Accuracy of Master Casts Generated Using Conventional and Digital Impression Modalities: Part 1—The Half-Arch Dimension
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Typodont Master Model
- ○
- Incisal/occlusal reduction:2 mm incisal reduction for anterior teeth.1.5–2.0 mm occlusal reduction for posterior teeth.
- ○
- Axial reduction:1.2–1.4 mm axial reduction (facial/buccal, lingual/palatal, mesial, and distal).
- ○
- Shoulder width:A 1 mm circumferential shoulder was prepared for all the anterior and posterior teeth.
- ○
- The preparation was smoothed and free of any sharp points or line angles.
- ○
- The typodont master model received a standard all-ceramic preparation for teeth #1.1, 1.3, 1.5, and 1.7; missing teeth #1.2, 1.4, and 1.6.
2.3. Fabrication of Casts Using the Conventional Impression Technique
2.4. Fabrication of Casts Using the Digital Impression Technique
2.5. Measurements
2.6. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Perakis, N.; Belser, U.C.; Magne, P. Final impressions: A review of material properties and description of a current technique. Int. J. Periodontics Restor. Dent. 2004, 24, 109–117. [Google Scholar]
- Clancy, J.M.; Scandrett, F.R.; Ettinger, R.L. Long-term dimensional stability of three current elastomers. J. Oral Rehabil. 1983, 10, 325–333. [Google Scholar] [CrossRef]
- Thongthammachat, S.; Moore, B.K.; Barco, M.T., 2nd; Hovijitra, S.; Brown, D.T.; Andres, C.J. Dimensional accuracy of dental casts: Influence of tray material, impression material, and time. J. Prosthodont. 2002, 11, 98–108. [Google Scholar] [CrossRef]
- Cox, J.R. A clinical study comparing marginal and occlusal accuracy of crowns fabricated from double-arch and complete-arch impressions. Aust. Dent. J. 2005, 50, 90–94. [Google Scholar] [CrossRef] [Green Version]
- Shafa, S.; Zaree, Z.; Mosharraf, R. The effects of custom tray material on the accuracy of master casts. J. Contemp. Dent. Pract. 2008, 9, 49–56. [Google Scholar] [PubMed]
- Wöstmann, B.; Rehmann, P.; Balkenhol, M. Accuracy of impressions obtained with dual-arch trays. Int. J. Prosthodont. 2009, 22, 158–160. [Google Scholar]
- Nissan, J.; Gross, M.; Shifman, A.; Assif, D. Effect of wash bulk on the accuracy of polyvinyl siloxane putty-wash impressions. J. Oral Rehabil. 2002, 29, 357–361. [Google Scholar] [CrossRef]
- Nissan, J.; Laufer, B.Z.; Brosh, T.; Assif, D. Accuracy of three polyvinyl siloxane putty-wash impression techniques. J. Prosthet. Dent. 2000, 83, 161–165. [Google Scholar] [CrossRef]
- Sayed, M.E.; Sayed, M.E.; Al-Makramani, B.M.; Al-Sanabani, F.A.; Mohamed, M.S. Effect of Intermixing Brands on the Dimensional Accuracy of Master Cast using Putty-wash Impression Technique. J. Contemp. Dent. Pract. 2016, 17, 734–739. [Google Scholar] [CrossRef]
- Christensen, G.J. The challenge to conventional impressions. J. Am. Dent. Assoc. 2008, 139, 347–349. [Google Scholar] [CrossRef]
- Sharma, S.; Agarwal, S.; Sharma, D.; Kumar, S.; Glodha, N. Impression; digital vs conventional: A review. Ann. Dent. Spec. 2014, 2, 9–10. [Google Scholar]
- Mörmann, W.H. The evolution of the CEREC system. J. Am. Dent. Assoc. 2006, 137 (Suppl. S1), 7S–13S. [Google Scholar] [CrossRef]
- Seelbach, P.; Brueckel, C.; Wöstmann, B. Accuracy of digital and conventional impression techniques and workflow. Clin. Oral Investig. 2013, 17, 1759–1764. [Google Scholar] [CrossRef]
