Boriding of Laser-Clad Inconel 718 Coatings for Enhanced Wear Resistance
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cwalina, K.L.; Demarest, C.R.; Gerard, A.Y.; Scully, J.R. Revisiting the effects of molybdenum and tungsten alloying on corrosion behavior of nickel-chromium alloys in aqueous corrosion. Curr. Opin. Solid State Mater. Sci. 2019, 23, 129–141. [Google Scholar] [CrossRef]
- Osoba, L.; Oladoye, A.; Ogbonna, V.E. Corrosion evaluation of superalloys Haynes 282 and Inconel 718 in hydrochloric acid. J. Alloys Compd. 2019, 804, 376–384. [Google Scholar] [CrossRef]
- Wang, J.; Xu, J.; Zhang, X.; Ren, X.; Song, X.; Chen, X. An Investigation of Surface Corrosion Behavior of Inconel 718 after Robotic Belt Grinding. Materials 2018, 11, 2440. [Google Scholar] [CrossRef] [Green Version]
- Abioye, T.; Mccartney, D.G.; Clare, A.T. Laser cladding of Inconel 625 Wire for Corrosion Protection. J. Mater. Process. Technol. 2014, 217, 232–240. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.C.; Chou, C.C.; Yung, T.Y.; Cai, R.F.; Huang, J.Y.; Yang, Y.C. A comparative study on the tribological behavior of various thermally sprayed Inconel 625 coatings in a saline solution and deionized water. Surf. Coat. Technol. 2020, 385, 125442. [Google Scholar] [CrossRef]
- Yung, T.Y.; Chen, T.C.; Tsai, K.C.; Lu, W.F.; Huang, J.Y.; Liu, T.Y. Thermal Spray Coatings of Al, ZnAl and Inconel 625 Alloys on SS304L for Anti-Saline Corrosion. Coatings 2019, 9, 32. [Google Scholar] [CrossRef] [Green Version]
- Petrova, R.S.; Suwattananont, N.; Samardzic, V. The Effect of Boronizing on Metallic Alloys for Automotive Applications. J. Mater. Eng. Perform. 2008, 17, 3. [Google Scholar] [CrossRef]
- Kurzynowski, T.; Smolina, I.; Kobiela, K.; Kuźnicka, B.; Chlebus, E. Wear and corrosion behaviour of Inconel 718 laser surface alloyed with rhenium. Mater. Des. 2017, 132, 349–359. [Google Scholar] [CrossRef]
- Feng, K.; Yuan, C.; Deng, P.; Li, Y.; Zhao, H.; Lu, F.; Li, R.; Huang, J.; Li, Z.G. Improved high-temperature hardness and wear resistance of Inconel 625 coatings fabricated by laser cladding. J. Mater. Process. Technol. 2016, 243, 82–91. [Google Scholar] [CrossRef]
- Fesharakia, M.N.; Shoja-Razavib, R.; Mansouria, H.A.; Jamali, H. Evaluation of the hot corrosion behavior of Inconel 625 coatings on the Inconel 738 substrate by laser and TIG cladding techniques. Opt. Laser Technol. 2019, 111, 744–753. [Google Scholar] [CrossRef]
- Zafer, Y.E.; Goel, S.; Ganvir, A.; Jansson, A.; Joshi, S.V. Encapsulation of Electron Beam Melting Produced Alloy 718 to Reduce Surface Connected Defects by Hot Isostatic Pressing. Materials 2020, 13, 1226. [Google Scholar] [CrossRef] [Green Version]
- Xin, L.; Wang, Z.; Li, J.; Lu, Y.; Shoji, T. Microstructural characterization of subsurface caused by fretting wear of Inconel 690TT alloy. Mater. Charact. 2016, 115, 32–38. [Google Scholar] [CrossRef]
- Rustamov, I.; Guo, F.; Wang, Z. Experimental investigations into fretting wear and damage mechanisms of Inconel X-750 alloy. J. Mech. Sci. Technol. 2019, 33, 4701–4713. [Google Scholar] [CrossRef]
