Effects of Dry Heat Treatment and Milling on Sorghum Chemical Composition, Functional and Molecular Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sorghum Treatment
2.2. Proximate Composition
2.3. Functional Properties of Sorghum Flours
2.3.1. Hydration Capacity
2.3.2. Water Absorption Capacity
2.3.3. Oil Absorption Capacity
2.3.4. Determination of Solubility Index
2.3.5. Water Retention Capacity
2.3.6. Swelling Power
2.3.7. Emulsion Activity and Stability
2.3.8. Bulk Density
2.3.9. Foaming Capacity and Stability
2.4. FT-IR Spectra Collection and Interpretation
2.5. Statistical Analysis
3. Results
3.1. Proximate Composition
3.2. Functional Properties
3.3. Molecular Characteristics
3.4. Relations between Variables
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ratnavathi, C.; Patil, L.V.; Chavan, U. Sorghum Biochemistry: An Industrial Perspective; Academic Press: Oxford, UK, 2016; ISBN 9780415475976. [Google Scholar]
- Kamble, D.B.; Singh, R.; Rani, S.; Kaur, B.P.; Upadhyay, A.; Kumar, N. Optimization and characterization of antioxidant potential, in vitro protein digestion and structural attributes of microwave processed multigrain pasta. J. Food Process. Preserv. 2019, 43, e14125. [Google Scholar] [CrossRef]
- Pérez, A.; Saucedo, O.; Iglesias, J.; Wencomo, H.B.; Reyes, F.; Oquendo, G.; Milián, I. Caracterización y potencialidades del grano de sorgo (Sorghum bicolor L. Moench). Pastos Forrajes 2010, 33, 1–25. [Google Scholar]
- Beta, T.; Obilana, A.B.; Corke, H. Genetic diversity in properties of starch from Zimbabwean sorghum landraces. Cereal Chem. 2001, 78, 583–589. [Google Scholar] [CrossRef]
- Tasie, M.M.; Gebreyes, B.G. Characterization of Nutritional, Antinutritional, and Mineral Contents of Thirty-Five Sorghum Varieties Grown in Ethiopia. Int. J. Food Sci. 2020, 2020, 8243617. [Google Scholar] [CrossRef] [PubMed]
- Chávez, D.; Ascheri, J.; Martins, A.; Carvalho, C.; Bernardo, C.; Teles, A. Sorghum, an alternative cereal for gluten-free product. Rev. Chil. Nutr. 2018, 45, 169–177. [Google Scholar] [CrossRef] [Green Version]
- Hager, A.S.; Wolter, A.; Jacob, F.; Zannini, E.; Arendt, E.K. Nutritional properties and ultra-structure of commercial gluten free flours from different botanical sources compared to wheat flours. J. Cereal Sci. 2012, 56, 239–247. [Google Scholar] [CrossRef]
- Rashwan, A.K.; Yones, H.A.; Karim, N.; Taha, E.M.; Chen, W. Potential processing technologies for developing sorghum-based food products: An update and comprehensive review. Trends Food Sci. Technol. 2021, 110, 168–182. [Google Scholar] [CrossRef]
- Weerasooriya, D.K.; Bean, S.R.; Nugusu, Y.; Ioerger, B.P.; Tesso, T.T. The effect of genotype and traditional food processing methods on in-vitro protein digestibility and micronutrient profile of sorghum cooked products. PLoS ONE 2018, 13, e0203005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Llopart, E.E.; Drago, S.R.; De Greef, D.M.; Torres, R.L.; González, R.J. Effects of extrusion conditions on physical and nutritional properties of extruded whole grain red sorghum (sorghum spp.). Int. J. Food Sci. Nutr. 2014, 65, 34–41. [Google Scholar] [CrossRef]
- Shen, S.; Huang, R.; Li, C.; Wu, W.; Chen, H.; Shi, J.; Chen, S.; Ye, X. Phenolic Compositions and Antioxidant Activities Differ Significantly among Sorghum Grains with Different Applications. Molecules 2018, 23, 1203. [Google Scholar] [CrossRef] [Green Version]
- Wolter, A. Fundamental Studies of Sourdoughs Fermented with Weissella cibaria and Lactobacillus plantarum: Influence on Baking Characteristics, Sensory Profiles and In Vitro Starch Digestibility of Gluten-Free Breads; National University of Ireland Coláiste: Cork, Ireland, 2013. [Google Scholar]
- Schober, T.J.; Bean, S.R.; Boyle, D.L. Gluten-free sorghum bread improved by sourdough fermentation: Biochemical, rheological, and microstructural background. J. Agric. Food Chem. 2007, 55, 5137–5146. [Google Scholar] [CrossRef]
- Winger, M.; Khouryieh, H.; Aramouni, F.; Herald, T. Sorghum Flour Characterization and Evaluation in Gluten-Free Flour Tortilla. J. Food Qual. 2014, 37, 95–106. [Google Scholar] [CrossRef] [Green Version]
- Mary, C. Fernholz Evaluation of Four Sorghum Hybrids through the Development of Sorghum Flour Tortillas; Kansas State University: Manhattan, KS, USA, 2008. [Google Scholar]
- Cisse, F.; Erickson, D.P.; Hayes, A.M.R.; Opekun, A.R.; Nichols, B.L.; Hamaker, B.R. Traditional malian solid foods made from sorghum and millet have markedly slower gastric emptying than rice, potato, or pasta. Nutrients 2018, 10, 124. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, S.M.R.; De Mello, A.P.; De Caldas Rosa Dos Anjos, M.; Krüger, C.C.H.; Azoubel, P.M.; De Oliveira Alves, M.A. Utilization of sorghum, rice, corn flours with potato starch for the preparation of gluten-free pasta. Food Chem. 2016, 191, 147–151. [Google Scholar] [CrossRef]
