Synthetic Weyl Points of the Shear Horizontal Guided Waves in One-Dimensional Phononic Crystal Plates
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fan, X.; Qiu, C.; Shen, Y.; He, H.; Xiao, M.; Ke, M.; Liu, Z. Probing Weyl Physics with One-Dimensional Sonic Crystals. Phys. Rev. Lett. 2019, 122, 1079–7114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Xiao, M.; Liu, H.; Zhu, S.; Chan, C.T. Optical Interface States Protected by Synthetic Weyl Points. Phys. Rev. X 2017, 7, 031032. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, B.; Zhang, X.; Wu, Q.; Wang, X. Zone folding induced tunable topological interface states in one-dimensional phononic crystal plates. Phys. Lett. A 2019, 383, 2797–2801. [Google Scholar] [CrossRef]
- Burkov, A.A.; Balents, L. Weyl Semimetal in a Topological Insulator Multilayer. Phys. Rev. Lett. 2011, 107, 127205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, X.; Zhao, L.; Long, Y.; Wang, P.; Chen, D.; Yang, Z.; Liang, H.; Xue, M.; Weng, H.; Fang, Z.; et al. Observation of the Chiral-Anomaly-Induced Negative Magnetoresistance in 3D Weyl Semimetal TaAs. Phys. Rev. X 2015, 5, 031023. [Google Scholar] [CrossRef] [Green Version]
- Xu, G.; Weng, H.; Wang, Z.; Dai, X.; Fang, Z. Chern Semimetal and the Quantized Anomalous Hall Effect in HgCr2Se4. Phys. Rev. Lett. 2011, 107, 186806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, S.Y.; Belopolski, I.; Alidoust, N.; Neupane, M.; Bian, G.; Zhang, C.; Sankar, R.; Chang, G.; Yuan, Z.; Lee, C.C.; et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 2015, 349, 613–617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lv, B.Q.; Weng, H.; Fu, B.B.; Wang, X.P.; Miao, H.; Ma, J.; Richard, P.; Huang, X.C.; Zhao, L.X.; Chen, G.F.; et al. Experimental Discovery of Weyl Semimetal TaAs. Phys. Rev. X 2015, 5, 031013. [Google Scholar] [CrossRef] [Green Version]
- Wan, X.; Turner, A.M.; Vishwanath, A.; Savrasov, S.Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 2011, 83, 205101–205109. [Google Scholar] [CrossRef] [Green Version]
- Ge, H.; Ni, X.; Tian, Y.; Gupta, S.K.; Lu, M.H.; Lin, X.; Huang, W.D.; Chan, C.T.; Chen, Y.F. Experimental Observation of Acoustic Weyl Points and Topological Surface States. Phys. Rev. Appl. 2018, 10, 014017. [Google Scholar] [CrossRef] [Green Version]
- He, H.; Qiu, C.; Ye, L.; Cai, X.; Fan, X.; Ke, M.; Zhang, F.; Liu, Z. Topological negative refraction of surface acoustic waves in a Weyl phononic crystal. Nature 2018, 560, 61–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F.; Huang, X.; Lu, J.; Ma, J.; Liu, Z. Weyl points and Fermi arcs in a chiral phononic crystal. Nat. Phys. 2017, 14, 30–34. [Google Scholar] [CrossRef]
- Xiao, M.; Chen, W.J.; He, W.Y.; Chan, C.T. Synthetic gauge flux and Weyl points in acoustic systems. Nat. Phys. 2015, 11, 920–924. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Zhang, B. Acoustic Type-II Weyl Nodes from Stacking Dimerized Chains. Phys. Rev. Lett. 2016, 117, 224301. [Google Scholar] [CrossRef] [PubMed]
- Xiao, M.; Zhang, Z.Q.; Chan, C.T. Surface Impedance and Bulk Band Geometric Phases in One-Dimensional Systems. Phys. Rev. X 2014, 4, 130–136. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.; Ding, Y.Q.; Ren, J.; Sun, Y.; Li, Y.; Jiang, H.; Chen, H. Zak phase and band inversion in dimerized one-dimensional locally resonant metamaterials. Phys. Rev. B 2018, 97, 195307. [Google Scholar] [CrossRef] [Green Version]
- Downing, C.A.; Weick, G. Topological collective plasmons in bipartite chains of metallic nanoparticles. Phys. Rev. 2017, 95, 125426. [Google Scholar] [CrossRef] [Green Version]
- Feng, L.Y.; Huang, H.B.; Zhang, J.C.; Xie, X.P.; Chen, J.J. Reconfigurable topological phononic crystal slabs. Phys. Lett. A 2018, 382, 2880–2885. [Google Scholar] [CrossRef]
