising 2D material for catalysis, sensor and chemical adsorption. Coord. Chem. Rev. 2017, 352, 306–327. [Google Scholar] [CrossRef]
- Jun, B.-M.; Kim, S.; Rho, H.; Park, C.M.; Yoon, Y. Ultrasound-assisted Ti3C2Tx MXene adsorption of dyes: Removal performance and mechanism analyses via dynamic light scattering. Chemosphere 2020, 254, 126827. [Google Scholar] [CrossRef]
- Kong, D.; Gao, Y.; Xiao, Z.; Xu, X.; Li, X.; Zhi, L. Rational Design of Carbon-Rich Materials for Energy Storage and Conversion. Adv. Mater. 2019, 31, e1804973. [Google Scholar] [CrossRef] [PubMed]
- Fa, S.; Yamamoto, M.; Nishihara, H.; Sakamoto, R.; Kamiya, K.; Nishina, Y.; Ogoshi, T. Carbon-rich materials with three-dimensional ordering at the angstrom level. Chem. Sci. 2020, 11, 5866–5873. [Google Scholar] [CrossRef]
- Radovic, L.R. Chemistry & Physics of Carbon; CRC Press: Boca Raton, FL, USA, 2004; Volume 30. [Google Scholar]
- Shah, I.K.; Pre, P.; Alappat, B.J. Steam regeneration of adsorbents: An experimental and technical review. Chem. Sci. Trans. 2013, 2, 1078–1088. [Google Scholar]
- Chowdhury, Z.K. Activated Carbon: Solutions for Improving Water Quality; American Water Works Association: Denver, CO, USA, 2013. [Google Scholar]
- Çeçen, F.; Aktas, Ö. Activated Carbon for Water and Wastewater Treatment: Integration of Ad-Sorption and Biological Treatment; John Wiley & Sons: Istambul, Turkey, 2011. [Google Scholar]
- McCabe, W.L.; Smith, J.C.; Harriott, P. Unit Operations of Chemical Engineering, 6th ed.; McGraw-Hill: Singapore, 2001; Volume 15, pp. 821–834. [Google Scholar]
- Miguel, G.S.; Lambert, S.; Graham, N. The regeneration of field-spent granular-activated carbons. Water Res. 2001, 35, 2740–2748. [Google Scholar] [CrossRef]
- He, K. A calculation of the environmental footprint of a granular activated carbon regeneration facility. Climate and Energy section; Environmental Sciences Senior Thesis Symposium. UC Berkeley Environ. Sci. 2012, 22, 1–23. [Google Scholar]
- Toyoko, I. Activated carbon surfaces in environmental remediation. In Advanced Chemistry of Monolayers at Interfaces: Trends in Methodology and Technology; Elsevier Ltd.: Oxford, UK, 2007; Volume 7. [Google Scholar]
- Fernández, M.C.; Fernández, M.F.; Fuentes, R.D.; Montiel, Á.C. Energy quality and Distributed Generation in Cuba. Cuba. J. Eng. 2011, 1, 41–50. [Google Scholar]
- Anders, G.J.; Vaccaro, A. Innovations in Power Systems Reliability; Springer: London, UK, 2011. [Google Scholar]
- Čepin, M. Assessment of Power System Reliability: Methods and Applications; Springer Science & Business Media: London, UK, 2011. [Google Scholar]
- Llanes-Cedeño, E.A.; Guardia-Puebla, Y.; de la Rosa-Andino, A.; Cevallos-Carvajal, S.; Rocha-Hoyos, J.C. Detection of Faults in Combustion Engines Through Indicators of Temperature and Injection Pressure. Ingenius J. Sci. Technol. 2019, 22, 38–46. [Google Scholar]
- Guo, Y.; Du, E. The Effects of Thermal Regeneration Conditions and Inorganic Compounds on the Characteristics of Activated Carbon Used in Power Plant. Energy Procedia 2012, 17, 444–449. [Google Scholar] [CrossRef] [Green Version]
- Habbart, L. Treatment of Cooling Water; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2009; pp. 7–10. [Google Scholar]
- Amjad, Z. The Science and Technology of Industrial Water Treatment; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Salvador, F.; Martin-Sanchez, N.; Sánchez-Hernández, R.; Sanchez-Montero, M.J.; Izquierdo, C. Regeneration of carbonaceous adsorbents. Part II: Chemical, Microbiological and Vacuum Regeneration. Microporous Mesoporous Mater. 2015, 202, 277–296. [Google Scholar] [CrossRef]
- El Gamal, M.; Mousa, H.A.; El-Naas, M.H.; Zacharia, R.; Judd, S. Bio-regeneration of activated carbon: A comprehensive review. Sep. Purif. Technol. 2018, 197, 345–359. [Google Scholar] [CrossRef]
- Martin, R.; Ng, W. Chemical regeneration of exhausted activated carbon—I. Water Res. 1984, 18, 59–73. [Google Scholar] [CrossRef]