- Suhendro, E.L.; Kunetz, C.F.; McDonough, C.M.; Rooney, L.W.; Waniska, R.D. Cooking characteristics and quality of noodles from food sorghum. Cereal Chem. 2000, 77, 96–100. [Google Scholar] [CrossRef]
- Niba, L.L.; Hoffman, J. Resistant starch and β-glucan levels in grain sorghum (Sorghum bicolor M.) are influenced by soaking and autoclaving. Food Chem. 2003, 81, 113–118. [Google Scholar] [CrossRef]
- Ofosu, F.K.; Elahi, F.; Daliri, E.B.M.; Yeon, S.J.; Ham, H.J.; Kim, J.H.; Han, S.I.; Oh, D.H. Flavonoids in Decorticated Sorghum Grains Exert Antioxidant, Antidiabetic and Antiobesity Activities. Molecules 2020, 25, 2854. [Google Scholar] [CrossRef]
- Selma, M.V.; Espín, J.C.; Tomás-Barberán, F.A. Interaction between phenolics and gut microbiota: Role in human health. J. Agric. Food Chem. 2009, 57, 6485–6501. [Google Scholar] [CrossRef] [PubMed]
- Raigar, R.K.; Prabhakar, P.K.; Srivastav, P.P. Effect of Different Thermal Treatments on Grinding Characteristics, Granular Morphology and Yield of Ready-to-Eat Wheat Grits. J. Food Process Eng. 2017, 40, e12363. [Google Scholar] [CrossRef]
- Murthy, K.V.; Ravi, R.; Bhat, K.K.; Raghavarao, K.S.M.S. Studies on roasting of wheat using fluidized bed roaster. J. Food Eng. 2008, 89, 336–342. [Google Scholar] [CrossRef]
- Schoeman, L.; du Plessis, A.; Verboven, P.; Nicolaï, B.M.; Cantre, D.; Manley, M. Effect of oven and forced convection continuous tumble (FCCT) roasting on the microstructure and dry milling properties of white maize. Innov. Food Sci. Emerg. Technol. 2017, 44, 54–66. [Google Scholar] [CrossRef]
- Dayakar Rao, B.; Anis, M.; Kalpana, K.; Sunooj, K.V.; Patil, J.V.; Ganesh, T. Influence of milling methods and particle size on hydration properties of sorghum flour and quality of sorghum biscuits. LWT Food Sci. Technol. 2016, 67, 8–13. [Google Scholar] [CrossRef]
- Trappey, E.F.; Khouryieh, H.; Aramouni, F.; Herald, T. Effect of sorghum flour composition and particle size on quality properties of gluten-free bread. Food Sci. Technol. Int. 2015, 21, 188–202. [Google Scholar] [CrossRef] [PubMed]
- Rumler, R.; Bender, D.; Speranza, S.; Frauenlob, J.; Gamper, L.; Hoek, J.; Jäger, H.; Schönlechner, R. Chemical and physical characterization of sorghum milling fractions and sorghum whole meal flours obtained via stone or roller milling. Foods 2021, 10, 870. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y. Effect of Different Tempering Methods on Sorghum Milling; Purdue University: West Lafayette, IN, USA, 2016. [Google Scholar]
- Mahasukhonthachat, K.; Sopade, P.A.; Gidley, M.J. Kinetics of starch digestion in sorghum as affected by particle size. J. Food Eng. 2010, 96, 18–28. [Google Scholar] [CrossRef]
- Palavecino, P.M.; Penci, M.C.; Calderón-Domínguez, G.; Ribotta, P.D. Chemical composition and physical properties of sorghum flour prepared from different sorghum hybrids grown in Argentina. Starch Stärke 2016, 68, 1055–1064. [Google Scholar] [CrossRef] [Green Version]
- Zhu, F. Structure, physicochemical properties, modifications, and uses of sorghum starch. Compr. Rev. Food Sci. Food Saf. 2014, 13, 597–610. [Google Scholar] [CrossRef]
- Wong, J.H.; Marx, D.B.; Wilson, J.D.; Buchanan, B.B.; Lemaux, P.G.; Pedersen, J.F. Principal component analysis and biochemical characterization of protein and starch reveal primary targets for improving sorghum grain. Plant Sci. 2010, 179, 598–611. [Google Scholar] [CrossRef] [Green Version]
- Mohapatra, D.; Patel, A.S.; Kar, A.; Deshpande, S.S.; Tripathi, M.K. Effect of different processing conditions on proximate composition, anti-oxidants, anti-nutrients and amino acid profile of grain sorghum. Food Chem. 2019, 271, 129–135. [Google Scholar] [CrossRef]
- Wu, G.; Ashton, J.; Simic, A.; Fang, Z.; Johnson, S.K. Mineral availability is modified by tannin and phytate content in sorghum flaked breakfast cereals. Food Res. Int. 2018, 103, 509–514. [Google Scholar] [CrossRef]
- Ranganathan, V.; Nunjundiah, I.T.; Bhattacharya, S. Effect of roasting on rheological and functional properties of sorghum flour. Food Sci. Technol. Int. 2014, 20, 579–589. [Google Scholar] [CrossRef]
- Sharanagat, V.S.; Suhag, R.; Anand, P.; Deswal, G.; Kumar, R.; Chaudhary, A.; Singh, L.; Singh Kushwah, O.; Mani, S.; Kumar, Y.; et al. Physico-functional, thermo-pasting and antioxidant properties of microwave roasted sorghum [Sorghum bicolor (L.) Moench]. J. Cereal Sci. 2019, 85, 111–119. [Google Scholar] [CrossRef]
- Fao Chapter 4: Summary—Integration of Analytical Methods and Food Energy Conversion Factors. Available online: https://www.fao.org/3/y5022e/y5022e05.htm#bm5 (accessed on 9 December 2021).