- Li, J.; Lu, Y.; Zhang, H.; Xin, L. Effect of grain size and hardness on fretting wear behavior of Inconel 600 alloys. Tribol. Int. 2015, 81, 215–222. [Google Scholar] [CrossRef]
- Yun, J.Y.; Lee, H.S.; Hur, D.H.; Kang, W.S.; Bae, C.H.; Kim, S.J. Effect of oxidation film on the fretting wear behavior of Alloy 690 steam generator tube mated with SUS 409. Wear 2016, 368–369, 344–349. [Google Scholar] [CrossRef]
- Li, J.; Ma, M.; Lu, Y.H.; Xin, L. Evolution of wear damage in Inconel 600 alloy due to fretting against type 304 stainless steel. Wear 2016, 346–347, 15–21. [Google Scholar] [CrossRef]
- Guo, X.; Lai, P.; Tang, L.; Wang, J.; Zhang, L. Effects of sliding amplitude and normal load on the fretting wear behavior of alloy 690 tube exposed to high temperature water. Tribol. Int. 2017, 116, 155–163. [Google Scholar] [CrossRef]
- Zhu, L.; Yang, Z.; Xin, B.; Wang, S.; Meng, G.; Ning, J.; Xue, P. Microstructure and mechanical properties of parts formed by ultrasonic vibration-assisted laser cladding of Inconel 718. Surf. Coat. Technol. 2021, 410, 126964. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, L.; Dai, J.; Liu, J.; Zhang, W.; Chen, H.; Wang, Z.; Shi, K. Microstructure and mechanical properties of pulsed laser cladded IN718 alloy coating. Surf. Eng. 2018, 34, 259–266. [Google Scholar] [CrossRef]
- Campos-Silva, I.; Contla-Pacheco, A.D.; Ruiz-Rios, A.; Martínez-Trinidad, J.; Rodriguez, G.; Amador, A.M.; Wong-Ángel, W.D. Effects of scratch tests on the adhesive and cohesive properties of borided Inconel 718 superalloy. Surf. Coat. Technol. 2018, 349, 917–927. [Google Scholar] [CrossRef]
- Makuch, N.; Kulka, M.; Paczkowska, M. Nanomechanical properties of gas-borided layer produced on Nimonic 80A-alloy. Ceram. Int. 2017, 43, 11. [Google Scholar] [CrossRef]
- Sista, V.; Kahvecioglu, O.; Sireli, G.K.; Zeng, Q.; Kim, J.H.; Eryilmaz, O.L.; Erdemir, A. Evaluation of electrochemical bonding of Inconel 600. Surf. Coat. Technol. 2013, 215, 452–459. [Google Scholar] [CrossRef]
- Günen, A.; Kanca, E. Microstructure and Mechanical Properties of Borided Inconel 625 Superalloy. Matéria (Rio De Jan.) 2017, 22, e11829. [Google Scholar] [CrossRef]
- Campos-Silva, I.; Contla-Pacheco, A.D.; Figueroa-López, U.; Ortega, M. Sliding wear resistance of nickel boride layers on an Inconel 718 superalloy. Surf. Coat. Technol. 2019, 378, 124862. [Google Scholar] [CrossRef]
- Piasecki, A.; Kotkowiak, M.; Makuch, N.; Kulka, M. Wear behavior of self-lubricating boride layers produced on Inconel 600-alloy by laser alloying. Wear B 2019, 426–427, 919–933. [Google Scholar] [CrossRef]
- Günen, A. Properties and High Temperature Dry Sliding Wear Behavior of Boronized Inconel 718. Metall. Mater. Trans. A 2020, 51, 927–939. [Google Scholar] [CrossRef]
- Günen, A.; Erdoğan, K. Characterization of borided Inconel 625 alloy with different boron chemicals. Pamukkale Univ. Muh Bilim. Derg. 2017, 23, 411–416. [Google Scholar] [CrossRef] [Green Version]
