Changes in Tear Osmolarity and Matrix Metalloproteinase-9 Relative to Ocular Discomfort after Femtosecond Laser-Assisted Cataract Surgery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Surgical Technique
2.2. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Foster, A. Vision 2020: The cataract challenge. Community Eye Health 2000, 13, 17–19. [Google Scholar]
- Ale, J.B. Intraocular lens tilt and decentration: A concern for contemporary IOL designs. Nepal J. Ophthalmol. 2011, 3, 68–77. [Google Scholar] [CrossRef]
- Nagy, Z.Z.; Kranitz, K.; Takacs, A.I.; Mihaltz, K.; Kovacs, I.; Knorz, M.C. Comparison of intraocular lens decentration parameters after femtosecond and manual capsulotomies. J. Refract. Surg. 2011, 27, 564–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oshika, T.; Kawana, K.; Hiraoka, T.; Kaji, Y.; Kiuchi, T. Ocular higher-order wavefront aberration caused by major tilting of intraocular lens. Am. J. Ophthalmol. 2005, 140, 744–746. [Google Scholar] [CrossRef] [PubMed]
- Sanders, D.R.; Sarver, E.J.; Cooke, D.L. Accuracy and precision of a new system for measuring toric intraocular lens axis rotation. J. Cataract Refract. Surg. 2013, 39, 1190–1195. [Google Scholar] [CrossRef]
- Han, K.E.; Yoon, S.C.; Ahn, J.M.; Nam, S.M.; Stulting, R.D.; Kim, E.K.; Seo, K.Y. Evaluation of dry eye and meibomian gland dysfunction after cataract surgery. Am. J. Ophthalmol. 2014, 157, 1144–1150.e1141. [Google Scholar] [CrossRef]
- Sutu, C.; Fukuoka, H.; Afshari, N.A. Mechanisms and management of dry eye in cataract surgery patients. Curr. Opin. Ophthalmol. 2016, 27, 24–30. [Google Scholar] [CrossRef]
- Szakáts, I.; Sebestyén, M.; Tóth, É.; Purebl, G. Dry Eye Symptoms, Patient-Reported Visual Functioning, and Health Anxiety Influencing Patient Satisfaction After Cataract Surgery. Curr. Eye Res. 2017, 42, 832–836. [Google Scholar] [CrossRef] [PubMed]
- Li, X.M.; Hu, L.; Hu, J.; Wang, W. Investigation of dry eye disease and analysis of the pathogenic factors in patients after cataract surgery. Cornea 2007, 26, S16–S20. [Google Scholar] [CrossRef]
- Sambursky, R.; Davitt, W.F., 3rd; Friedberg, M.; Tauber, S. Prospective, multicenter, clinical evaluation of point-of-care matrix metalloproteinase-9 test for confirming dry eye disease. Cornea 2014, 33, 812–818. [Google Scholar] [CrossRef]
- Sambursky, R.; Davitt, W.F., 3rd; Latkany, R.; Tauber, S.; Starr, C.; Friedberg, M.; Dirks, M.S.; McDonald, M. Sensitivity and specificity of a point-of-care matrix metalloproteinase 9 immunoassay for diagnosing inflammation related to dry eye. JAMA Ophthalmol. 2013, 131, 24–28. [Google Scholar] [CrossRef]
- Schiffman, R.M.; Christianson, M.D.; Jacobsen, G.; Hirsch, J.D.; Reis, B.L. Reliability and Validity of the Ocular Surface Disease Index. Arch. Ophthalmol. 2000, 118, 615–621. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, B.D.; Whitmer, D.; Nichols, K.K.; Tomlinson, A.; Foulks, G.N.; Geerling, G.; Pepose, J.S.; Kosheleff, V.; Porreco, A.; Lemp, M.A. An objective approach to dry eye disease severity. Investig. Ophthalmol. Vis. Sci. 2010, 51, 6125–6130. [Google Scholar] [CrossRef] [Green Version]