- Bordei, D.; Bahrim, G.; Pâslaru, V.; Gasparotti, C.; Elisei, A.; Banu, I.; Ionescu, L.; Codină, G. Quality Control in the Bakery Industry-Analysis Methods. Galați Acad. 2007, 1, 203–212. [Google Scholar]
- Oladiran, D.A.; Emmambux, N.M. Nutritional and Functional Properties of Extruded Cassava-Soy Composite with Grape Pomace. Starch 2018, 70, 1700298. [Google Scholar] [CrossRef]
- Elkhalifa, A.E.O.; Bernhardt, R. Combination Effect of Germination and Fermentation on Functional Properties of Sorghum Flour. Curr. J. Appl. Sci. Technol. 2018, 30, 1–12. [Google Scholar] [CrossRef]
- Zhu, F.; Du, B.; Xu, B. Super fi ne grinding improves functional properties and antioxidant capacities of bran dietary fi bre from Qingke (hull-less barley) grown in Qinghai-Tibet Plateau, China. J. Cereal Sci. 2015, 65, 43–47. [Google Scholar] [CrossRef]
- Sharma, R.; Sharma, S. Anti-nutrient & bioactive profile, in vitro nutrient digestibility, techno-functionality, molecular and structural interactions of foxtail millet (Setaria italica L.) as influenced by biological processing techniques. Food Chem. 2022, 368, 130815. [Google Scholar] [CrossRef]
- Dave, G.; Modi, H. FT-IR method for estimation of phytic acid content during bread-making process. J. Food Meas. Charact. 2018, 12, 2202–2208. [Google Scholar] [CrossRef]
- Yasar, S.; Tosun, R.; Sonmez, Z. Fungal fermentation inducing improved nutritional qualities associated with altered secondary protein structure of soybean meal determined by FTIR spectroscopy. Meas. J. Int. Meas. Confed. 2020, 161, 107895. [Google Scholar] [CrossRef]
- González, M.; Vernon-Carter, E.J.; Alvarez-Ramirez, J.; Carrera-Tarela, Y. Effects of dry heat treatment temperature on the structure of wheat flour and starch in vitro digestibility of bread. Int. J. Biol. Macromol. 2021, 166, 1439–1447. [Google Scholar] [CrossRef]
- Liu, F.Y.; Guo, X.N.; Xing, J.J.; Zhu, K.X. Effect of thermal treatments on: In vitro starch digestibility of sorghum dried noodles. Food Funct. 2020, 11, 3420–3431. [Google Scholar] [CrossRef] [PubMed]
- Alvarenga, I.C.; Ou, Z.; Thiele, S.; Alavi, S.; Aldrich, C.G. Effects of milling sorghum into fractions on yield, nutrient composition, and their performance in extrusion of dog food. J. Cereal Sci. 2018, 82, 121–128. [Google Scholar] [CrossRef]
- Vargas-Solórzano, J.W.; Carvalho, C.W.P.; Takeiti, C.Y.; Ascheri, J.L.R.; Queiroz, V.A.V. Physicochemical properties of expanded extrudates from colored sorghum genotypes. Food Res. Int. 2014, 55, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Desai, G.B.; Deshmukh, N.M.; Kshirsagar, R.B. Effect of Malting and Roasting of Grains on Nutritional and Sensory Quality of Sorghum Based Multigrain Roti. Trends Biosci. 2017, 10, 2235. [Google Scholar]
- He, J.; Torres Lechuga, M.E.; Lei, Y.; Refat, B.; Prates, L.L.; Zhang, H.; Yu, P. Protein molecular structural, physicochemical and nutritional characteristics of warm-season adapted genotypes of sorghum grain: Impact of heat-related processing. J. Cereal Sci. 2019, 85, 182–191. [Google Scholar] [CrossRef]
- Queiroz, V.A.V.; da Silva, C.S.; de Menezes, C.B.; Schaffert, R.E.; Guimarães, F.F.M.; Guimarães, L.J.M.; de Guimarães, P.E.; Tardin, F.D. Nutritional composition of sorghum [Sorghum bicolor (L.) Moench] genotypes cultivated without and with water stress. J. Cereal Sci. 2015, 65, 103–111. [Google Scholar] [CrossRef]
