Thermogravimetric Study of Refuse Derived Fuel Produced from Municipal Solid Waste of Kazakhstan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Materials
2.2. Apparatus and Procedure
2.3. Kinetics of RDF Samples
3. Results and Discussions
3.1. Thermogravimetry (TG) and Differential Thermogravimetry (DTG) Curves of RDF Samples
3.2. Effect of Heating Rate
3.3. Combustion Kinetics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Parliament and Council. Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain directives Waste framework. Off. J. Eur. Union 2008, 312, 3–30. [Google Scholar]
- Government of Kazakhstan. Programma-Modernizacii-Tbo; Government of Kazakhstan: Nur-Sultan, Kazakhstan, 2020.
- KazNIIEK. Guidelines for the Calculation of Greenhouse Gas Emissions in the Atmosphere from Municipal SolidWaste Landfills; KazNIIEK: Almaty, Kazakhstan, 2010. [Google Scholar]
- Sarbassov, Y.; Sagalova, T.; Tursunov, O.; Venetis, C. Survey on household solid waste sorting at source in developing economies: A case study of nur-sultan city in Kazakhstan. Sustainability 2019, 11, 6496. [Google Scholar] [CrossRef] [Green Version]
- Technical Assistance Report (Project Number: 51353-001): Astana Integrated Water Master Plan Republic of Kazakhstan; Asian Development Bank: Nur-Sultan, Kazakhstan, May 2018.
- Miskolczi, N.; Buyong, F.; Williams, P.T. Thermogravimetric analysis and pyrolysis kinetic study of Malaysian refuse derived fuels. J. Energy Inst. 2010, 83, 125–132. [Google Scholar] [CrossRef]
- Garg, A.; Smith, R.; Hill, D.; Simms, N.; Pollard, S. Wastes as co-fuels: The policy framework for solid recovered fuel (SRF) in Europe, with UK implications. Environ. Sci. Technol. 2007, 41, 4868–4874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grammelis, P.; Basinas, P.; Malliopoulou, A.; Sakellaropoulos, G. Pyrolysis kinetics and combustion characteristics of waste recovered fuels. Fuel 2009, 88, 195–205. [Google Scholar] [CrossRef]
- Sorum, L.; Gronli, M.G.; Hustad, J.E. Pyrolysis characteristics and kinetics of municipal solid wastes. Fuel 2001, 80, 1217–1227. [Google Scholar] [CrossRef]
- Abylkhani, B.; Aiymbetov, B.; Yagofarova, A.; Tokmurzin, D.; Venetis, C.; Poulopoulos, S.; Sarbassov, Y.; Inglezakis, V.J. Seasonal characterisation of municipal solid waste from Astana city, Kazakhstan: Composition and thermal properties of combustible fraction. Waste Manag. Res. 2019, 37, 1271–1281. [Google Scholar] [CrossRef] [PubMed]
- Kara, M. Environmental and economic advantages associated with the use of RDF in cement kilns. Resour. Conserv. Recycl. 2012, 68, 21–28. [Google Scholar] [CrossRef]
- Reza, B.; Soltani, A.; Ruparathna, R.; Sadiq, R.; Hewage, K. Environmental and economic aspects of production and utilization of RDF as alternative fuel in cement plants: A case study of Metro Vancouver Waste Management. Resour. Conserv. Recycl. 2013, 81, 105–114. [Google Scholar] [CrossRef]
- Luo, J.; Li, Q.; Meng, A.; Long, Y.; Zhang, Y. Combustion characteristics of typical model components in solid waste on a macro-TGA. J. Therm. Anal. Calorim. 2018, 132, 553–562. [Google Scholar] [CrossRef]
- Piao, G.; Aono, S.; Yamazaki, R.; Mori, S.; Fujima, Y.; Kondoh, M.; Yamaguchi, M. Combustion Test of Refuse Derived Fuel in Fluidized Bed. Waste Manag. 2000, 20, 443–447. [Google Scholar] [CrossRef]
- Rudra, S.; Tesfagaber, Y.K. Future district heating plant integrated with municipal solid waste (MSW) gasification for hydrogen production. Energy 2019, 180, 881–892. [Google Scholar] [CrossRef]
- Genon, G.; Brizio, E. Perspectives and limits for cement kilns as a destination for RDF. Waste Manag. 2008, 28, 2375–2385. [Google Scholar] [CrossRef] [PubMed]
- Sarbassov, Y.; Kerimray, A.; Tokmurzin, D.; Tosato, G.C.; De Miglio, R. Electricity and heating system in Kazakhstan: Exploring energy efficiency improvement paths. Energy Policy 2013, 60, 431–444. [Google Scholar] [CrossRef]
- Haykiri-Acma, H.; Kurt, G.; Yaman, S. Properties of Biochars Obtained from RDF by Carbonization: Influences of Devolatilization Severity. Waste Biomass Valoriz. 2017, 8, 539–547. [Google Scholar] [CrossRef]
- Roni, M.S.; Chowdhury, S.; Mamun, S.; Marufuzzaman, M.; Lein, W.; Johnson, S. Biomass co-firing technology with policies, challenges, and opportunities: A global review. Renew. Sustain. Energy Rev. 2017, 78, 1089–1101. [Google Scholar] [CrossRef]
- IEA. CO2 Emissions from Fuel Combustion 2017; OECD Publishing: Paris, France, 2017; Available online: https://www.iea.org/subscribe-to-data-services/co2-emissions-statistics (accessed on 27 January 2021).