- Starr, C.E.; Gupta, P.K.; Farid, M.; Beckman, K.A.; Chan, C.C.; Yeu, E.; Gomes, J.A.P.; Ayers, B.D.; Berdahl, J.P.; Holland, E.J.; et al. An algorithm for the preoperative diagnosis and treatment of ocular surface disorders. J. Cataract Refract. Surg. 2019, 45, 669–684. [Google Scholar] [CrossRef]
- Khanal, S.; Tomlinson, A.; Esakowitz, L.; Bhatt, P.; Jones, D.; Nabili, S.; Mukerji, S. Changes in corneal sensitivity and tear physiology after phacoemulsification. Ophthalmic Physiol. Opt. J. Br. Coll. Ophthalmic Opt. 2008, 28, 127–134. [Google Scholar] [CrossRef] [PubMed]
- González-Mesa, A.; Moreno-Arrones, J.P.; Ferrari, D.; Teus, M.A. Role of Tear Osmolarity in Dry Eye Symptoms after Cataract Surgery. Am. J. Ophthalmol. 2016, 170, 128–132. [Google Scholar] [CrossRef] [PubMed]
- Elksnis, Ē.; Lāce, I.; Laganovska, G.; Erts, R. Tear osmolarity after cataract surgery. J. Curr. Ophthalmol. 2019, 31, 31–35. [Google Scholar] [CrossRef]
- Chan, C.C.; Borovik, A.; Hofmann, I.; Gulliver, E.; Rocha, G. Validity and Reliability of a Novel Handheld Osmolarity System for Measurement of a National Institute of Standards Traceable Solution. Cornea 2018, 37, 1169–1174. [Google Scholar] [CrossRef] [PubMed]
- Reis, H.; Grenier, S.; Albuquerque, D. A Comparison of In Vivo and In Vitro Osmometers for the Assessment of Dry Eye Disease. Clin. Refract. Optom. 2017, 26, 47–49. [Google Scholar]
- Gilbard, J.P.; Farris, R.L.; Santamaria, J., 2nd. Osmolarity of tear microvolumes in keratoconjunctivitis sicca. Arch. Ophthalmol. 1978, 96, 677–681. [Google Scholar] [CrossRef]
- Khanal, S.; Tomlinson, A.; McFadyen, A.; Diaper, C.; Ramaesh, K. Dry eye diagnosis. Investig. Ophthalmol. Vis. Sci. 2008, 49, 1407–1414. [Google Scholar] [CrossRef]
- Lemp, M.A.; Bron, A.J.; Baudouin, C.; Benítez Del Castillo, J.M.; Geffen, D.; Tauber, J.; Foulks, G.N.; Pepose, J.S.; Sullivan, B.D. Tear osmolarity in the diagnosis and management of dry eye disease. Am. J. Ophthalmol. 2011, 151, 792–798.e791. [Google Scholar] [CrossRef] [PubMed]
- Mathers, W.D.; Lane, J.A.; Sutphin, J.E.; Zimmerman, M.B. Model for ocular tear film function. Cornea 1996, 15, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Rolando, M.; Refojo, M.F.; Kenyon, K.R. Increased tear evaporation in eyes with keratoconjunctivitis sicca. Arch. Ophthalmol. 1983, 101, 557–558. [Google Scholar] [CrossRef]
- Tomlinson, A.; Khanal, S.; Ramaesh, K.; Diaper, C.; McFadyen, A. Tear film osmolarity: Determination of a referent for dry eye diagnosis. Investig. Ophthalmol. Vis. Sci. 2006, 47, 4309–4315. [Google Scholar] [CrossRef] [Green Version]
- Versura, P.; Profazio, V.; Campos, E.C. Performance of tear osmolarity compared to previous diagnostic tests for dry eye diseases. Curr. Eye Res. 2010, 35, 553–564. [Google Scholar] [CrossRef] [PubMed]
- Med Pharma. I-Pen Osmolarity System Usual Manual; I-Med Pharma Inc.: Dollard-des-Ormeaux, QC, Canada, 2016. [Google Scholar]
- Park, J.Y.; Kim, B.G.; Kim, J.S.; Hwang, J.H. Matrix Metalloproteinase 9 Point-of-Care Immunoassay Result Predicts Response to Topical Cyclosporine Treatment in Dry Eye Disease. Transl. Vis. Sci. Technol. 2018, 7, 31. [Google Scholar] [CrossRef]