- Xiong, Y.; Zhang, P.; Warner, R.D.; Fang, Z. Sorghum Grain: From Genotype, Nutrition, and Phenolic Profile to Its Health Benefits and Food Applications. Compr. Rev. Food Sci. Food Saf. 2019, 18, 2025–2046. [Google Scholar] [CrossRef] [Green Version]
- Ragaee, S.; Abdel-Aal, E.S.M.; Noaman, M. Antioxidant activity and nutrient composition of selected cereals for food use. Food Chem. 2006, 98, 32–38. [Google Scholar] [CrossRef]
- Sharma, R.; Sharma, S.; Dar, B.N.; Singh, B. Millets as potential nutri-cereals: A review of nutrient composition, phytochemical profile and techno-functionality. Int. J. Food Sci. Technol. 2021, 56, 3703–3718. [Google Scholar] [CrossRef]
- Coțovanu, I.; Mironeasa, S. Buckwheat seeds: Impact of milling fractions and addition level on wheat bread dough rheology. Appl. Sci. 2021, 11, 1731. [Google Scholar] [CrossRef]
- Gomez, M.; Martinez, M.M. Fruit and vegetable by-products as novel ingredients to improve the nutritional quality of baked goods. Crit. Rev. Food Sci. Nutr. 2018, 58, 2119–2135. [Google Scholar] [CrossRef] [PubMed]
- Adebowale, K.O.; Olu-Owolabi, B.I.; Olayinka, O.O.; Lawal, O.S. Effect of heat moisture treatment and annealing on physicochemical properties of red sorghum starch. Afr. J. Biotechnol. 2005, 4, 928–933. [Google Scholar] [CrossRef]
- Zlatanović, S.; Kalušević, A.; Micić, D.; Laličić-Petronijević, J.; Tomić, N.; Ostojić, S.; Gorjanović, S. Functionality and storability of cookies fortified at the industrial scale with up to 75% of apple pomace flour produced by dehydration. Foods 2019, 8, 561. [Google Scholar] [CrossRef] [Green Version]
- Caprita, R.; Caprita, A.; Cretescu, I. Effect of Heat Treatment and Digestive Enzymes on Cereal Water-Retention Capacity. Sci. Pap. Anim. Sci. Biotechnol. 2015, 48, 94–96. [Google Scholar]
- Di Cairano, M.; Condelli, N.; Caruso, M.C.; Marti, A.; Cela, N.; Galgano, F. Functional properties and predicted glycemic index of gluten free cereal, pseudocereal and legume flours. LWT 2020, 133, 109860. [Google Scholar] [CrossRef]
- Žilić, S.M.; Božović, I.N.; Savić, S.; Šobajić, S. Heat processing of soybean kernel and its effect on lysine availability and protein solubility. Cent. Eur. J. Biol. 2006, 1, 572–583. [Google Scholar] [CrossRef]
- Joshi, A.U.; Liu, C.; Sathe, S.K. Functional properties of select seed flours. Lwt 2015, 60, 325–331. [Google Scholar] [CrossRef]
- Siroha, A.K.; Sandhu, K.S.; Kaur, M. Physicochemical, functional and antioxidant properties of flour from pearl millet varieties grown in India. J. Food Meas. Charact. 2016, 10, 311–318. [Google Scholar] [CrossRef]
- Culetu, A.; Susman, I.E.; Duta, D.E.; Belc, N. Nutritional and functional properties of gluten-free flours. Appl. Sci. 2021, 11, 6283. [Google Scholar] [CrossRef]
- Bastos, D.M.; Monaro, É.; Siguemoto, É.; Séfora, M. Maillard Reaction Products in Processed Food: Pros and Cons; IntechOpen: London, UK, 2012; ISBN 9533079053. Available online: https://www.intechopen.com/chapters/29164 (accessed on 10 December 2021).