- Hunger, H.J.; Trute, G. Successful Boronizing of Nickel-Based Alloys. Mater. Sci. Forum 1994, 163–165, 341–346. [Google Scholar] [CrossRef]
- Hunger, H.J.; Trute, G. Probleme beim Borieren von Ni-Basiswerkstoffen. Härterei-Tech. Mitt.-HTM 1994, 49, 215–218. [Google Scholar] [CrossRef]
- Lindner, T.; Löbel, M.; Sattler, B.; Lampke, T. Surface Hardening of FCC phase High-Entropy Alloy System by Powder-Pack Boriding. Surf. Coat. Technol. 2019, 371, 389–394. [Google Scholar] [CrossRef]
- Erdogan, A.; Günen, A.; Gök, M.S.; Zeytin, S. Microstructure and mechanical properties of borided CoCrFeNiAl0.25Ti0.5 high entropy alloy produced by powder metallurgy. Vacuum 2020, 183, 109820. [Google Scholar] [CrossRef]
- Wielage, B.; Rupprecht, C.; Lindner, T.; Hunger, R. Surface modification of austenitic thermal spray coatings by low-temperature carburization. In Proceedings of the Conference: International Thermal Spray Conference & Exposition 2011, Hamburg, Germany, 27–29 September 2011; Available online: www.researchgate.net/publication/320323004 (accessed on 1 November 2021).
- Adachi, S.; Ueda, N. Formation of S-phase layer on plasma sprayed AISI 316L stainless steel coating by plasma nitriding at low temperature. Thin Solid Film. 2012, 523, 11–14. [Google Scholar] [CrossRef]
- Adachi, S.; Ueda, N. Formation of expanded austenite on a cold-sprayed AISI 316L coating by low-temperature plasma nitriding. J. Therm. Spray Technol. 2015, 24, 1399–1407. [Google Scholar] [CrossRef]
- Adachi, S.; Ueda, N. Wear and Corrosion Properties of cold-sprayed AISI 316L coatings treated by combined plasma carburizing and nitriding at low temperature. Coatings 2018, 8, 456. [Google Scholar] [CrossRef] [Green Version]
- Lindner, T.; Mehner, T.; Lampke, T. Surface modification of austenitic thermal-spray coatings by low-temperature nitrocarburizing. IOP Conf. Ser. Mater. Sci. Eng. 2016, 118, 012008. [Google Scholar] [CrossRef]
- Lindner, T.; Kutschmann, P.; Löbel, M.; Lampke, T. Hardening of HVOF-sprayed austenitic stainless-steel coatings by gas nitriding. Coatings 2018, 8, 348. [Google Scholar] [CrossRef] [Green Version]
- Kutschmann, P.; Lindner, T.; Börner, K.; Reese, U.; Lampke, T. Effect of adjusted gas nitriding parameters on microstructure and wear resistance of HVOF-sprayed AISI 316L coatings. Materials 2019, 12, 1760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adachi, S.; Egawa, M.; Yamaguchi, T.; Ueda, N. Low-Temperature Plasma Nitriding for Austenitic Stainless Steel Layers with Various Nickel Contents Fabricated via Direct Laser Metal Deposition. Coatings 2020, 10, 365. [Google Scholar] [CrossRef] [Green Version]
- Godec, M.; Donik, Č.; Kocijan, A.; Podgornik, B.; Skobir Balantič, D.A. Effect of post-treated low-temperature plasma nitriding on the wear and corrosion resistance of 316L stainless steel manufactured by laser powder-bed fusion. Addit. Manuf. 2020, 32, 101000–101008. [Google Scholar] [CrossRef]
- Lindner, T.; Löbel, M.; Lampke, T. Phase Stability and Microstructure Evolution of Solution-Hardened 316L Powder Feedstock for Thermal Spraying. Metals 2018, 8, 1063. [Google Scholar] [CrossRef] [Green Version]