- Ozcura, F.; Aydin, S.; Helvaci, M.R. Ocular surface disease index for the diagnosis of dry eye syndrome. Ocul. Immunol. Inflamm. 2007, 15, 389–393. [Google Scholar] [CrossRef] [PubMed]
- The definition and classification of dry eye disease: Report of the Definition and Classification Subcommittee of the International Dry Eye WorkShop (2007). Ocul. Surf. 2007, 5, 75–92. [CrossRef]
- Begley, C.G.; Chalmers, R.L.; Abetz, L.; Venkataraman, K.; Mertzanis, P.; Caffery, B.A.; Snyder, C.; Edrington, T.; Nelson, D.; Simpson, T. The Relationship between Habitual Patient-Reported Symptoms and Clinical Signs among Patients with Dry Eye of Varying Severity. Investig. Ophthalmol. Vis. Sci. 2003, 44, 4753–4761. [Google Scholar] [CrossRef]
- Nichols, K.K.; Nichols, J.J.; Mitchell, G.L. The lack of association between signs and symptoms in patients with dry eye disease. Cornea 2004, 23, 762–770. [Google Scholar] [CrossRef]
- Gupta, P.K.; Drinkwater, O.J.; VanDusen, K.W.; Brissette, A.R.; Starr, C.E. Prevalence of ocular surface dysfunction in patients presenting for cataract surgery evaluation. J. Cataract Refract. Surg. 2018, 44, 1090–1096. [Google Scholar] [CrossRef]
- Cho, Y.K.; Kim, M.S. Dry eye after cataract surgery and associated intraoperative risk factors. Korean J. Ophthalmol. 2009, 23, 65–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishrat, S.; Nema, N.; Chandravanshi, S.C.L. Incidence and pattern of dry eye after cataract surgery. Saudi J. Ophthalmol. 2019, 33, 34–40. [Google Scholar] [CrossRef]
- Moon, H.; Yoon, J.H.; Hyun, S.H.; Kim, K.H. Short-term influence of aspirating speculum use on dry eye after cataract surgery: A prospective study. Cornea 2014, 33, 373–375. [Google Scholar] [CrossRef] [PubMed]
- Ram, J.; Gupta, A.; Brar, G.; Kaushik, S.; Gupta, A. Outcomes of phacoemulsification in patients with dry eye. J. Cataract Refract. Surg. 2002, 28, 1386–1389. [Google Scholar] [CrossRef]
- Ram, J.; Sharma, A.; Pandav, S.S.; Gupta, A.; Bambery, P. Cataract surgery in patients with dry eyes. J. Cataract Refract. Surg. 1998, 24, 1119–1124. [Google Scholar] [CrossRef]
- Chung, Y.W.; Oh, T.H.; Chung, S.K. The effect of topical cyclosporine 0.05% on dry eye after cataract surgery. Korean J. Ophthalmol. 2013, 27, 167–171. [Google Scholar] [CrossRef] [Green Version]
- Oh, T.; Jung, Y.; Chang, D.; Kim, J.; Kim, H. Changes in the tear film and ocular surface after cataract surgery. Jpn. J. Ophthalmol. 2012, 56, 113–118. [Google Scholar] [CrossRef]
- Ju, R.H.; Chen, Y.; Chen, H.S.; Zhou, W.J.; Yang, W.; Lin, Z.D.; Wu, Z.M. Changes in ocular surface status and dry eye symptoms following femtosecond laser-assisted cataract surgery. Int. J. Ophthalmol. 2019, 12, 1122–1126. [Google Scholar] [CrossRef]
- Craig, J.P.; Nichols, K.K.; Akpek, E.K.; Caffery, B.; Dua, H.S.; Joo, C.K.; Liu, Z.; Nelson, J.D.; Nichols, J.J.; Tsubota, K.; et al. TFOS DEWS II Definition and Classification Report. Ocul. Surf. 2017, 15, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Iglesias, E.; Sajnani, R.; Levitt, R.C.; Sarantopoulos, C.D.; Galor, A. Epidemiology of Persistent Dry Eye-Like Symptoms After Cataract Surgery. Cornea 2018, 37, 893–898. [Google Scholar] [CrossRef]