Treatment | Protein (%) | Fat (%) | Ash (%) | Moisture (%) | Total Dietary Fiber (%) | Carbohydrates (%) | Energetic Value (kcal/100 g) |
---|---|---|---|---|---|---|---|
CW_I | 10.35 ± 0.08 ef | 3.07 ± 0.03 ijk | 1.16 ± 0.03 j | 11.50 ± 0.01 c | 8.35 ± 0.24 cde | 65.56 ± 0.29 i | 348.01 ± 0.44 hi |
CW_L | 11.84 ± 0.06 a | 3.12 ± 0.01 ijk | 0.76 ± 0.01 l | 11.29 ± 0.01 d | 5.38 ± 0.51 k | 67.59 ± 0.51 efg | 356.59 ± 1.12 ef |
CW_M | 8.84 ± 0.01 mn | 3.15 ± 0.03 ij | 1.15 ± 0.01 j | 11.20 ± 0.03 e | 5.81 ± 0.02 jk | 69.86 ± 0.02 abc | 354.74 ± 0.14 fg |
CW_S | 10.62 ± 0.19 d | 3.20 ± 0.03 hi | 2.26 ± 0.03 a | 10.98 ± 0.01 g | 5.30 ± 0.34 k | 67.64 ± 0.43 efg | 352.45 ± 0.82 g |
T1W_I | 10.28 ± 0.07 fg | 3.45 ± 0.04 f | 1.17 ± 0.01 j | 8.19 ± 0.04 p | 6.18 ± 0.31 ijk | 70.73 ± 0.27 a | 367.45 ± 0.65 b |
T1W_L | 11.14 ± 0.04 c | 1.62 ± 0.06 n | 0.30 ± 0.01 n | 9.53 ± 0.01 i | 6.49 ± 0.58 hijk | 70.93 ± 0.62 a | 355.74 ± 1.08 f |
T1W_M | 10.44 ± 0.05 def | 4.64 ± 0.15 c | 1.54 ± 0.03 n | 9.52 ± 0.01 i | 6.59 ± 0.10 ghijk | 67.26 ± 0.09 fgh | 365.78 ± 0.59 bc |
T1W_S | 8.68 ± 0.03 no | 5.14 ± 0.06 b | 2.15 ± 0.01 b | 10.01 ± 0.01 h | 6.48 ± 0.48 hijk | 67.53 ± 0.51 efg | 364.08 ± 0.87 c |
T2W_I | 9.48 ± 0.06 jk | 3.01 ± 0.02 k | 1.37 ± 0.01 i | 8.74 ± 0.01 n | 7.14 ± 0.60 efghi | 70.25 ± 0.57 ab | 360.35 ± 1.29 d |
T2W_L | 10.16 ± 0.03 gh | 2.49 ± 0.04 m | 0.80 ± 0.07 l | 8.73 ± 0.01 n | 6.81 ± 0.48 fghij | 71.00 ± 0.46 a | 360.69 ± 1.05 d |
T2W_M | 10.08 ± 0.03 hi | 4.30 ± 0.03 d | 1.53 ± 0.03 h | 8.96 ± 0.01 k | 7.57 ± 0.19 efgh | 67.55 ± 0.17 efg | 364.40 ± 0.37 c |
T2W_S | 8.58 ± 0.02 o | 6.32 ± 0.03 a | 2.03 ± 0.02 c | 8.91 ± 0.01 k | 5.42 ± 0.16 k | 68.73 ± 0.18 cde | 377.00 ± 0.28 a |
CR_I | 11.40 ± 0.05 b | 2.84 ± 0.02 l | 1.34 ± 0.00 i | 11.08 ± 0.03 f | 7.82 ± 0.28 defg | 65.51 ± 0.28 i | 348.89 ± 0.54 h |
CR_L | 11.94 ± 0.18 a | 2.77 ± 0.04 l | 0.88 ± 0.04 k | 11.15 ± 0.06 e | 9.94 ± 0.39 ab | 63.32 ± 0.54 j | 345.84 ± 0.85 i |
CR_M | 9.66 ± 0.18 j | 3.10 ± 0.03 ijk | 1.75 ± 0.03 f | 11.80 ± 0.03 b | 7.69 ± 0.39 defgh | 66.00 ± 0.36 hi | 345.91 ± 0.80 i |
CR_S | 10.58 ± 0.13 d | 3.28 ± 0.04 gh | 2.30 ± 0.03 a | 12.01 ± 0.05 a | 6.49 ± 0.31 hijk | 65.33 ± 0.31 i | 346.16 ± 0.60 i |
T1R_I | 10.53 ± 0.05 de | 2.73 ± 0.16 l | 1.39 ± 0.04 i | 8.02 ± 0.03 q | 9.41 ± 0.08 bc | 67.92 ± 0.06 defg | 357.21 ± 0.86 ef |
T1R_L | 11.48 ± 0.03 b | 1.16 ± 0.04 o | 0.66 ± 0.01 m | 8.80 ± 0.02 lm | 10.75 ± 0.95 a | 67.14 ± 0.98 gh | 346.43 ± 1.85 hi |
T1R_M | 9.29 ± 0.03 l | 3.40 ± 0.03 fg | 1.52 ± 0.01 h | 8.75 ± 0.01 mn | 8.38 ± 0.40 cde | 68.65 ± 0.39 cde | 359.13 ± 0.88 de |
T1R_S | 8.51 ± 0.03 o | 4.04 ± 0.06 e | 1.91 ± 0.03 e | 8.94 ± 0.01 k | 8.02 ± 0.01 def | 68.58 ± 0.10 cdef | 360.75 ± 0.07 d |
T2R_I | 9.35 ± 0.00 kl | 3.04 ± 0.04 jk | 1.54 ± 0.01 h | 8.67 ± 0.01 o | 7.64 ± 0.37 defgh | 69.76 ± 0.37 abc | 359.07 ± 0.66 de |
T2R_L | 9.93 ± 0.05 i | 1.62 ± 0.03 n | 0.93 ± 0.01 k | 8.82 ± 0.02 l | 8.11 ± 0.68 cdef | 70.58 ± 0.67 a | 352.88 ± 1.30 g |
T2R_M | 9.21 ± 0.05 l | 3.40 ± 0.03 fg | 1.64 ± 0.01 g | 9.07 ± 0.01 j | 7.64 ± 0.26 defgh | 69.03 ± 0.29 bcd | 358.90 ± 0.48 de |
T2R_S | 8.93 ± 0.03 m | 4.13 ± 0.03 e | 1.97 ± 0.01 d | 8.96 ± 0.01 k | 8.95 ± 0.51 bcd | 67.05 ± 0.52 gh | 359.02 ± 0.94 de |