- Huang, H.; Chen, J.J.; Huo, S. Simultaneous topological Bragg and locally resonant edge modes of shear horizontal guided wave in one-dimensional structure. J. Phys. D Appl. Phys. 2017, 50, 275102. [Google Scholar] [CrossRef]
- Yan, M.; Lu, J.; Li, F.; Deng, W.; Huang, X.; Ma, J.; Liu, Z. On-chip valley topological materials for elastic wave manipulation. Nat. Mater. 2018, 17, 993–998. [Google Scholar] [CrossRef]
- Yin, J.; Li, L.; Zhang, H.; Li, X.; Gao, A.; Zhu, H. A prediction-based coordination caching scheme for content centric networking. In Proceedings of the 2018 27th Wireless and Optical Communication Conference (WOCC), Hualien, Taiwan, 30 April–1 May 2018. [Google Scholar]
- Chen, J.; Huo, S.; Geng, Z.G.; Huang, H.; Zhu, X.F. Topological valley transport of plate-mode waves in a homogenous thin plate with periodic stubbed surface. AIP Adv. 2017, 7, 115215. [Google Scholar] [CrossRef]
- Kim, I.; Iwamoto, S.; Arakawa, Y. Topologically protected elastic waves in one-dimensional phononic crystals of continuous media. Appl. Phys. Express 2018, 11, 017201. [Google Scholar] [CrossRef] [Green Version]
- Pal, R.K.; Ruzzene, M. Edge waves in plates with resonators: An elastic analogue of the quantum valley Hall effect. New J. Phys. 2016, 19, 025001. [Google Scholar] [CrossRef]
- Roushan, P.; Neill, C.; Chen, Y.; Kolodrubetz, M.; Quintana, C.; Leung, N.; Fang, M.; Barends, R.; Campbell, B.; Chen, Z.; et al. Observation of topological transitions in interacting quantum circuits. Nature 2014, 515, 241–244. [Google Scholar] [CrossRef]
- Schroer, M.D.; Kolodrubetz, M.H.; Kindel, W.F.; Sandberg, M.; Gao, J.; Vissers, M.R.; Pappas, D.P.; Polkovnikov, A.; Lehnert, K.W. Measuring a Topological Transition in an Artificial Spin-1/2System. Phys. Rev. Lett. 2014, 113, 50402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riwar, R.P.; Houzet, M.; Meyer, J.S.; Nazarov, Y.V. Multi-terminal Josephson junctions as topological matter. Nat. Commun. 2016, 7, 11167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fleury, R.; Sounas, D.L.; Sieck, C.F.; Haberman, M.R.; Alù, A. Sound Isolation and Giant Linear Nonreciprocity in a Compact Acoustic Circulator. Science 2014, 343, 516–519. [Google Scholar] [CrossRef]
- Yang, Z.; Gao, F.; Shi, X.; Lin, X.; Gao, Z.; Chong, Y.; Zhang, B. Topological Acoustics. Phys. Rev. Lett. 2015, 114, 114301. [Google Scholar] [CrossRef] [PubMed]
- Soluyanov, A.A.; Gresch, D.; Wang, Z.; Wu, Q.; Troyer, M.; Dai, X.; Bernevig, B.A. Type-II Weyl semimetals. Nature 2015, 527, 495–498. [Google Scholar] [CrossRef] [Green Version]
- Lin, Q.; Xiao, M.; Yuan, L.; Fan, S. Photonic Weyl point in a two-dimensional resonator lattice with a synthetic frequency dimension. Nat. Commun. 2016, 7, 13731. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Zhang, S.; Liu, J.; Liu, B. Synthetic Weyl Points of the Shear Horizontal Guided Waves in One-Dimensional Phononic Crystal Plates. Appl. Sci. 2022, 12, 167. https://doi.org/10.3390/app12010167
Zhang H, Zhang S, Liu J, Liu B. Synthetic Weyl Points of the Shear Horizontal Guided Waves in One-Dimensional Phononic Crystal Plates. Applied Sciences. 2022; 12(1):167. https://doi.org/10.3390/app12010167
Chicago/Turabian StyleZhang, Hongbo, Shaobo Zhang, Jiang Liu, and Bilong Liu. 2022. "Synthetic Weyl Points of the Shear Horizontal Guided Waves in One-Dimensional Phononic Crystal Plates" Applied Sciences 12, no. 1: 167. https://doi.org/10.3390/app12010167
APA StyleZhang, H., Zhang, S., Liu, J., & Liu, B. (2022). Synthetic Weyl Points of the Shear Horizontal Guided Waves in One-Dimensional Phononic Crystal Plates. Applied Sciences, 12(1), 167. https://doi.org/10.3390/app12010167