- Sajnani, R.; Raia, S.; Gibbons, A.; Chang, V.; Karp, C.L.; Sarantopoulos, C.D.; Levitt, R.C.; Galor, A. Epidemiology of Persistent Postsurgical Pain Manifesting as Dry Eye-Like Symptoms After Cataract Surgery. Cornea 2018, 37, 1535–1541. [Google Scholar] [CrossRef]
- Aragona, P.; Aguennouz, M.; Rania, L.; Postorino, E.; Sommario, M.S.; Roszkowska, A.M.; De Pasquale, M.G.; Pisani, A.; Puzzolo, D. Matrix metalloproteinase 9 and transglutaminase 2 expression at the ocular surface in patients with different forms of dry eye disease. Ophthalmology 2015, 122, 62–71. [Google Scholar] [CrossRef] [PubMed]
- De Paiva, C.S.; Corrales, R.M.; Villarreal, A.L.; Farley, W.J.; Li, D.Q.; Stern, M.E.; Pflugfelder, S.C. Corticosteroid and doxycycline suppress MMP-9 and inflammatory cytokine expression, MAPK activation in the corneal epithelium in experimental dry eye. Exp. Eye Res. 2006, 83, 526–535. [Google Scholar] [CrossRef]
- Li, D.Q.; Luo, L.; Chen, Z.; Kim, H.S.; Song, X.J.; Pflugfelder, S.C. JNK and ERK MAP kinases mediate induction of IL-1beta, TNF-alpha and IL-8 following hyperosmolar stress in human limbal epithelial cells. Exp. Eye Res. 2006, 82, 588–596. [Google Scholar] [CrossRef] [Green Version]
- Massingale, M.L.; Li, X.; Vallabhajosyula, M.; Chen, D.; Wei, Y.; Asbell, P.A. Analysis of Inflammatory Cytokines in the Tears of Dry Eye Patients. Cornea 2009, 28, 1023–1027. [Google Scholar] [CrossRef]
- Lanza, N.L.; Valenzuela, F.; Perez, V.L.; Galor, A. The Matrix Metalloproteinase 9 Point-of-Care Test in Dry Eye. Ocul. Surf. 2016, 14, 189–195. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Hua, H.; Wu, M.; Yu, Y.; Yu, W.; Lai, K.; Yao, K. Evaluation of dry eye after femtosecond laser-assisted cataract surgery. J. Cataract Refract. Surg. 2015, 41, 2614–2623. [Google Scholar] [CrossRef] [PubMed]
- Konomi, K.; Chen, L.L.; Tarko, R.S.; Scally, A.; Schaumberg, D.A.; Azar, D.; Dartt, D.A. Preoperative characteristics and a potential mechanism of chronic dry eye after LASIK. Investig. Ophthalmol. Vis. Sci. 2008, 49, 168–174. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez, A.E.; Rodriguez-Prats, J.L.; Hamdi, I.M.; Galal, A.; Awadalla, M.; Alio, J.L. Comparison of goblet cell density after femtosecond laser and mechanical microkeratome in LASIK. Investig. Ophthalmol. Vis. Sci. 2007, 48, 2570–2575. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Prats, J.L.; Hamdi, I.M.; Rodriguez, A.E.; Galal, A.; Alio, J.L. Effect of suction ring application during LASIK on goblet cell density. J. Refract. Surg. 2007, 23, 559–562. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.Y.; Lee, Y.J. Conjunctival changes induced by LASIK suction ring in a rabbit model. Ophthalmic Res. 2006, 38, 343–349. [Google Scholar] [CrossRef]
- Igarashi, T.; Takahashi, H.; Kobayashi, M.; Kunishige, T.; Arima, T.; Fujimoto, C.; Suzuki, H.; Okuda, T.; Takahashi, H. Changes in Tear Osmolarity after Cataract Surgery. J. Nippon. Med. Sch. 2021, 88, 204–208. [Google Scholar] [CrossRef]