Treatment | Water Absorption Capacity (%) | Oil Absorption Capacity (%) | Water Retention Capacity (g/g) | Hydration Capacity (%) | Swelling Power (g/g) | Solubility Index (%) |
---|---|---|---|---|---|---|
CW_I | 208.80 ± 1.13 defghi | 162.05 ± 0.25 g | 1.29 ± 0.04 ab | 92.41 ± 0.55 fgh | 3.35 ± 0.01 kl | 0.10 ± 0.00 ab |
CW_L | 202.00 ± 1.41 hij | 152.36 ± 0.76 ij | 1.31 ± 0.11 ab | 98.11 ± 1.26 e | 3.51 ± 0.01 h | 0.04 ± 0.00 fgh |
CW_M | 208.60 ± 0.28 defghi | 166.71 ± 0.54 e | 1.06 ± 0.03 defg | 97.80 ± 1.98 e | 3.98 ± 0.01 d | 0.12 ± 0.01 a |
CW_S | 207.40 ± 0.14 efghij | 171.33 ± 0.61 bc | 1.32 ± 0.02 ab | 91.30 ± 2.12 ghi | 4.31 ± 0.01 a | 0.08 ± 0.00 bc |
T1W_I | 201.00 ± 0.54 hij | 163.45 ± 0.00 f | 1.30 ± 0.11 bcd | 94.60 ± 0.30 f | 3.38 ± 0.07 jk | 0.08 ± 0.00 bc |
T1W_L | 209.10 ± 1.27 defgh | 151.95 ± 0.41 jk | 1.21 ± 0.03 abcd | 94.58 ± 0.01 f | 3.28 ± 0.00 m | 0.02 ± 0.00 h |
T1W_M | 216.50 ± 0.71 bcd | 176.99 ± 0.47 a | 0.84 ± 0.01 h | 99.60 ± 0.57 cde | 3.82 ± 0.00 e | 0.03 ± 0.01 gh |
T1W_S | 200.50 ± 0.71 ij | 170.99 ± 0.15 bc | 0.85 ± 0.05 h | 89.00 ± 0.28 i | 4.02 ± 0.00 cd | 0.04 ± 0.00 fgh |
T2W_I | 199.00 ± 1.98 jk | 166.38 ± 0.08 e | 1.05 ± 0.01 defg | 99.40 ± 1.13 cde | 4.04 ± 0.00 c | 0.03 ± 0.00 gh |
T2W_L | 221.60 ± 1.41 cde | 151.01 ± 0.49 k | 0.89 ± 0.13 fgh | 101.29 ± 0.43 bcd | 3.42 ± 0.00 ij | 0.02 ± 0.00 h |
T2W_M | 219.40 ± 3.11 abc | 166.53 ± 0.93 de | 0.77 ± 0.00 h | 102.29 ± 0.42 b | 4.21 ± 0.00 b | 0.03 ± 0.00 gh |
T2W_S | 209.20 ± 2.26 cdef | 170.90 ± 0.61 bc | 0.81 ± 0.04 h | 89.91 ± 0.30 hi | 4.35 ± 0.00 a | 0.05 ± 0.03 efg |
CR_I | 208.78 ± 1.72 defghi | 163.97 ± 0.61 f | 1.27 ± 0.14 abc | 93.30 ± 0.42f g | 3.32 ± 0.00 lm | 0.11 ± 0.00 a |
CR_L | 199.50 ± 0.70 jk | 160.11 ± 0.83 h | 1.39 ± 0.01 a | 98.74 ± 0.88 de | 3.32 ± 0.00 lm | 0.08 ± 0.00 bc |
CR_M | 209.55 ± 0.78 defg | 171.66 ± 0.60 b | 1.09 ± 0.01 cde | 97.50 ± 0.99 e | 3.63 ± 0.00 g | 0.05 ± 0.00 efg |
CR_S | 209.30 ± 0.14 defgh | 170.00 ± 0.82 c | 1.30 ± 0.02 ab | 91.65 ± 1.48 gh | 3.70 ± 0.01 f | 0.07 ± 0.00 cde |
T1R_I | 201.99 ± 1.68 ghij | 168.05 ± 0.08 d | 1.21 ± 0.11 abcd | 93.04 ± 3.08 fg | 3.43 ± 0.00 i | 0.08 ± 0.01 bcd |
T1R_L | 226.80 ± 0.57 a | 160.00 ± 0.48 h | 0.87 ± 0.08 gh | 107.71 ± 1.00 a | 3.37 ± 0.00 k | 0.05 ± 0.05 defg |
T1R_M | 210.08 ± 0.96 defg | 168.16 ± 0.71 d | 0.90 ± 0.03 efgh | 101.50 ± 0.42 bc | 3.60 ± 0.01 g | 0.03 ± 0.00 gh |
T1R_S | 191.10 ± 0.99 k | 170.99 ± 0.61 bc | 0.88 ± 0.01 fgh | 91.21 ± 0.83 ghi | 3.68 ± 0.01 f | 0.04 ± 0.00 fgh |
T2R_I | 203.39 ± 3.12 fghij | 163.50 ± 0.70 f | 1.07 ± 0.02 def | 105.50 ± 1.27 a | 3.77 ± 0.08 e | 0.06 ± 0.02 cdef |
T2R_L | 224.76 ± 5.71 ab | 153.65 ± 0.66 i | 0.87 ± 0.06 gh | 107.60 ± 0.28 a | 3.32 ± 0.00 lm | 0.02 ± 0.00 h |
T2R_M | 210.08 ± 0.57 abc | 167.27 ± 0.87 de | 1.31 ± 0.26 ab | 107.10 ± 0.15 a | 3.42 ± 0.00 ij | 0.02 ± 0.01 h |
T2R_S | 210.08 ± 1.41 cde | 170.09 ± 0.94 c | 0.89 ± 0.01 fgh | 93.01 ± 0.59 fg | 3.79 ± 0.00 e | 0.05 ± 0.01 efg |
Treatment | Bulk Density (g/cm³) | Emulsifying Properties | Foaming Stability (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
Emulsifying Activity (%) | Emulsion Stability (%) | 10 min | 20 min | 30 min | 40 min | 50 min | 60 min | ||