- Zarauz, C.; Valverde, A.; Martinez-Rus, F.; Hassan, B.; Pradies, G. Clinical evaluation comparing the fit of all-ceramic crowns obtained from silicone and digital intraoral impressions. Clin. Oral Investig. 2016, 20, 799–806. [Google Scholar] [CrossRef]
- Syrek, A.; Reich, G.; Ranftl, D.; Klein, C.; Cerny, B.; Brodesser, J. Clinical evaluation of all-ceramic crowns fabricated from intraoral digital impressions based on the principle of active wavefront sampling. J. Dent. 2010, 38, 553–559. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Azim, T.; Rogers, K.; Elathamna, E.; Zandinejad, A.; Metz, M.; Morton, D. Comparison of the marginal fit of lithium disilicate crowns fabricated with CAD/CAM technology by using conventional impressions and two intraoral digital scanners. J. Prosthet. Dent. 2015, 114, 554–559. [Google Scholar] [CrossRef] [PubMed]
- Almeida e Silva, J.S.; Erdelt, K.; Edelhoff, D.; Araújo, É.; Stimmelmayr, M.; Vieira, L.C.; Güth, J.F. Marginal and internal fit of four-unit zirconia fixed dental prostheses based on digital and conventional impression techniques. Clin. Oral Investig. 2014, 18, 515–523. [Google Scholar] [CrossRef]
- Vennerstrom, M.; Fakhary, M.; Von Steyern, P.V. The fit of crowns produced using digital impression systems. Swed. Dent. J. 2014, 38, 101–110. [Google Scholar] [PubMed]
- Ender, A.; Zimmermann, M.; Attin, T.; Mehl, A. In vivo precision of conventional and digital methods for obtaining quadrant dental impressions. Clin. Oral Investig. 2016, 20, 1495–1504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michelinakis, G.; Apostolakis, D.; Tsagarakis, A.; Kourakis, G.; Pavlakis, E. A comparison of accuracy of 3 intraoral scanners: A single-blinded in vitro study. J. Prosthet. Dent. 2020, 124, 581–588. [Google Scholar] [CrossRef] [PubMed]
- Federick, D.R.; Caputo, A. Comparing the accuracy of reversible hydrocolloid and elastomeric impression materials. J. Am. Dent. Assoc. 1997, 128, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.Y.; Liang, W.M.; Chen, F.N. Factors affecting the accuracy of elastomeric impression materials. J. Dent. 2004, 32, 603–609. [Google Scholar] [CrossRef] [PubMed]
- Faria, A.C.; Rodrigues, R.C.; Macedo, A.P.; Mattos Mda, G.; Ribeiro, R.F. Accuracy of stone casts obtained by different impression materials. Braz. Oral Res. 2008, 22, 293–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhungana, M.; Acharya, L.; Sah, S. Dimensional accuracy of different impression materials and techniques commonly used in prosthodontics. JNDA 2016, 16, 30–36. [Google Scholar]
- Caputi, S.; Varvara, G. Dimensional accuracy of resultant casts made by a monophase, one-step and two-step, and a novel two-step Putty/light-body impression technique: An in vitro study. J. Prosthet. Dent. 2008, 99, 274–281. [Google Scholar] [CrossRef]
- Ender, A.; Mehl, A. In-vitro evaluation of the accuracy of conventional and digital methods of obtaining full-arch dental impressions. Quintessence Int. 2015, 46, 9–17. [Google Scholar] [PubMed]
- Ellakany, P.; Al-Harbi, F.; El Tantawi, M.; Mohsen, C. Evaluation of the accuracy of digital and 3D-printed casts com-pared with conventional stone casts. J. Prosthet. Dent. 2020, in press. [Google Scholar] [CrossRef] [PubMed]
