Ultra-Wide Bandgap in Two-Dimensional Metamaterial Embedded with Acoustic Black Hole Structures
Abstract
:1. Introduction
2. Model and Method
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fischer, S.C.L.; Hillen, L.; Eberl, C. Mechanical Metamaterials on the Way from Laboratory Scale to Industrial Applications: Challenges for Characterization and Scalability. Materials 2020, 13, 3605. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Wang, Y.; Chuang, K.; Wu, F.; Wang, Q.; Lin, W.; Jiang, H. A brief review of dynamic mechanical metamaterials for mechanical energy manipulation. Mater. Today 2020, 44, 168–193. [Google Scholar] [CrossRef]
- Ma, G.; Sheng, P. Acoustic metamaterials: From local resonances to broad horizons. Sci. Adv. 2016, 2, e1501595. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; Ma, Z.-S.; Ding, Q.; Wang, T. Dynamic interaction between bi-directional functionally graded materials and magneto-electro-elastic fields: A nano-structure analysis. Compos. Struct. 2021, 264, 113746. [Google Scholar] [CrossRef]
- Chen, B.; Shiryayev, O.; Vahdati, N.; El-Sinawi, A. Validation of a Modeling Tool for In-Plane Longitudinal Resonators with Zigzag Topology. Int. J. Appl. Mech. 2019, 11, 1950013. [Google Scholar] [CrossRef]
- Cummer, S.A.; Christensen, J.; Alù, A. Controlling sound with acoustic metamaterials. Nat. Rev. Mater. 2016, 1, 16001. [Google Scholar] [CrossRef] [Green Version]
- Yan, D.; Chang, J.; Zhang, H.; Liu, J.; Song, H.; Xue, Z.; Zhang, F.; Zhang, Y. Soft three-dimensional network materials with rational bio-mimetic designs. Nat. Commun. 2020, 11, 1180. [Google Scholar] [CrossRef] [Green Version]
- Lu, M.-H.; Feng, L.; Chen, Y.-F. Phononic crystals and acoustic metamaterials. Mater. Today 2009, 12, 34–42. [Google Scholar] [CrossRef]
- Chang, I.-L.; Liang, Z.-X.; Kao, H.-W.; Chang, S.-H.; Yang, C.-Y. The wave attenuation mechanism of the periodic local resonant metamaterial. J. Sound Vib. 2018, 412, 349–359. [Google Scholar] [CrossRef]
- Wang, G.; Wen, X.; Wen, J.; Liu, Y. Quasi-One-Dimensional Periodic Structure with Locally Resonant Band Gap. J. Appl. Mech. 2005, 73, 167–170. [Google Scholar] [CrossRef]
- Wang, T.T.; Bargiel, S.; Lardet-Vieudrin, F.; Wang, Y.F.; Wang, Y.S.; Laude, V. Phononic Coupled-Resonator Waveguide Micro-Cavities. Appl. Sci. 2020, 10, 6751. [Google Scholar] [CrossRef]
- Faiz, M.S.; Addouche, M.; Zain, A.R.M.; Siow, K.S.; Chaalane, A.; Khelif, A. Experimental Demonstration of a Multichannel Elastic Wave Filter in a Phononic Crystal Slab. Appl. Sci. 2020, 10, 4594. [Google Scholar] [CrossRef]
- Xu, X.; Wang, C.; Shou, W.; Du, Z.; Chen, Y.; Li, B.; Matusik, W.; Hussein, N.; Huang, G. Physical Realization of Elastic Cloaking with a Polar Material. Phys. Rev. Lett. 2020, 124, 114301. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Wang, Y.; Zhai, Z.; Yang, Y.; Krishnaraju, D.; Lu, J.; Wu, F.; Wang, Q.; Jiang, H. Mechanical metamaterials for full-band mechanical wave shielding. Appl. Mater. Today 2020, 20, 100671. [Google Scholar] [CrossRef]
- Aravantinos-Zafiris, N.; Lucklum, F.; Sigalas, M.M. Complete phononic band gaps in the 3D Yablonovite structure with spheres. Ultrasonics 2020, 110, 106265. [Google Scholar] [CrossRef]
- Wormser, M.; Wein, F.; Stingl, M.; Körner, C. Design and Additive Manufacturing of 3D Phononic Band Gap Structures Based on Gradient Based Optimization. Materials 2017, 10, 1125. [Google Scholar] [CrossRef]