CW_I | 0.71 ± 0.01 ij | 47.50 ± 0.72 fg | 60.50 ± 0.72 fg | 115.00 ± 0.00 ab | 110.00 ± 0.00 bc | 110.00 ± 0.00 bc | 105.00 ± 0.00 c | 105.00 ± 0.00 c | 105.00 ± 0.00 bc |
CW_L | 0.83 ± 0.00 d | 56.50 ± 0.72 a | 66.50 ± 0.72 a | 110.00 ± 0.00 bc | 110.00 ± 0.00 bc | 110.00 ± 0.00 bc | 110.00 ± 0.00 bc | 110.00 ± 0.00 bc | 110.00 ± 0.00 ab |
CW_M | 0.70 ± 0.00 jk | 45.50 ± 0.72 ghi | 54.50 ± 0.72 j | 120.00 ± 0.00 a | 120.00 ± 0.00 a | 120.00 ± 0.00 a | 115.00 ± 0.00 ab | 115.00 ± 0.00 ab | 115.00 ± 0.00 a |
CW_S | 0.72 ± 0.00 ghi | 41.50 ± 0.72 jk | 62.50 ± 0.72 de | 115.00 ± 0.00 ab | 115.00 ± 0.00 ab | 115.00 ± 0.00 ab | 115.00 ± 0.00 ab | 105.00 ± 0.00 c | 105.00 ± 0.00 bc |
T1W_I | 0.70 ± 0.00 jk | 50.00 ± 1.41 de | 61.50 ± 0.72 ef | 115.00 ± 0.00 ab | 110.00 ± 0.00 bc | 110.00 ± 0.00 bc | 110.00 ± 0.00 bc | 110.00 ± 0.00 bc | 110.00 ± 0.00 ab |
T1W_L | 0.88 ± 0.00 b | 48.50 ± 0.72 ef | 59.50 ± 0.72 g | - | - | - | - | - | - |
T1W_M | 0.62 ± 0.00 m | 41.50 ± 0.72 jk | 61.50 ± 0.72 ef | 115.00 ± 0.00 ab | 110.00 ± 0.00 bc | 110.00 ± 0.00 bc | 110.00 ± 0.00 bc | 110.00 ± 0.00 bc | 110.00 ± 0.00 ab |
T1W_S | 0.73 ± 0.00 gh | 41.50 ± 0.72 jk | 62.50 ± 0.72 de | 120.00 ± 0.00 a | 120.00 ± 0.00 a | 120.00 ± 0.00 a | 120.00 ± 0.00 a | 115.00 ± 0.00 ab | 115.00 ± 0.00 a |
T2W_I | 0.64 ± 0.01 l | 47.50 ± 0.72 fg | 63.50 ± 0.72 cd | 110.00 ± 0.00 bc | 110.00 ± 0.00 bc | 110.00 ± 0.00 bc | 110.00 ± 0.00 bc | 110.00 ± 0.00 bc | 105.00 ± 0.00 bc |
T2W_L | 0.89 ± 0.01 ab | 54.00 ± 1.41 b | 64.50 ± 0.72 bc | 105.00 ± 0.00 c | 105.00 ± 0.00 c | 105.00 ± 0.00 c | 105.00 ± 0.00 c | 105.00 ± 0.00 c | 105.00 ± 0.00 bc |
T2W_M | 0.62 ± 0.00 m | 48.50 ± 0.72 ef | 65.50 ± 0.72 ab | 115.00 ± 0.00 ab | 115.00 ± 0.00 ab | 115.00 ± 0.00 ab | 115.00 ± 0.00 ab | 110.00 ± 0.00 bc | - |
T2W_S | 0.73 ± 0.00 gh | 38.50 ± 0.72 l | 56.50 ± 0.72 hi | 120.00 ± 0.00 a | 120.00 ± 0.00 a | 120.00 ± 0.00 a | 120.00 ± 0.00 a | 120.00 ± 0.00 a | 115.00 ± 0.00 a |
CR_I | 0.72 ± 0.01 fg | 51.50 ± 0.72 cd | 63.50 ± 0.72 cd | 115.00 ± 0.00 ab | 115.00 ± 0.00 ab | 115.00 ± 0.00 ab | 110.00 ± 0.00 bc | 110.00 ± 0.00 bc | 110.00 ± 0.00 ab |
CR_L | 0.90 ± 0.00 a | 53.50 ± 0.72 bc | 62.50 ± 0.72 de | 110.00 ± 0.00 bc | 110.00 ± 0.00 bc | 110.00 ± 0.00 bc | 110.00 ± 0.00 bc | 105.00 ± 0.00 c | 105.00 ± 0.00 bc |
CR_M | 0.69 ± 0.00 k | 44.00 ± 1.41 i | 55.50 ± 0.72 ij | 115.00 ± 0.00 ab | 115.00 ± 0.00 ab | 115.00 ± 0.00 ab | 115.00 ± 0.00 ab | 115.00 ± 0.00 ab | 105.00 ± 0.00 bc |
CR_S | 0.69 ± 0.01 k | 43.50 ± 0.72 ij | 62.50 ± 0.72 de | 120.00 ± 0.00 a | 120.00 ± 0.00 a | 120.00 ± 0.00 a | 120.00 ± 0.00 a | 120.00 ± 0.00 a | 110.00 ± 0.00 ab |
T1R_I | 0.72 ± 0.01 hij | 46.50 ± 0.72 fgh | 59.50 ± 0.72 g | 115.00 ± 0.00 ab | 115.00 ± 0.00 ab | 115.00 ± 0.00 ab | 115.00 ± 0.00 ab | 115.00 ± 0.00 ab | 110.00 ± 0.00 ab |
T1R_L | 0.86 ± 0.00 c | 55.50 ± 0.72 ab | 62.50 ± 0.72 de | - | - | - | - | - | - |
T1R_M | 0.65 ± 0.00 l | 46.50 ± 0.72 fgh | 61.50 ± 0.72 efg | 120.00 ± 0.00 a | 120.00 ± 0.00 a | 120.00 ± 0.00 a | 110.00 ± 0.00 bc | 110.00 ± 0.00 bc | - |
T1R_S | 0.75 ± 0.00 ef | 43.50 ± 0.72 ij | 61.50 ± 0.72 ef | 120.00 ± 0.00 a | 120.00 ± 0.00 a | 120.00 ± 0.00 a | 115.00 ± 0.00 ab | 115.00 ± 0.00 ab | 115.00 ± 0.00 a |