- Aly, P.; Mohsen, C. Comparison of the Accuracy of Three-Dimensional Printed Casts, Digital, and Conventional Casts: An In Vitro Study. Eur. J. Dent. 2020, 14, 189–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Etemad-Shahidi, Y.; Qallandar, O.B.; Evenden, J.; Alifui-Segbaya, F.; Ahmed, K.E. Accuracy of 3-Dimensionally Printed Full-Arch Dental Models: A Systematic Review. J. Clin. Med. 2020, 9, 3357. [Google Scholar] [CrossRef] [PubMed]
- Reis, B.S.; Portella, F.F.; Rivaldo, E.G. Precision and accuracy of four current 3D Printers to achieve models for Fixed Dental Prosthesis. Precisão de quatro impressoras 3D para obtenção de modelos para prótese fixa. Acta Odontol. Latinoam. 2020, 33, 3–5. [Google Scholar] [PubMed]
- Eames, W.B.; Litvak, C.S. New irreversible hydrocolloid silicone impression material. J. Prosthet. Dent. 1984, 52, 479–484. [Google Scholar] [CrossRef]
- Suchak, A.; Fan, P.L.; Stanford, J.W.; Rhoades, C. Evaluation of an alginate substitute using specification requirements. J. Am. Dent. Assoc. 1984, 108, 210–211. [Google Scholar] [CrossRef] [PubMed]
- Kusugal, P.; Chourasiya, R.S.; Ruttonji, Z.; Astagi, P.; Nayak, A.K.; Patil, A. Surface Detail Reproduction and Dimensional Stability of Contemporary Irreversible Hydrocolloid Alternatives after Immediate and Delayed Pouring. Contemp. Clin. Dent. 2018, 9, 20–25. [Google Scholar] [PubMed]
Typodont Master Model | ALG | AA | PVS-2 | DIGITAL | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Dimension (mm) | Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD |
HAPS | 14.82 | 0.00 | 14.91 * | 0.08 | 14.78 * | 0.03 | 14.84 | 0.05 | 15.14 * | 0.05 |
HAPC | 40.77 | 0.00 | 40.67 | 0.18 | 40.75 | 0.08 | 40.74 | 0.09 | 41.11 * | 0.08 |
HCA | 44.52 | 0.00 | 44.40 * | 0.11 | 44.74 * | 0.07 | 44.64 * | 0.07 | 44.90 * | 0.07 |
Vertical | 4.31 | 0.00 | 4.06 * | 0.06 | 4.11 * | 0.02 | 4.26 * | 0.02 | 4.12 * | 0.02 |
Horizontal Anteroposterior Straight Test Value = 14.82 | |||
---|---|---|---|
t (df) | Mean diff. (95% CI) | p | |
ALG | 3.24 (9) | 0.08 (0.02, 0.14) | 0.010 |
AA | −3.88 (9) | −0.04 (−0.07, −0.02) | 0.004 |
PVS-2 | 0.76 (9) | 0.01 (−0.02, 0.05) | 0.470 |
DIGITAL | 18.61 (9) | 0.32 (0.28, 0.35) | <0.001 |
Horizontal Anteroposterior Curved Test Value = 40.77 | |||
ALG | −1.74 (9) | −0.10 (−0.23, 0.03) | 0.116 |
AA | −0.59 (9) | −0.02 (−0.07, 0.04) | 0.570 |
PVS-2 | −1.03 (9) | −0.03 (−0.10, 0.04) | 0.331 |
DIGITAL | 13.60 (9) | 0.33 (0.28, 0.40) | <0.001 |
Cross-Arch Test Value = 44.52 | |||
ALG | −3.39 (9) | −0.12 (−0.20, −0.04) | 0.008 |
AA | 9.97 (9) | 0.21 (0.16, 0.26) | <0.001 |
PVS-2 | 5.26 (9) | 0.12 (0.07, 0.17) | 0.001 |
DIGITAL | 17.84 (9) | 0.38 (0.33, 0.43) | <0.001 |
Vertical Test Value = 4.31 | |||
ALG | −13.30 (9) | −0.25 (−0.29, −0.20) | <0.001 |
AA | −28.41 (9) | −0.20 (−0.21, −0.18) | <0.001 |
PVS-2 | −7.02 (9) | −0.06 (−0.07, −0.03) | <0.001 |
DIGITAL | −26.20 (9) | −0.19 (−0.21, −0.17) | <0.001 |
Dimension | Impression | n | Mean | SD | F Statistics (df) | p Value a |
---|---|---|---|---|---|---|
HAPS | ALG | 10 | 14.91 | 0.08 | 79.26 (3.36) | <0.001 |
AA | 10 | 14.78 | 0.04 | |||
PVS-2 | 10 | 14.84 | 0.05 | |||
DIGITAL | 10 | 15.14 | 0.05 | |||
HAPC | ALG | 10 | 40.67 | 0.18 | 28.41 (3.36) | <0.001 |
AA | 10 | 40.75 | 0.08 | |||
PVS-2 | 10 | 40.74 | 0.09 | |||
DIGITAL | 10 | 41.11 | 0.08 | |||
HCA | ALG | 10 | 44.40 | 0.11 | 65.02 (3.36) | <0.001 |