- Jia, Z.; Chen, Y.; Yang, H.; Wang, L. Designing Phononic Crystals with Wide and Robust Band Gaps. Phys. Rev. Appl. 2018, 9, 044021. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.T.; Laude, V.; Kadic, M.; Wang, Y.F.; Wang, Y.S. Complex-Eigenfrequency Band Structure of Viscoelastic Phononic Crystals. Appl. Sci. 2019, 9, 2825. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Baker, E.; Reissman, T.; Sun, C.; Liu, W.K. Design of mechanical metamaterials for simultaneous vibration isolation and energy harvesting. Appl. Phys. Lett. 2017, 111, 251903. [Google Scholar] [CrossRef]
- Zhao, C.; Gao, X.; Wang, L.; Yi, Q.; Wang, P. A study of the vibration isolation performance of a limited phononic crystal vibration isolator based on local resonance theory. J. Appl. Phys. 2020, 128, 134903. [Google Scholar] [CrossRef]
- Ruan, Y.; Liang, X.; Hua, X.; Zhang, C.; Xia, H.; Li, C. Isolating low-frequency vibration from power systems on a ship using spiral phononic crystals. Ocean Eng. 2021, 225, 108804. [Google Scholar] [CrossRef]
- Zhang, Q.; Guo, D.; Hu, G. Tailored Mechanical Metamaterials with Programmable Quasi-Zero-Stiffness Features for Full-Band Vibration Isolation. Adv. Funct. Mater. 2021, 31, 2101428. [Google Scholar] [CrossRef]
- Tang, L.; Cheng, L. Broadband locally resonant band gaps in periodic beam structures with embedded acoustic black holes. J. Appl. Phys. 2017, 121, 194901. [Google Scholar] [CrossRef]
- Lyu, X.; Ding, Q.; Yang, T. Merging phononic crystals and acoustic black holes. Appl. Math. Mech. 2019, 41, 279–288. [Google Scholar] [CrossRef]
- Deng, J.; Zheng, L.; Zeng, P.; Zuo, Y.; Guasch, O. Passive constrained viscoelastic layers to improve the efficiency of truncated acoustic black holes in beams. Mech. Syst. Signal Process. 2018, 118, 461–476. [Google Scholar] [CrossRef]
- Lyu, X.; Li, H.; Ma, Z.; Ding, Q.; Yang, T.; Chen, L.; Żur, K.K. Numerical and experimental evidence of topological interface state in a periodic acoustic black hole. J. Sound Vib. 2021, 514, 116432. [Google Scholar] [CrossRef]
- Ganti, S.S.; Liu, T.-W.; Semperlotti, F. Topological edge states in phononic plates with embedded acoustic black holes. J. Sound Vib. 2019, 466, 115060. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, L. Harnessing structural hierarchy to design stiff and lightweight phononic crystals. Extreme Mech. Lett. 2016, 9, 91–96. [Google Scholar] [CrossRef] [Green Version]
- D’Alessandro, L.; Belloni, E.; Ardito, R.; Corigliano, A.; Braghin, F. Modeling and experimental verification of an ultra-wide bandgap in 3D phononic crystal. Appl. Phys. Lett. 2016, 109, 221907. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lyu, X.; Ding, Q.; Ma, Z.; Yang, T. Ultra-Wide Bandgap in Two-Dimensional Metamaterial Embedded with Acoustic Black Hole Structures. Appl. Sci. 2021, 11, 11788. https://doi.org/10.3390/app112411788
Lyu X, Ding Q, Ma Z, Yang T. Ultra-Wide Bandgap in Two-Dimensional Metamaterial Embedded with Acoustic Black Hole Structures. Applied Sciences. 2021; 11(24):11788. https://doi.org/10.3390/app112411788
Chicago/Turabian StyleLyu, Xiaofei, Qian Ding, Zhisai Ma, and Tianzhi Yang. 2021. "Ultra-Wide Bandgap in Two-Dimensional Metamaterial Embedded with Acoustic Black Hole Structures" Applied Sciences 11, no. 24: 11788. https://doi.org/10.3390/app112411788
APA StyleLyu, X., Ding, Q., Ma, Z., & Yang, T. (2021). Ultra-Wide Bandgap in Two-Dimensional Metamaterial Embedded with Acoustic Black Hole Structures. Applied Sciences, 11(24), 11788. https://doi.org/10.3390/app112411788