Inverse Approach of Parameter Optimization for Nonlinear Meta-Model Using Finite Element Simulation
Abstract
:1. Introduction
2. Preprocess
2.1. Experimental Material, Procedure
2.2. Curve Fitting
2.3. Inverse Method
3. Results and Discussion
3.1. Results of RMSE
3.2. Results of Stress–Strain Curve
3.3. Results of Optimization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kequan, Y. Self-healing of PE-fiber reinforced lightweight high-strength engineered cementitious composite. Cem. Concr. Compos. 2021, 123, 104209. [Google Scholar]
- Sheng, L. An approach to 570 °C/105 h creep rupture strength prediction and safety assessment of Grade 91 components with reduced hardness after service exposures at 530–610 °C. Int. J. Press. Vessel. 2020, 182, 104073. [Google Scholar]
- Mazzon, E. Lightweight rigid foams from highly reactive epoxy resins derived from vegetable oil for automotive applications. Eur. Polym. J. 2015, 68, 546–557. [Google Scholar] [CrossRef]
- Ishikawa, T. Overview of automotive structural composites technology developments in Japan. Compos. Sci. Technol. 2018, 155, 221–246. [Google Scholar] [CrossRef]
- Zhang, Z.L. Determining material true stress-strain curve from tensile specimens with rectangular cross-section. Int. J. Solids Struct. 1999, 36, 3497–3516. [Google Scholar] [CrossRef]
- Kamaya, M. A procedure for determining the true stress–strain curve over a large range of strains using digital image correlation and finite element analysis. Mech. Mater. 2011, 43, 243–253. [Google Scholar] [CrossRef]
- ManSoo, J. A new method for acquiring true stress–strain curves over a large range of strains using a tensile test and finite element method. Mech. Mater. 2008, 40, 586–593. [Google Scholar]
- Sebastian, D. Sheet Metal Testing and Flow Curve Determination under Multiaxial Conditions. Adv. Eng. Mater. 2007, 9, 987–994. [Google Scholar]
- Kunmin, Z. Identification of post-necking stress–strain curve for sheet metals by inverse method. Mech. Mater. 2016, 92, 107–118. [Google Scholar]
- Zhang, H. Inverse identification of the post-necking work hardening behaviour of thick HSS through full-field strain measurements during diffuse necking. Mech. Mater. 2019, 129, 361–374. [Google Scholar] [CrossRef]
- Ulbin, M. Fatigue analysis of closed-cell aluminium foam using different material models. Trans. Nonferr. Met. 2021, 31, 2787–2796. [Google Scholar] [CrossRef]
- Berna, D. Meta-model based simulation optimization using hybrid simulation-analytical modeling to increase the productivity in automotive industry. Math. Comput. Simul. 2016, 120, 120–128. [Google Scholar]
- Sener, B. Comparison of Quasi-Static Constitutive Equations and Modeling of Flow Curves for Austenitic 304 and Ferritic 430 Stainless Steels. Acta Phys. Pol. A 2016, 131, 605–607. [Google Scholar] [CrossRef]
- Ghosh, A.K. Tensile instability and necking in materials with strain hardening and strain-rate hardening. Acta Metall. 1997, 25, 1413–1424. [Google Scholar] [CrossRef]
- Hollomon, J.H. Tensile deformations. Trans. Metall. Soc. Aime 1945, 162, 268–290. [Google Scholar]
- Ludwik, P. Elemente der Technologischen Mechanik; Springer: Berlin, Germany, 1909. [Google Scholar]
- Swift, H.W. Plastic instability under plane stress. J. Mech. Phys. Solids 1952, 1, 1–18. [Google Scholar] [CrossRef]
- Hockett, J.E.; Sherby, O.D. Large strain deformation of polycrystalline metals at low homologous temperatures. J. Mech. Phys. Solids 1975, 23, 87–98. [Google Scholar] [CrossRef]
- Voce, E. The relationship between stress and strain for homogeneous deformation. J. Inst. Met. 1948, 74, 537–562. [Google Scholar]
- Husain, A. An inverse finite element procedure for the determination of constitutive tensile behavior of materials using miniature specimen. Comput. Mater. Sci. 2004, 31, 84–92. [Google Scholar] [CrossRef]
- Yihua, X. Inverse Parameter Identification for Hyperelastic Model of a Polyurea. Polymers 2021, 13, 2253. [Google Scholar]
- Toros, A.A. Failure Prediction Capability of Generalized Plastic Work Criterion. Procedia Manuf. 2020, 47, 1235–1240. [Google Scholar]
- Chen, J.J. Validation of constitutive models for experimental stress-strain relationship of high-strength steel sheets under uniaxial tension. Mater. Sci. Eng. 2019, 668, 012013. [Google Scholar] [CrossRef]
- Kim, Y.S. New Stress-Strain Model for Identifying Plastic Deformation Behavior of Sheet Materials. J. Korean Soc. Precis. Eng. 2017, 34, 273–279. [Google Scholar] [CrossRef]
