Characterization of Graphenic Carbon Produced by Pulsed Laser Ablation of Sacrificial Carbon Tapes
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, M.; Zhang, X.; Keb, P.; Wang, A. Graphite-like carbon films by high power impulse magnetron sputtering. Appl. Surf. Sci. 2013, 283, 321–326. [Google Scholar] [CrossRef]
- Greco, C.; Cosentino, U.; Pitea, D.; Moro, G.; Santangelo, S.; Patane, S.; D’Arienzo, M.; Fiore, M.; Morazzoni, F.; Ruffo, R. Role of the carbon defects in the catalytic oxygen reduction by graphite nanoparticles: A spectromagnetic, electrochemical and computational integrated approach. Phys. Chem. Chem. Phys. 2019, 21, 6021–6032. [Google Scholar] [CrossRef] [PubMed]
- Bleu, Y.; Bourquard, F.; Tite, T.; Loir, A.-S.; Maddi, C.; Donnet, C.; Garrelie, F. Review of Graphene Growth from a Solid Carbon Source by Pulsed Laser Deposition (PLD). Front. Chem. 2018, 6, 572–590. [Google Scholar] [CrossRef] [Green Version]
- Abbas, A.; Mariana, L.T.; Phan, A.N. Biomass-waste derived graphene quantum dots and their applications. Carbon 2018, 140, 77–99. [Google Scholar] [CrossRef] [Green Version]
- Jang, M.-H.; Yang, H.; Chang, Y.H.; Park, H.-C.; Park, H.; Cho, H.H.; Kim, B.J.; Kim, Y.-H.; Cho, Y.-H. Selective engineering of oxygen-containing functional groups using the alkyl ligand oleylamine for revealing the luminescence mechanism of graphene oxide quantum dot. Nanoscale 2017, 9, 18635. [Google Scholar] [CrossRef]
- Kang, S.; Ryu, J.H.; Lee, B.; Jung, K.H.; Shim, K.B.; Han, H.; Kim, K.M. Laser wavelength modulated pulsed laser ablation for selective and efficient production of graphene quantum dots. RSC Adv. 2019, 9, 1365. [Google Scholar] [CrossRef] [Green Version]
- Lyu, B.; Li, H.-J.; Xue, F.; Sai, L.; Gui, B.; Qian, D.; Wang, X.; Yang, J. Facile, gram-scale and eco-friendly synthesis of multicolor graphene quantum dots by thermal-driven advanced oxidation process. Chem. Eng. J. 2020, 388, 124285. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Henley, S.J.; Mendoza, E.; Gomez-Rojas, L.; Allam, J.; Silva, S.R.P. Resonant tunnelling and fast switching in amorphous-carbon quantum-well structures. Nat. Mater. 2006, 5, 19–21. [Google Scholar] [CrossRef]
- Tsanga, W.M.; Henley, S.J.; Stolojan, V.; Silva, S.R.P. Negative differential conductance observed in electron field emission from band gap modulated amorphous-carbon nanolayers. Appl. Phys. Lett. 2006, 89, 193103. [Google Scholar] [CrossRef] [Green Version]
- Sebastian, A.; Pauza, A.; Rossel, C.; Shelby, R.M.; Rodríguez, A.F.; Pozidis, H.; Eleftheriou, E. Resistance switching at the nanometre scale in amorphous carbon. New J. Phys. 2011, 13, 013020. [Google Scholar] [CrossRef]
- Santini, C.A.; Sebastian, A.; Marchiori, C.; Jonnalagadda, V.P.; Dellmann, L.; Koelmans, W.W.; Rossell, M.D.; Rossel, C.P.; Eleftheriou, E. Oxygenated amorphous carbon for resistive memory applications. Nat. Commun. 2015, 6, 8600. [Google Scholar] [CrossRef] [Green Version]
- Hui, F.; Grustan-Gutierrez, E.; Long, S.; Liu, Q.; Ott, A.K.; Ferrari, A.C.; Lanza, M. Graphene and Related Materials for Resistive Random Access Memories. Adv. Electron. Mater. 2017, 3, 1600195. [Google Scholar] [CrossRef]
- Cheng, Q.; Okamoto, Y.; Tamura, N.; Tsuji, M.; Maruyama, S.; Matsuo, Y. Graphene-Like-Graphite as Fast-Chargeable and High-Capacity Anode Materials for Lithium Ion Batteries. Sci. Rep. 2017, 7, 14782. [Google Scholar] [CrossRef] [Green Version]
- Rybachuk, M.; Bell, J.M. The effect of sp2 fraction and bonding disorder on micro-mechanical and electronic properties of aC:H films. Thin Solid Films 2007, 515, 7855–7860. [Google Scholar] [CrossRef] [Green Version]