T2R_I | 0.65 ± 0.00 l | 50.00 ± 1.41 de | 57.50 ± 0.72 h | 115.00 ± 0.00 ab | 115.00 ± 0.00 ab | 115.00 ± 0.00 ab | 115.00 ± 0.00 ab | 115.00 ± 0.00 ab | 100.00 ± 0.00 c |
T2R_L | 0.83 ± 0.00 d | 55.00 ± 1.41 ab | 64.00 ± 1.41 bcd | 105.00 ± 0.00 c | 105.00 ± 0.00 c | 105.00 ± 0.00 c | 105.00 ± 0.00 c | 105.00 ± 0.00 c | 105.00 ± 0.00 bc |
T2R_M | 0.75 ± 0.01 ef | 44.50 ± 0.72 hi | 60.50 ± 0.72 fg | 115.00 ± 0.00 ab | 115.00 ± 0.00 ab | 115.00 ± 0.00 ab | 115.00 ± 0.00 ab | - | - |
T2R_S | 0.76 ± 0.00 e | 40.50 ± 0.72 kl | 61.50 ± 0.72 ef | 115.00 ± 0.00 ab | 115.00 ± 0.00 ab | 115.00 ± 0.00 ab | 115.00 ± 0.00 ab | 105.00 ± 0.00 c | 105.00 ± 0.00 bc |
Variables | FC | Protein | Fat | Ash | Moisture | Fiber | Carbohydrates | Energy | WAC | OAC | WRC | HC | SP | SI | BD | EA | ES |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FC | 1.00 | −0.34 | 0.52 | 0.78 | 0.27 | −0.16 | −0.37 | 0.04 | −0.26 | 0.72 | 0.11 | −0.50 | 0.44 | 0.35 | −0.63 | −0.64 | −0.20 |
Protein | 1.00 | −0.57 | −0.57 | 0.33 | 0.19 | −0.38 | −0.53 | 0.09 | −0.50 | 0.53 | 0.13 | −0.51 | 0.18 | 0.45 | 0.64 | 0.46 | |
Fat | 1.00 | 0.69 | −0.04 | −0.40 | −0.12 | 0.70 | −0.23 | 0.67 | −0.35 | −0.48 | 0.69 | −0.04 | −0.50 | −0.72 | −0.17 | ||
Ash | 1.00 | 0.12 | −0.23 | −0.26 | 0.23 | −0.18 | 0.84 | −0.14 | −0.46 | 0.66 | 0.08 | −0.59 | −0.80 | −0.17 | |||
Moisture | 1.00 | −0.23 | −0.63 | −0.62 | −0.14 | 0.05 | 0.52 | −0.33 | 0.00 | 0.48 | 0.05 | −0.04 | −0.08 | ||||
Fiber | 1.00 | −0.40 | −0.45 | 0.18 | −0.07 | −0.07 | 0.34 | −0.48 | 0.00 | 0.22 | 0.31 | 0.08 | |||||
Carbohydrates | 1.00 | 0.54 | 0.08 | −0.31 | −0.32 | 0.27 | 0.06 | −0.38 | 0.01 | 0.09 | −0.11 | ||||||
Energy | 1.00 | −0.09 | 0.24 | −0.52 | −0.13 | 0.49 | −0.36 | −0.31 | −0.38 | −0.06 | |||||||
WAC | 1.00 | −0.15 | −0.32 | 0.56 | −0.09 | −0.24 | 0.12 | 0.14 | 0.08 | ||||||||
OAC | 1.00 | −0.20 | −0.37 | 0.60 | 0.17 | −0.73 | −0.84 | −0.36 | |||||||||
WRC | 1.00 | −0.18 | −0.37 | 0.45 | 0.18 | 0.19 | 0.01 | ||||||||||
HC | 1.00 | −0.29 | −0.38 | 0.12 | 0.55 | 0.14 | |||||||||||
SP | 1.00 | −0.01 | −0.55 | −0.64 | −0.16 | ||||||||||||
SI | 1.00 | −0.15 | −0.03 | −0.33 | |||||||||||||
BD | 1.00 | 0.54 | 0.25 | ||||||||||||||
EA | 1.00 | 0.46 | |||||||||||||||
ES | 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batariuc, A.; Ungureanu-Iuga, M.; Mironeasa, S. Effects of Dry Heat Treatment and Milling on Sorghum Chemical Composition, Functional and Molecular Characteristics. Appl. Sci. 2021, 11, 11881. https://doi.org/10.3390/app112411881
Batariuc A, Ungureanu-Iuga M, Mironeasa S. Effects of Dry Heat Treatment and Milling on Sorghum Chemical Composition, Functional and Molecular Characteristics. Applied Sciences. 2021; 11(24):11881. https://doi.org/10.3390/app112411881
Chicago/Turabian StyleBatariuc, Ana, Mădălina Ungureanu-Iuga, and Silvia Mironeasa. 2021. "Effects of Dry Heat Treatment and Milling on Sorghum Chemical Composition, Functional and Molecular Characteristics" Applied Sciences 11, no. 24: 11881. https://doi.org/10.3390/app112411881
APA StyleBatariuc, A., Ungureanu-Iuga, M., & Mironeasa, S. (2021). Effects of Dry Heat Treatment and Milling on Sorghum Chemical Composition, Functional and Molecular Characteristics. Applied Sciences, 11(24), 11881. https://doi.org/10.3390/app112411881