- Lambert, S.D.; Miguel, G.S.; Graham, N.J. Deleterious effects of inorganic compounds during thermal regeneration of GAC: A Review. J. Am. Water Work. Assoc. 2002, 94, 109–119. [Google Scholar] [CrossRef]
- Bottani, E.J.; Tascón, J.M. Adsorption by Carbons; Elsevier Ltd.: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Serp, P.; Figueiredo, J.L. Carbon Materials for Catalysis; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Mazyck, D.W.; Cannon, F.S. Overcoming calcium catalysis during the thermal reactivation of granular activated carbon: Part I. Steam-curing plus ramped-temperature N2 treatment. Carbon 2000, 38, 1785–1799. [Google Scholar] [CrossRef]
- Perry, L.; Essex, D.; Giess, P.; Graham, N.; Kaur, K.; Lambert, S.; Spencer, C. Improving the performance of granular activated carbon (GAC) via pre-regeneration acid treatment. Water Environ. J. 2005, 19, 159–166. [Google Scholar] [CrossRef]
- Worch, E. Adsorption Technology in Water Treatment: Fundamentals, Processes, and Modeling; Walter de Gruyter GmbH & Co: Göttingen, Germany, 2012; pp. 25–268. ISBN 978-3-11-024022-1. [Google Scholar]
- Zeng, C.; Atkinson, A.; Sharma, N.; Ashani, H.; Hjelmstad, A.; Venkatesh, K.; Westerhoff, P. Removing per- and polyfluoroalkyl substances from groundwaters using activated carbon and ion exchange resin packed columns. AWWA Water Sci. 2020, 2, 1172. [Google Scholar] [CrossRef]
- Zietzschmann, F.; Müller, J.; Sperlich, A.; Ruhl, A.S.; Meinel, F.; Altmann, J.; Jekel, M. Rapid small-scale column testing of granular activated carbon for organic micro-pollutant removal in treated domestic wastewater. Water Sci. Technol. 2014, 70, 1271–1278. [Google Scholar] [CrossRef]
- Mariño Peacok, T.; Crespo Sariol, H.; Yperman, J.; Sánchez Roca, Á; Carleer, R.; Puente Torres, J.; Reggers, G.; Haeldermans, T.; Thijssen, E.; Samyn, P. Improvement of a new acoustic emission analysis technique to determine the activated carbon saturation level: A comparative study. J. Environ. Chem. Eng. 2020, 8, 103794. [Google Scholar] [CrossRef]
- Mariño Peacok, T.; Crespo Sariol, H.; Sánchez Roca, Á; Puente Torres, J.; Gryglewicz, G.; Yperman, J.; Carleer, R.; Vandamme, D.; Reggers, G.; Vanreppelen, K. Efficiency evaluation of thermally and chemically regenerated activated carbons used in a water cleaning system by acoustic emission analysis. J. Porous Mater. 2021, 28, 451–469. [Google Scholar] [CrossRef]
- US Environmental Protection Agency Office of Pesticide Programs. Standard Operating Procedure for Preparation of Hard Water and Other Diluents for Antimicrobial Products; Office of Pesticide Programs Microbiology Laboratory Environmental Science Center Ft. Meade: Irvine, CA, USA, 2019. [Google Scholar]
- Kaiser, C.J. The Use of Small-Scale Equipment for Evaluating Water Treatment Plants; Water Research Commission: Natal, South Africa, 1999. [Google Scholar]
- Martín-Lara, M.Á.; Miranda, M.C.T.; Gálvez, A.R.; Muñoz, A.P.; de Hoces, M.C. Valorization of olive stone as adsorbent of chromium (VI): Comparison between laboratory- and pilot-scale fixed-bed columns. Int. J. Environ. Sci. Technol. 2017, 14, 2661–2674. [Google Scholar] [CrossRef]
- Ronda, A.; Martín-Lara, M.; Osegueda, O.; Castillo, V.; Blázquez, G. Scale-up of a packed bed column for wastewater treatment. Water Sci. Technol. 2018, 77, 1386–1396. [Google Scholar] [CrossRef]
- Calero, M.; Ronda, A.; Pérez, A.; Yáñez, A.; Trujillo, M.C.; Martín-Lara, M.Á. The scale-up of Cr3+ biosorption onto olive stone in a fixed bed column. Desalination Water Treat. 2016, 57, 25140–25152. [Google Scholar] [CrossRef]
- ASTM. D2854—09: Standard Test Methods for Apparent Density of Activated Carbon; American Society for Testing and Materials: West Conshohocken, PA, USA, 2019. [Google Scholar]
- Liu, J.; Yan, Y.; Zhang, H. Adsorption dynamics of toluene in composite bed with microfibrous entrapped activated carbon. Chem. Eng. J. 2011, 173, 456–462. [Google Scholar] [CrossRef]
- Power Plants, S.L. Economic and Costs Data Records. Unpublished work, 2019.