- Zhan, D.; Ni, Z.; Chen, W.; Sun, L.; Luo, Z.; Lai, L.; Yu, T.; Wee, A.T.S.; Shen, Z. Electronic structure of graphite oxide and thermally reduced graphite oxide. Carbon 2011, 49, 1362–1366. [Google Scholar] [CrossRef]
- Bhattacharjya, D.; Kim, C.-H.; Kim, J.-H.; You, I.-K.; In, J.B.; Lee, S.-M. Fast and controllable reduction of graphene oxide by low-cost CO2 laser for supercapacitor application. Appl. Surf. Sci. 2018, 462, 353–361. [Google Scholar] [CrossRef]
- Azizighannad, S.; Mitra, S. Stepwise Reduction of Graphene Oxide (GO) and Its Effects on Chemical and Colloidal Properties. Sci. Rep. 2018, 8, 10083. [Google Scholar] [CrossRef] [PubMed]
- Evlashin, S.; Dyakonov, P.; Khmelnitsky, R.; Dagesyan, S.; Klokov, A.; Sharkov, A.; Timashev, P.; Minaeva, S.; Maslakov, K.; Svyakhovskiy, S.; et al. Controllable Laser Reduction of Graphene Oxide Films for Photoelectronic Applications. ACS Appl. Mater. Interfaces 2016, 8, 28880–28887. [Google Scholar] [CrossRef]
- Rodriguez, R.D.; Khalelov, A.; Postnikov, P.S.; Lipovka, A.; Dorozhko, E.; Amin, I.; Murastov, G.V.; Chen, J.-J.; Sheng, W.; Trusova, M.E.; et al. Beyond graphene oxide: Laser engineering functionalized graphene for flexible electronics. Mater. Horiz. 2020, 7, 1030–1041. [Google Scholar] [CrossRef]
- Foo, C.Y.; Sumboja, A.; Tan, D.J.H.; Wang, J.; Lee, P.S. Flexible and highly scalable V2O5-rGO electrodes in an organic electrolyte for supercapacitor devices. Adv. Energy Mater. 2014, 4, 1400236. [Google Scholar] [CrossRef]
- Kim, H.-D.; Yun, M.J.; Lee, J.H.; Kim, K.H.; Kim, T.G. Transparent multi-level resistive switching phenomena observed in ITO/RGO/ITO memory cells by the sol-gel dip-coating method. Sci. Rep. 2014, 4, 4614. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Han, Q.; Cheng, Z.; Jiang, L.; Qu, L. Integrated graphene systems by laser irradiation for advanced devices. Nano Today 2017, 12, 14–30. [Google Scholar] [CrossRef]
- Marquardt, C.L.; Williams, R.T.; Nagel, D.J. Deposition of amorphous carbon films from laser-produced plasmas. Mat. Res. Soc. 1985, 38, 325–335. [Google Scholar] [CrossRef]
- Sikora, A.; Garrelie, F.; Donnet, C.; Loir, A.S.; Fontaine, J.; Sanchez-Lopez, J.C.; Rojas, T.C. Structure of diamondlike carbon films deposited by femtosecond and nanosecond pulsed laser ablation. J. Appl. Phys. 2010, 108, 113516. [Google Scholar] [CrossRef]
- Acharya, K.P.; Khatri, H.; Marsillac, S.; Ullrich, B.; Anzenbacher, P.; Zamkov, M. Pulsed laser deposition of graphite counter electrodes for dye-sensitized solar cells. Appl. Phys. Lett. 2010, 97, 201108. [Google Scholar] [CrossRef] [Green Version]
- Kumar, I.; Khare, A. Multi-and few-layer graphene on insulating substrate via pulsed laser deposition technique. Appl. Surf. Sci. 2014, 317, 1004–1009. [Google Scholar] [CrossRef]
- Xu, S.C.; Man, B.Y.; Jiang, S.; Liu, A.H.; Hu, G.D.; Chen, C.S.; Liu, M.; Yang, C.; Feng, D.J.; Zhang, C. Direct synthesis of graphene on any nonmetallic substrate based on KrF laser ablation of ordered pyrolytic graphite. Laser Phys. Lett. 2014, 11, 096001. [Google Scholar] [CrossRef]
- Birol, H.; Maeder, T.; Ryser, P. Application of graphite-based sacrificial layers for fabrication of LTCC (low temperature co-fired ceramic) membranes and micro-channels. J. Micromech. Microeng. 2007, 17, 50–60. [Google Scholar] [CrossRef]
- C12 Advanced Technologies. Available online: https://c12materials.com/services/fugitive-tapes/ (accessed on 1 November 2021).