- Cho, J.; Chu, S.; Dauenhauer, P.J.; Huber, G.W. Green Chemistry Kinetics and reaction chemistry for slow pyrolysis of enzymatic hydrolysis lignin and organosolv extracted lignin derived from maplewood. Green Chem. 2012, 14, 428–439. [Google Scholar] [CrossRef] [Green Version]
- Kissinger, H.E. Variation of Peak Temperature with heating rate in differential thermal analysis. J. Res. Natl. Bur. Stand. 1956, 57, 217–221. [Google Scholar] [CrossRef]
- Kissinger, H.E. Reaction kinetics in differential thermal analysis. Anal. Chem. 1957, 303, 1702–1706. [Google Scholar] [CrossRef]
- Braun, R.L.; Burnham, A.K. Analysis of chemical reaction kinetics using a distribution of activation energies and simpler models. Energy Fuels 1987, 1, 153–161. [Google Scholar] [CrossRef]
- Flynn, J.H.; Wall, L.A. A quick, direct method for the determination of activation energy from thermogravimetric data. Polym. Lett. 1966, 4, 323–328. [Google Scholar] [CrossRef]
- Muthuraman, M.; Namioka, T.; Yoshikawa, K. A comparative study on co-combustion performance of municipal solid waste and Indonesian coal with high ash Indian coal: A thermogravimetric analysis. Fuel Process. Technol. 2010, 91, 550–558. [Google Scholar] [CrossRef]
- Ansah, E.; Wang, L.; Shahbazi, A. Thermogravimetric and calorimetric characteristics during co-pyrolysis of municipal solid waste components. Waste Manag. 2016, 56, 196–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cozanni, V.; Petarca, L.; Tognotti, L. Devolatilization and pyrolysis of refuse derived fuels: Characterization and kinetic modelling by a thermogravimetric and calorimetric approach. Fuel 1995, 74, 903–912. [Google Scholar] [CrossRef]
- Fang, S.; Yu, Z.; Lin, Y.; Hu, S.; Liao, Y.; Ma, X. Thermogravimetric analysis of the co-pyrolysis of paper sludge and municipal solid waste. Energy Convers. Manag. 2015, 101, 626–631. [Google Scholar] [CrossRef]
- Lin, K.; Wang, H.P.; Liu, S.; Chang, N. Pyrolysis kinetics of refuse-derived fuel. Fuel Process. Technol. 1999, 103–110. [Google Scholar] [CrossRef]
- Li, Y.; Wang, H.; Li, R.; Chi, Y. Thermogravimetric analysis on the combustion characteristics of refuse-derived fuel under an oxygen-enriched atmosphere. Biofuels 2015, 7269, 217–222. [Google Scholar] [CrossRef]
- Lai, Z.; Ma, X.; Tang, Y.; Lin, H. A study on municipal solid waste (MSW) combustion in N2/O2 and CO2/O2 atmosphere from the perspective of TGA. Energy 2011, 36, 819–824. [Google Scholar] [CrossRef]
- Guo, X.; Wang, Z.; Li, H.; Huang, H.; Wu, C.; Chen, Y. A Study on Combustion Characteristics and Kinetic Model of Municipal Solid Wastes. Energy Fuels 2001, 15, 1441–1446. [Google Scholar] [CrossRef]
- Robinson, T.; Bronson, B.; Gogolek, P.; Mehrani, P. Sample preparation for thermo-gravimetric determination and thermo-gravimetric characterization of refuse derived fuel. Waste Manag. 2016, 48, 265–274. [Google Scholar] [CrossRef]
- Efika, E.C.; Onwudili, J.A.; Williams, P.T. Products from the high temperature pyrolysis of RDF at slow and rapid heating rates. J. Anal. Appl. Pyrolysis 2015, 112, 14–22. [Google Scholar] [CrossRef]
- Fan, Y.; Yu, Z.; Fang, S.; Lin, Y.; Lin, Y.; Liao, Y.; Ma, X. Investigation on the co-combustion of oil shale and municipal solid waste by using thermogravimetric analysis. Energy Convers. Manag. 2016, 117, 367–374. [Google Scholar] [CrossRef]
- Zhou, H.; Long, Y.; Meng, A.; Li, Q.; Zhang, Y. Classification of municipal solid waste components for thermal conversion in waste-to-energy research. Fuel 2015, 145, 151–157. [Google Scholar] [CrossRef]