- Löbel, M.; Lindner, T.; Hunger, R.; Berger, R.; Lampke, T. Precipitation hardening of the HVOF sprayed single-phase high-entropy alloy CrFeCoNi. Coatings 2020, 10, 701. [Google Scholar] [CrossRef]
- Lindner, T.; Löbel, M.; Hunger, R.; Berger, R.; Lampke, T. Boriding of HVOF-sprayed Inconel 625 coatings. Surf. Coat. Technol. 2020, 404, 126456. [Google Scholar] [CrossRef]
- Karakaş, M.S.; Günen, A.; Kanca, E.; Yilmaz, E. Boride layer growth kinetics of AISI H13 steel borided with nano-sized powders. Arch. Metall. Mater. 2018, 63, 1. [Google Scholar] [CrossRef]
- Chaliampalias, D.; Vourlias, G.; Pavlidou, E.; Skolianos, S.; Chrissafis, K.; Stergioudis, G. Comparative examination of the microstructure and high temperature oxidation performance of NiCrBSi flame sprayed and pack cementation coatings. Appl. Surf. Sci. 2009, 255, 3605–3612. [Google Scholar] [CrossRef]
power (W) | 4000 |
Spotsize (mm) | 1.8 |
path velocity (m∙s−1) | 0.42 |
trace offset (mm) | 0.3 |
overlap (%) | 83 |
feeding rate (g∙min−1) | 35 |
Ar gas flow rate (L∙min−1) | 12 |
No. of passes | 1 |
boriding agent | 90 wt% B4C + 10 wt% NaBF4 |
temperature | 900 °C |
duration | 2 h, 8 h |
atmosphere | Ar |
Ball-On-Disk Test | Reciprocating Wear Test | ||
---|---|---|---|
force | 20 N | force | 26 N |
radius | 5 mm | frequency | 40 Hz |
speed | 96 RPM | time | 900 s |
cycles | 15,916 | amplitude | 0.5 mm |
counter-body | Al2O3 (ø 6 mm) | counter-body | Al2O3 (ø 10 mm) |
Sample | Ni | Cr | Fe | Nb | Mo | Ti |
---|---|---|---|---|---|---|
feedstock powder | 53.1 | 19.1 | 18.5 | 5.1 | 3.3 | 0.9 |
coating (as-clad) | 53.4 | 19.5 | 19.0 | 4.4 | 2.7 | 1.0 |
coating (polished) | 53.8 | 19.0 | 18.9 | 4.5 | 3.0 | 0.8 |
coating borided 2 h | 58.4 | 15.5 | 18.1 | 4.4 | 2.9 | 0.6 |
coating borided 8 h | 68.0 | 9.7 | 15.2 | 4.2 | 2.7 | 0.2 |
coating 50 µm above substrate | 53.8 | 19.1 | 18.9 | 4.6 | 2.7 | 0.9 |
Untreated | Borid Layer 2 h | Borid Layer 8 h |
---|---|---|
377 ± 35 | 1628 ± 352 | 1708 ± 375 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lindner, T.; Günen, A.; Töberling, G.; Vogt, S.; Karakas, M.S.; Löbel, M.; Lampke, T. Boriding of Laser-Clad Inconel 718 Coatings for Enhanced Wear Resistance. Appl. Sci. 2021, 11, 11935. https://doi.org/10.3390/app112411935
Lindner T, Günen A, Töberling G, Vogt S, Karakas MS, Löbel M, Lampke T. Boriding of Laser-Clad Inconel 718 Coatings for Enhanced Wear Resistance. Applied Sciences. 2021; 11(24):11935. https://doi.org/10.3390/app112411935
Chicago/Turabian StyleLindner, Thomas, Ali Günen, Gerd Töberling, Sabrina Vogt, Mustafa Serdar Karakas, Martin Löbel, and Thomas Lampke. 2021. "Boriding of Laser-Clad Inconel 718 Coatings for Enhanced Wear Resistance" Applied Sciences 11, no. 24: 11935. https://doi.org/10.3390/app112411935
APA StyleLindner, T., Günen, A., Töberling, G., Vogt, S., Karakas, M. S., Löbel, M., & Lampke, T. (2021). Boriding of Laser-Clad Inconel 718 Coatings for Enhanced Wear Resistance. Applied Sciences, 11(24), 11935. https://doi.org/10.3390/app112411935