- Lee, J.H.; Min, K.; Kim, S.K.; Kim, E.K.; Kim, T.-I. Inflammatory Cytokine and Osmolarity Changes in the Tears of Dry Eye Patients Treated with Topical 1% Methylprednisolone. Yonsei Med. J. 2014, 55, 203–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bron, A.J.; Tomlinson, A.; Foulks, G.N.; Pepose, J.S.; Baudouin, C.; Geerling, G.; Nichols, K.K.; Lemp, M.A. Rethinking dry eye disease: A perspective on clinical implications. Ocul. Surf. 2014, 12, S1–S31. [Google Scholar] [CrossRef]
- Epitropoulos, A.T.; Matossian, C.; Berdy, G.J.; Malhotra, R.P.; Potvin, R. Effect of tear osmolarity on repeatability of keratometry for cataract surgery planning. J. Cataract Refract. Surg. 2015, 41, 1672–1677. [Google Scholar] [CrossRef]
- Goto, E.; Yagi, Y.; Matsumoto, Y.; Tsubota, K. Impaired functional visual acuity of dry eye patients. Am. J. Ophthalmol. 2002, 133, 181–186. [Google Scholar] [CrossRef]
- Tutt, R.; Bradley, A.; Begley, C.; Thibos, L.N. Optical and visual impact of tear break-up in human eyes. Investig. Ophthalmol. Vis. Sci. 2000, 41, 4117–4123. [Google Scholar]
Parameter | Total (51 Eyes, 51 Patients) |
---|---|
Mean age (years) ± SD 1, (range) | 67.14 ± 8.38 (52–86) |
Female, n (%) | 35 (68.6) |
Laterality, right eye, n (%) | 19 (37.3) |
Parameter | Baseline | 1 Day | 1 Week | 1 Month | p 1 | |||
---|---|---|---|---|---|---|---|---|
Overall | 1 Day | 1 Week | 1 Month | |||||
Osmolarity, abnormal, n (%) | 27 (52.9) | 31 (60.8) | 20 (39.2) | 23 (45.1) | 0.103 | 0.427 | 0.108 | 0.323 |
Osmolarity, mean (SD) | 310.92 (16.52) | 309.75 (15.93) | 303.78 (15.99) | 304.69 (14.97) | 0.002 | 0.711 | 0.048 | 0.146 |
MMP-9, abnormal, n (%) | 46 (90.2) | 51 (100.0) | 46 (90.2) | 29 (56.9) | <0.001 | 0.010 | >0.999 | <0.001 |
MMP-9, mean (SD) | 1.94 (0.97) | 3.55 (0.73) | 1.73 (1.13) | 0.82 (0.82) | <0.001 | <0.001 | 0.061 | <0.001 |
Parameter | Baseline | 1 Month | p |
---|---|---|---|
OSDI overall, abnormal, n (%) | 39 (76.5) | 35 (68.6) | 0.206 1 |
OSDI overall, mean (SD) | 29.45 (20.36) | 27.94 (2.79) | 0.651 1 |
Ocular discomfort, mean (SD) | 19.51 (14.64) | 32.52 (21.60) | <0.001 2 |
Visual function, mean (SD) | 47.35 (30.94) | 14.19 (16.01) | <0.001 2 |
Environmental triggers, mean (SD) | 30.56 (29.80) | 30.06 (29.35) | 0.770 2 |
Parameter | Osmolarity (+) (n = 27) | Osmolarity (−) (n = 24) | p |
---|---|---|---|
Osmolarity | |||
Abnormal, n (%) | |||
1 day | 18 (66.7) | 13 (54.2) | 0.361 3 |
1 week | 10 (37.0) | 10 (41.7) | 0.735 3 |
1 month | 15(55.6) | 8 (33.3) | 0.111 3 |
Average, mean (SD) | |||
Baseline | 323.22 (12.32) | 297.08 (6.67) | <0.001 2 |
1 day | 310.70 (16.42) | 308.67 (15.65) | 0.653 1 |
1 week | 304.67 (16.02) | 302.79 (16.24) | 0.734 2 |
1 month | 307.93 (15.56) | 301.04 (13.69) | 0.102 1 |
MMP-9 | |||
Abnormal, n (%) | |||
Baseline | 24 (88.9) | 22 (91.7) | 0.192 4 |
1 day | 27 (100) | 24 (100) | |
1 week | 24 (88.9) | 22 (91.7) | 0.739 4 |
1 month | 15 (55.6) | 14 (58.3) | 0.842 3 |
Average, mean (SD) | |||
Baseline | 1.78 (1.05) | 2.12 (0.85) | 0.151 2 |
1 day | 3.70 (0.54) | 3.38 (0.88) | 0.169 2 |
1 week | 1.52 (1.01) | 1.96 (1.23) | 0.192 2 |
1 month | 0.78 (0.80) | 0.87 (0.85) | 0.694 2 |
OSDI | |||
Abnormal, n (%) | |||
Baseline | 21 (77.8) | 18 (75.0) | 0.815 3 |
1 month | 20 (74.1) | 15 (62.5) | 0.374 3 |
Average, mean (SD) | |||
Baseline | 27.66 (18.27) | 31.04 (22.75) | 0.706 2 |