- Dumitru, G.; Romano, V.; Weber, H.P.; Pimenov, S.; Kononenko, T.; Sentis, M.; Hermann, J.; Bruneau, S. Femtosecond laser ablation of diamond-like carbon films. Appl. Surf. Sci. 2004, 222, 226–233. [Google Scholar] [CrossRef]
- Pawlyta, M.; Rouzaud, J.-N.; Duber, S. Raman microspectroscopy characterization of carbon blacks: Spectral analysis and structural information. Carbon 2015, 84, 479–490. [Google Scholar] [CrossRef]
- Cuesta, A.; Dhamelincourt, P.; Laureyns, J.; Martínez-Alonso, A.; Tascon, J.M.D. Comparative performance of X-ray diffraction and Raman microprobe techniques for the study of carbon materials. J. Mater. Chem. 1998, 8, 2875–2879. [Google Scholar] [CrossRef]
- Sazali, N.E.S.; Deraman, M.; Omar, R.; Othman, M.A.R.; Suleman, M.; Shamsudin, S.A.; Tajuddin, N.S.M.; Hanappi, M.F.Y.M.; Hamdan, E.; Nor, N.S.M.; et al. Preparation and structural characterization of turbostratic-carbon/graphene derived from amylose film. AIP Conf. Proc. 2016, 1784, 040009. [Google Scholar] [CrossRef]
- Navalon, S.; Herance, J.R.; Alvaro, M.; Garcia, H. General aspects in the use of graphenes in catalysis. Mater. Horiz. 2018, 5, 363–378. [Google Scholar] [CrossRef]
- Rabchinskii, M.K.; Dideikin, A.T.; Kirilenko, D.A.; Baidakova, M.V.; Shnitov, V.V.; Roth, F.; Konyakhin, S.V.; Besedina, N.A.; Pavlov, S.I.; Kuricyn, R.A.; et al. Facile reduction of graphene oxide suspensions and films using glass wafers. Sci. Rep. 2018, 8, 14154. [Google Scholar] [CrossRef] [Green Version]
- Xu, T.; Yang, S.; Lu, J.; Xue, Q.; Li, J.; Guo, W.; Sun, Y. Characterization of nanocrystalline diamond films implanted with nitrogen ions. Diam. Relat. Mater. 2001, 10, 1441–1447. [Google Scholar] [CrossRef]
- Haerle, R.; Riedo, E.; Pasquarello, A.; Baldereschi, A. sp2/sp3 hybridization ratio in amorphous carbon from C 1s core-level shifts: X-ray photoelectron spectroscopy and first-principles calculation. Phys. Rev. B 2001, 65, 045101. [Google Scholar] [CrossRef]
- Chen, L.; Xu, Z.; Li, J.; Zhou, B.; Shan, M.; Li, Y.; Liu, L.; Li, B.; Niu, J. Modifying graphite oxide nanostructures in various media by high-energy irradiation. RSC Adv. 2014, 4, 1025–1031. [Google Scholar] [CrossRef]
- Rani, J.R.; Lim, J.; Oh, J.; Kim, D.; Lee, D.; Kim, J.W.; Shin, H.S.; Kim, J.H.; Jun, S.C. Substrate and buffer layer effect on the structural and optical properties of graphene oxide thin films. RSC Adv. 2013, 3, 5926–5936. [Google Scholar] [CrossRef]
- Watts, J.F.; Wilstenholme, J. An Introduction to Surface Analysis by XPS and AES; John Wiley & Sons, Ltd.: Chichester, UK, 2003. [Google Scholar] [CrossRef]
- Briggs, E.D.; Seach, M.P. Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy; John Wiley & Sons, Ltd.: Chichester, UK, 1983. [Google Scholar]
- Ganguly, A.; Sharma, S.; Papakonstantinou, P.; Hamilton, J. Probing the thermal deoxygenation of graphene oxide using high-resolution in situ X-ray-based spectroscopies. J. Phys. Chem. C 2011, 115, 17009–17019. [Google Scholar] [CrossRef] [Green Version]
- Kumar, N.; Ramadoss, R.; Kozakov, A.T.; Jothiramalingam, S.K.; Dash, S.; Tyagi, A.K.; Tai, N.H.; Lin, I.-N. Humidity-dependent friction mechanism in an ultrananocrystalline diamond film. J. Phys. D Appl. Phys. 2013, 46, 275501. [Google Scholar] [CrossRef]
- Piecuch, P.; Maruani, J.; Delgado-Barrio, G.; Wilson, S. Advances in the Theory of Atomic and Molecular Systems; Springer: Dordrecht, The Netherlands; Berlin/Heidelberg, Germany; London, UK; New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095–14107. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, A.C. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Sol. State Comm. 2007, 143, 47–57. [Google Scholar] [CrossRef]
- Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S.; Cancado, L.G.; Jorioa, A.; Saito, R. Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 2007, 9, 1276–1296. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Basko, D.M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotech. 2013, 8, 235–246. [Google Scholar] [CrossRef] [Green Version]
- Sadezky, A.; Muckenhuber, H.; Grothe, H.; Niessner, R.; Poschl, U. Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon 2005, 43, 1731–1742. [Google Scholar] [CrossRef]
- Tuinstra, F.; Koenig, J.L. Raman spectrum of graphite. J. Chem. Phys. 1970, 53, 1126–1130. [Google Scholar] [CrossRef] [Green Version]
- Cancado, L.G.; Takai, K.; Enoki, T.; Endo, M. General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy. Appl. Phys. Lett. 2006, 88, 163106. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J. Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys. Rev. B 2001, 64, 075414. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, A.C.; Rodil, S.E.; Robertson, J. Interpretation of infrared and Raman spectra of amorphous carbon nitrides. Phys. Rev. B 2003, 67, 155306. [Google Scholar] [CrossRef] [Green Version]
- Wei, C.; Negishi, R.; Ogawa, Y.; Akabori, M.; Taniyasu, Y.; Kobayashi, Y. Turbostratic multilayer graphene synthesis on CVD graphene template toward improving electrical performance. Jpn. J. Appl. Phys. 2019, 58, SIIB04. [Google Scholar] [CrossRef]
- Cancado, L.G.; Jorio, A.; Pimenta, M.A. Measuring the absolute Raman cross section of nanographites as a function of laser energy and crystallite size. Phys. Rev. B 2007, 76, 064304. [Google Scholar] [CrossRef]
C1s | A | B | C | D | E | sp2/sp3 |
---|---|---|---|---|---|---|
C=C (sp2) | C-C (sp3), C-COOH | C-O-C, C-OH | C=O | O=C-OH | ||
TCS-CARB-1 | 21% (284.3 eV) | 46.4% (285.6 eV) | 22.2% (287 eV) | 5.2% (288.3 eV) | 5.2% (289.9 eV) | 0.47 |
GLC/Ag | 59.3% (284.4 eV) | 23.6% (285.3 eV) | 12.4% (286.7 eV) | 4.7% (288.5 eV) | - | 2.51 |
Pos., cm−1 | FWHM, cm−1 | ID/IG | La, nm | ||||||
---|---|---|---|---|---|---|---|---|---|
D | G | 2D | D’ | D | G | 2D | |||
GLC/sapphire-1 | 1356 | 1587 | 2701 | 1623 | 67 | 50 | 76 | 1.11 | 15.3 |
GLC/sapphire-2 | 1358 | 1586 | 2707 | 1621 | 45 | 43 | 63 | 0.96 | 17.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ershov, I.V.; Lavrentyev, A.A.; Prutsakova, N.V.; Holodova, O.M.; Mardasova, I.V.; Zhdanova, T.P.; Kozakov, A.T. Characterization of Graphenic Carbon Produced by Pulsed Laser Ablation of Sacrificial Carbon Tapes. Appl. Sci. 2021, 11, 11972. https://doi.org/10.3390/app112411972
Ershov IV, Lavrentyev AA, Prutsakova NV, Holodova OM, Mardasova IV, Zhdanova TP, Kozakov AT. Characterization of Graphenic Carbon Produced by Pulsed Laser Ablation of Sacrificial Carbon Tapes. Applied Sciences. 2021; 11(24):11972. https://doi.org/10.3390/app112411972
Chicago/Turabian StyleErshov, Igor V., Anatoly A. Lavrentyev, Natalia V. Prutsakova, Olga M. Holodova, Irina V. Mardasova, Tatiana P. Zhdanova, and Alexey T. Kozakov. 2021. "Characterization of Graphenic Carbon Produced by Pulsed Laser Ablation of Sacrificial Carbon Tapes" Applied Sciences 11, no. 24: 11972. https://doi.org/10.3390/app112411972
APA StyleErshov, I. V., Lavrentyev, A. A., Prutsakova, N. V., Holodova, O. M., Mardasova, I. V., Zhdanova, T. P., & Kozakov, A. T. (2021). Characterization of Graphenic Carbon Produced by Pulsed Laser Ablation of Sacrificial Carbon Tapes. Applied Sciences, 11(24), 11972. https://doi.org/10.3390/app112411972