AA | 10 | 44.74 | 0.07 | |||
PVS-2 | 10 | 44.64 | 0.07 | |||
DIGITAL | 10 | 44.90 | 0.07 | |||
V | ALG | 10 | 4.06 | 0.06 | 56.37 (3.36) | <0.001 |
AA | 10 | 4.11 | 0.02 | |||
PVS-2 | 10 | 4.25 | 0.02 | |||
DIGITAL | 10 | 4.12 | 0.02 |
Pairwise Comparison | Mean (SD) | Mean Difference | p Value * | |
---|---|---|---|---|
HAPS | ALG vs. AA | 14.91 (0.08) 14.78 (0.04) | 0.13 | <0.001 * |
ALG vs. PVS-2 | 14.91 (0.08) 14.84 (0.05) | 0.07 | 0.04 * | |
ALG vs. DIGITAL | 14.91 (0.08) 15.14 (0.05) | −0.23 | <0.001 * | |
AA vs. PVS-2 | 14.78 (0.04) 14.84 (0.05) | −0.06 | 0.157 | |
AA vs. DIGITAL | 14.78 (0.04) 15.14 (0.05) | −0.36 | <0.001 * | |
PVS-2 vs. DIGITAL | 14.84 (0.05) 15.14 (0.05) | −0.30 | <0.001 * | |
HAPC | ALG vs. AA | 40.67 (0.18) 40.75 (0.08) | −0.08 | 0.359 |
ALG vs. PVS-2 | 40.67 (0.18) 40.74 (0.09) | −0.07 | 0.528 | |
ALG vs. DIGITAL | 40.67 (0.18) 41.11 (0.08) | −0.44 | <0.001 * | |
AA vs. PVS-2 | 40.75 (0.08) 40.74 (0.09) | 0.01 | 0.991 | |
AA vs. DIGITAL | 40.75 (0.08) 41.11 (0.08) | −0.36 | <0.001 * | |
PVS-2 vs. DIGITAL | 40.74 (0.09) 41.11 (0.08) | −0.37 | <0.001 * | |
HCA | ALG vs. AA | 44.40 (0.11) 44.74 (0.07) | −0.34 | <0.001 * |
ALG vs. PVS-2 | 44.40 (0.11) 44.64 (0.07) | 0.24 | <0.001 * | |
ALG vs. DIGITAL | 44.40 (0.11) 44.90 (0.07) | −0.50 | <0.001 * | |
AA vs. PVS-2 | 44.74 (0.07) 44.64 (0.07) | 0.10 | 0.067 | |
AA vs. DIGITAL | 44.74 (0.07) 44.90 (0.07) | −0.16 | <0.001 * | |
PVS-2 vs. DIGITAL | 44.64 (0.07) 44.90 (0.07) | −0.26 | <0.001 * | |
V | ALG vs. AA | 4.06 (0.06) 4.11 (0.02) | −0.05 | 0.02 * |
ALG vs. PVS-2 | 4.06 (0.06) 4.25 (0.02) | −0.19 | <0.001 * | |
ALG vs. DIGITAL | 4.06 (0.06) 4.12 (0.02) | −0.06 | 0.006 * | |
AA vs. PVS-2 | 4.11 (0.02) 4.25 (0.02) | −0.014 | <0.001 * | |
AA vs. DIGITAL | 4.11 (0.02) 4.12 (0.02) | −0.01 | 0.962 | |
PVS-2 vs. DIGITAL | 4.25 (0.02) 4.12 (0.02) | 0.13 | <0.001 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sayed, M.E.; Alshehri, A.H.; Al-Makramani, B.M.A.; Al-Sanabani, F.; Shaabi, F.I.; Alsurayyie, F.H.; Ahmed, W.M.; Al-Mansour, H.; Jain, S. Accuracy of Master Casts Generated Using Conventional and Digital Impression Modalities: Part 1—The Half-Arch Dimension. Appl. Sci. 2021, 11, 12034. https://doi.org/10.3390/app112412034
Sayed ME, Alshehri AH, Al-Makramani BMA, Al-Sanabani F, Shaabi FI, Alsurayyie FH, Ahmed WM, Al-Mansour H, Jain S. Accuracy of Master Casts Generated Using Conventional and Digital Impression Modalities: Part 1—The Half-Arch Dimension. Applied Sciences. 2021; 11(24):12034. https://doi.org/10.3390/app112412034
Chicago/Turabian StyleSayed, Mohammed E., Abdulkarim Hussain Alshehri, Bandar M. A. Al-Makramani, Fuad Al-Sanabani, Fawzia Ibraheem Shaabi, Fatimah H. Alsurayyie, Walaa Magdy Ahmed, Hosain Al-Mansour, and Saurabh Jain. 2021. "Accuracy of Master Casts Generated Using Conventional and Digital Impression Modalities: Part 1—The Half-Arch Dimension" Applied Sciences 11, no. 24: 12034. https://doi.org/10.3390/app112412034
APA StyleSayed, M. E., Alshehri, A. H., Al-Makramani, B. M. A., Al-Sanabani, F., Shaabi, F. I., Alsurayyie, F. H., Ahmed, W. M., Al-Mansour, H., & Jain, S. (2021). Accuracy of Master Casts Generated Using Conventional and Digital Impression Modalities: Part 1—The Half-Arch Dimension. Applied Sciences, 11(24), 12034. https://doi.org/10.3390/app112412034