- Genç, N.; Durna, E.; Erkişi, E. Optimization of the adsorption of diclofenac by activated carbon and the acidic regeneration of spent activated carbon. Water Sci. Technol. 2021, 83, 396–408. [Google Scholar] [CrossRef]
- Nunes, K.G.P.; Sfreddo, L.W.; Rosset, M.; Féris, L.A. Efficiency evaluation of thermal, ultrasound and solvent techniques in activated carbon regeneration. Environ. Technol. 2020, 42, 4189–4200. [Google Scholar] [CrossRef]
- Siriwardena, D.P.; James, R.; Dasu, K.; Thorn, J.; Iery, R.D.; Pala, F.; Schumitz, D.; Eastwood, S.; Burkitt, N. Regeneration of per- and polyfluoroalkyl substance-laden granular activated carbon using a solvent based technology. J. Environ. Manag. 2021, 289, 112439. [Google Scholar] [CrossRef] [PubMed]
- Spessato, L.; Bedin, K.C.; Cazetta, A.L.; de Souza, L.S.; Duarte, V.A.; Crespo, L.H.; Silva, M.C.; Pontes, R.M.; Almeida, V.C. KOH-super activated carbon from biomass waste: Insights into the paracetamol adsorption mechanism and thermal regeneration cycles. J. Hazard. Mater. 2019, 371, 499–505. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhang, B.; Zheng, T.; Wang, P. Regeneration of activated carbon saturated with chloramphenicol by microwave and ultraviolet irradiation. Chem. Eng. J. 2017, 320, 264–270. [Google Scholar] [CrossRef]
Parameter | Value | Parameter | Value |
---|---|---|---|
D (mm) | 480 | Vexp (m3) | 1.78 × 10−5 |
d (mm) | 1.2 | mGAC-Exh,exp (g) | 8.16 |
D’ (mm) | 25 | (kg · m−3) | 456.5 |
d’ (mm) | 0.063 | mGAC-Virgin,exp (g) | 5.18 |
H (mm) | 700 | (kg · m−3) | 313.7 |
h’(mm) | 36.46 |
Property | Reagent Concentration | |
---|---|---|
Synthetic Water (Adsorption) | HCl (Regeneration) | |
500 mg CaCO3/L | 7.4 wt.% | |
Conductivity, µS/cm | 1468 | 619 |
pH | 7.89 | 1.91 * |
(mg/L) | 1.29 × 10−8 | 1.262 |
0 | 272 | 1.00 | 0.00 | 1.000 | −0.455 | ||
1 | 257 | 0.94 | 1.00 | 0.545 | −0.153 | ||
2 | 223 | 0.85 | 1.94 | 0.401 | −0.078 | ||
3 | 222 | 0.82 | 2.79 | 0.336 | −0.049 | ||
4 | 206 | 0.76 | 3.61 | 0.296 | −0.033 | ||
5 | 155 | 0.57 | 4.36 | 0.271 | −0.019 | ||
6 | 128 | 0.47 | 4.93 | 0.260 | −0.011 | ||
7 | 90 | 0.33 | 5.40 | 0.255 | 0.003 | ||
8 | 70 | 0.26 | 5.74 | 0.256 | 0.014 | ||
9 | 64 | 0.24 | 5.99 | 0.260 | 0.017 | ||
10 | 58 | 0.21 | 6.23 | 0.264 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mariño Peacok, T.; Crespo Sariol, H.; Puente Torres, J.; Yperman, J.; Sánchez Roca, Á.; Carleer, R.; Salomón García, L. Mathematical Tool Based on Breakthrough Curves to Evaluate the Economic Advantages of Chemical Regeneration of Activated Carbon in Power Plants: A Comparative Study. Appl. Sci. 2021, 11, 11786. https://doi.org/10.3390/app112411786
Mariño Peacok T, Crespo Sariol H, Puente Torres J, Yperman J, Sánchez Roca Á, Carleer R, Salomón García L. Mathematical Tool Based on Breakthrough Curves to Evaluate the Economic Advantages of Chemical Regeneration of Activated Carbon in Power Plants: A Comparative Study. Applied Sciences. 2021; 11(24):11786. https://doi.org/10.3390/app112411786
Chicago/Turabian StyleMariño Peacok, Thayset, Harold Crespo Sariol, Jeamichel Puente Torres, Jan Yperman, Ángel Sánchez Roca, Robert Carleer, and Liset Salomón García. 2021. "Mathematical Tool Based on Breakthrough Curves to Evaluate the Economic Advantages of Chemical Regeneration of Activated Carbon in Power Plants: A Comparative Study" Applied Sciences 11, no. 24: 11786. https://doi.org/10.3390/app112411786
APA StyleMariño Peacok, T., Crespo Sariol, H., Puente Torres, J., Yperman, J., Sánchez Roca, Á., Carleer, R., & Salomón García, L. (2021). Mathematical Tool Based on Breakthrough Curves to Evaluate the Economic Advantages of Chemical Regeneration of Activated Carbon in Power Plants: A Comparative Study. Applied Sciences, 11(24), 11786. https://doi.org/10.3390/app112411786