1 month | 29.91 (21.37) | 25.72 (18.39) | 0.590 2 |
Ocular discomfort, mean (SD) | |||
Baseline | 19.63 (15.38) | 19.38 (14.09) | 0.954 2 |
1 month | 35.65 (24.79) | 29.00 (17.18) | 0.369 2 |
Visual function, mean (SD) | |||
Baseline | 43.75 (28.91) | 49.64 (33.90) | 0.553 2 |
1 month | 15.92 (16.83) | 11.81 (15.09) | 0.166 2 |
Environmental triggers, mean (SD) | |||
Baseline | 26.44 (29.03) | 31.16 (31.10) | 0.603 2 |
1 month | 31.09 (27.64) | 27.69 (31.62) | 0.410 2 |
Parameter | MMP-9 (+) (n = 46) | MMP-9 (−) (n = 5) | p |
---|---|---|---|
MMP-9 | |||
Abnormal, n (%) | |||
1 day | 46 (100.0) | 5 (100.0) | |
1 week | 42 (91.3) | 4 (80.0) | 0.416 3 |
1 month | 27 (58.7) | 2 (40.0) | 0.641 3 |
Average, mean (SD) | |||
Baseline | 2.15 (0.76) | 0.00 (0.00) | <0.001 2 |
1 day | 3.63 (0.61) | 2.80 (1.30) | 0.164 2 |
1 week | 1.80 (1.15) | 1.00 (0.71) | 0.154 2 |
1 month | 0.85 (0.82) | 0.60 (0.89) | 0.548 2 |
Osmolarity | |||
Abnormal, n (%) | |||
Baseline | 24 (52.2) | 3 (60.0) | >0.999 3 |
1 day | 29 (63.0) | 2 (40.0) | >0.369 3 |
1 week | 18 (39.1) | 2 (40.0) | >0.999 3 |
1 month | 21 (45.7) | 42(40.0) | >0.999 3 |
Average, mean (SD) | |||
Baseline | 310.35 (16.53) | 316.20 (17.30) | 0.458 1 |
1 day | 310.11 (15.54) | 306.40 (20.98) | 0.626 1 |
1 week | 303.48 (15.95) | 306.60 (17.90) | 0.724 2 |
1 month | 305.30 (13.42) | 299.00 (27.07) | 0.633 1 |
OSDI | |||
Abnormal, n (%) | |||
Baseline | 34 (73.9) | 5 (100.0) | 0.323 3 |
1 month | 30 (65.2) | 5 (100.0) | 0.167 3 |
Average, mean (SD) | |||
Baseline | 27.96 (20.66) | 41.11 (13.58) | 0.091 2 |
1 month | 27.04 (20.25) | 36.20 (16.23) | 0.218 2 |
Ocular discomfort, mean (SD) | |||
Baseline | 18.70 (14.81) | 27.00 (11.51) | 0.164 2 |
1 month | 32.16 (22.56) | 35.83 (9.59) | 0.395 2 |
Visual function, mean (SD) | |||
Baseline | 44.74 (32.24) | 62.08 (12.27) | 0.096 2 |
1 month | 13.78 (16.73) | 15.00 (17.13) | 0.264 2 |
Environmental triggers, mean (SD) | |||
Baseline | 27.56 (30.48) | 38.33 (23.27) | 0.278 2 |
1 month | 27.36 (28.01) | 48.33 (37.91) | 0.159 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eah, K.S.; Lee, H.; Kim, J.Y.; Tchah, H. Changes in Tear Osmolarity and Matrix Metalloproteinase-9 Relative to Ocular Discomfort after Femtosecond Laser-Assisted Cataract Surgery. Appl. Sci. 2021, 11, 11878. https://doi.org/10.3390/app112411878
Eah KS, Lee H, Kim JY, Tchah H. Changes in Tear Osmolarity and Matrix Metalloproteinase-9 Relative to Ocular Discomfort after Femtosecond Laser-Assisted Cataract Surgery. Applied Sciences. 2021; 11(24):11878. https://doi.org/10.3390/app112411878
Chicago/Turabian StyleEah, Kyu Sang, Hun Lee, Jae Yong Kim, and Hungwon Tchah. 2021. "Changes in Tear Osmolarity and Matrix Metalloproteinase-9 Relative to Ocular Discomfort after Femtosecond Laser-Assisted Cataract Surgery" Applied Sciences 11, no. 24: 11878. https://doi.org/10.3390/app112411878
APA StyleEah, K. S., Lee, H., Kim, J. Y., & Tchah, H. (2021). Changes in Tear Osmolarity and Matrix Metalloproteinase-9 Relative to Ocular Discomfort after Femtosecond Laser-Assisted Cataract Surgery. Applied Sciences, 11(24), 11878. https://doi.org/10.3390/app112411878