- Bingtao, T. Numerical and experimental study on ductile fracture of quenchable boron steels with different microstructures. Int. J. Lightweight Mater. Manuf. 2020, 3, 55–65. [Google Scholar]
- Pino, K. Computer-aided identification of the yield curve of a sheet metal after onset of necking. Comput. Mater. Sci. 2004, 31, 155–168. [Google Scholar]
- Kim, J.H. Characterization of the post-necking strain hardening behavior using the virtual fields method. Int. J. Solids Struct. 2013, 50, 3829–3842. [Google Scholar] [CrossRef] [Green Version]
- Okan, D.Y. Effect of constitutive material model on the finite element simulation of shear localization onset. Simul. Model. Pract. Theory 2020, 104, 102105. [Google Scholar]
- ASTM. Standard E8E8M-16a. Test Methods for Tension Testing of Metallic Materials; ASTM International: West Conshohocken, PA, USA, 2016. [Google Scholar]
- Pham, Q.T. Influence of the post-necking prediction of hardening law on the theoretical forming limit curve of aluminium sheets. Int. J. Mech. Sci. 2018, 140, 521–536. [Google Scholar] [CrossRef]
- Chen, J. Experimental extrapolation of hardening curve for cylindrical specimens via pre-torsion tension tests. J Strain Anal. 2020, 55, 20–30. [Google Scholar] [CrossRef]
- ASTM. Tensile Strain-Hardening Exponents (N-Values) of Metallic Sheet Materials; ASTM E646-16; ASTM International: West Conshohocken, PA, USA, 2016. [Google Scholar]
Symbol | Description | Dimensions [mm] |
---|---|---|
Length overall | 150 | |
Length of narrow section | 20 | |
Gage length | 12 | |
Diameter of grip section | 8 | |
Diameter of narrow section | 4 | |
Radius of fillet | 10 |
Symbol | Yield Stress [MPa] | Ultimate Stress [MPa] |
---|---|---|
1st | 736 | 946 |
2nd | 772 | 1001 |
3rd | 749 | 967 |
No. | Description | Typical Meta-Model | Number of Variables |
---|---|---|---|
1 | Engineering data | - | |
2 | ASTM E646 | - | |
3 | Gosh | 3 | |
4 | Hockett–Sherby | 4 | |
5 | Hockett–Sherby and Gosh | 7 |
No. | Description | Advanced Meta-Model | Number of Variables |
---|---|---|---|
6 | Gaussian Mixture | 6 | |
7 | Sum of Sine | 6 | |
8 | Polynomial | 6 |
Meta-Models | ||||||
---|---|---|---|---|---|---|
Parameters | Gosh | Hockett–Sherby | Hockett–Sherby and Gosh | Gaussian Mixture | Sum of Sine | Polynomial |
7.49 × 102 | 7.49 × 102 | 7.49 × 102 | - | - | - | |
1.88 × 102 | - | 9.39 × 103 | - | - | - | |
1.20 × 10−1 | - | - | - | - | - | |
- | 1.57 × 100 | - | - | - | - | |
- | 8.73 × 102 | 1.80 × 102 | - | - | - | |
- | 6.00 × 102 | 6.00 × 102 | - | - | - | |
- | - | 9.11 × 10−1 | - | - | - | |
- | - | 3.92 × 100 | - | - | - | |
- | - | 5.52 × 10−1 | - | - | - | |
a1 | - | - | - | 7.70 × 10−1 | 2.58 × 103 | - |
b1 | - | - | - | 7.45 × 101 | 1.14 × 101 | - |
c1 | - | - | - | 4.19 × 10−1 | 2.00 × 10−2 | - |
a2 | - | - | - | 9.58 × 102 | 1.67 × 103 | - |
b2 | - | - | - | 7.00 × 100 | 1.38 × 101 | - |
c2 | - | - | - | 1.68 × 101 | 2.75 × 100 | - |
- | - | - | - | - | −9.65 × 101 | |
- | - | - | - | - | 1.86 × 10−9 | |
- | - | - | - | - | 2.42 × 105 | |
- | - | - | - | - | −8.21 × 104 | |
- | - | - | - | - | 8.77 × 103 | |
- | - | - | - | - | 8.77 × 103 |
No. | Number of Variables in Inverse Method | Number of Iterations (α) | Converged RMSE | Component Number per Iteration in FEA (β) | Sum of FE Simulations (γ) |
---|---|---|---|---|---|
1 | 2 | 8 | 12.9 | 10 | 71 |
2 | 2 | 4 | 32.6 | 10 | 31 |
3 | 3 | 3 | 41.2 | 5 | 11 |
4 | 4 | 8 | 38.7 | 5 | 36 |
5 | 7 | 7 | 31.0 | 5 | 31 |
6 | 6 | 8 | 18.8 | 5 | 36 |
7 | 6 | 8 | 14.7 | 5 | 36 |
8 | 6 | 8 | 14.7 | 5 | 36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, S.; Shin, D.; Jeon, E. Inverse Approach of Parameter Optimization for Nonlinear Meta-Model Using Finite Element Simulation. Appl. Sci. 2021, 11, 12026. https://doi.org/10.3390/app112412026
Hong S, Shin D, Jeon E. Inverse Approach of Parameter Optimization for Nonlinear Meta-Model Using Finite Element Simulation. Applied Sciences. 2021; 11(24):12026. https://doi.org/10.3390/app112412026
Chicago/Turabian StyleHong, Seungpyo, Dongseok Shin, and Euysik Jeon. 2021. "Inverse Approach of Parameter Optimization for Nonlinear Meta-Model Using Finite Element Simulation" Applied Sciences 11, no. 24: 12026. https://doi.org/10.3390/app112412026
APA StyleHong, S., Shin, D., & Jeon, E. (2021). Inverse Approach of Parameter Optimization for Nonlinear Meta-Model Using Finite Element Simulation. Applied Sciences, 11(24), 12026. https://doi.org/10.3390/app112412026