- Çepelioğullar, Ö.; Haykiri-Açma, H.; Yaman, S. Kinetic modelling of RDF pyrolysis: Model-fitting and model-free approaches. Waste Manag. 2016, 48, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Burnham, A.K. Computational aspects of kinetic analysis. Part D: The ICTAC kinetics project—multi-thermal–history model- fitting methods and their relation to isoconversional methods. Thermochim. Acta 2000, 355, 165–170. [Google Scholar] [CrossRef]
- Doyle, C.D.; Figure, F. Kinetic Analysis of Thermogravimetric Data. J. Appl. Polym. Sci. 1961, 5, 285–292. [Google Scholar] [CrossRef]
- Doyle, C.D. Estimating isothermal life from thermogravimetric data. J. Appl. Polym. Sci. 1962, 6, 639–642. [Google Scholar] [CrossRef]
- Friedman, H.L. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J. Polym. Sci. Part C Polym. Symp. 2007, 6, 183–195. [Google Scholar] [CrossRef]
- Font, R.; Conesa, J.A.; Martı, I.; Molto, J. Thermogravimetric analysis during the decomposition of cotton fabrics in an inert and air environment. J. Anal. Appl. Pyrolysis 2006, 76, 124–131. [Google Scholar] [CrossRef] [Green Version]
- Skodras, G.; Grammelis, P.; Basinas, P.; Prokopidou, M.; Kakaras, E.; Sakellaropoulos, G.P. A thermochemical conversion study on the combustion of residue-derived fuels. Water Air Soil Pollut. Focus 2009, 9, 151–157. [Google Scholar] [CrossRef]
- Su, G.; Yang, J.; Lu, H. Experimental Study on Combustion Characteristics of Three Biomass Components. Adv. Mater. Res. 2014, 954, 309–312. [Google Scholar] [CrossRef]
- Zhou, H.; Meng, A.; Long, Y.; Li, Q.; Zhang, Y. Classification and comparison of municipal solid waste based on thermochemical characteristics. J. Air Waste Manag. Assoc. 2014, 64, 597–616. [Google Scholar] [CrossRef] [PubMed]
Sample | Experimental Conditions | Kinetic Model | Activation Energy (kJ/mol) | Ref. | |||
---|---|---|---|---|---|---|---|
Environment | Flow Rate (mL/min) | Temp.(°C) | Heating Rate (°C/min) | ||||
Paper, textile (cotton), wood, plastic (PET) | N2 | 60 | 800 | 10–60 | Integral method | Textile: 37–56; Paper: 50–72; PET: 182–224; | [27] |
Cellulosic fraction, plastics | N2 | 150 | 500–600 | 10 | Integral method | Cellulose: 244; Hemicellulose: 111; Lignin: 43; PS: 312; PP: 337; LDPE: 341; HDPE: 445; | [9] |
Paper, wood, PE | N2 | 150 | 500–600 | 20 | RDF degradation rate | Cellulose: 196–217; Hemicellulose: 172/174; Lignin: 122–137; PE: 248; | [28] |
Paper sludge | N2 | 80 | 1000 | 30–50 | FWO, KAS | MSW and paper sludge 50/50 mixture: 97 (KAS); 112 (FWO); | [29] |
Paper, plastics | N2 | 100 | 550 | 3–9 | Classical laws of kinetics | Paper: 83–86; LDPE: 128; HDPE: 278; PS: 121; PVC: 123–299; | [30] |
Paper, plastic | N2 | 50 | 650 | 20 | Model-fitting: 1st order reaction | Cellulose: 105–109; Hemicellulose: 141–142; Lignin: 153–154; PE: 281; PP: 236; PS: 211; | [6] |
Paper, plastic | He | 100 | 1000 | 20 | Independent parallel, first order kinetics | Cellulose: 211; Hemicellulose: 131; Lignin: 30–48; PVC: (R1) a 183; (R2) 177; (R3) 378; (R4) 181; | [8] |
Hemicellulose, Cellulose, Lignin, Plastics | Air | 1000 | 1000 | 10–30 | FWO | Cellulose: 48; Hemicellulose: 40; Lignin: 44; PS: 62; PVC: 46; PET: 76; | [13] |
RDF (textile, paper, plastic, sawdust) | Air | - | 800 | 10–30 | Model-fitting: 1st order reaction | (R1) 77; (R2) 21; | [31] |
MSW | Air | 100 | 1000 | 20 | Model-fitting: nth order reaction | (R1) 138; (R2) 80; (R3) 155; | [32] |
Paper, textile, plastic | Air | 30 | 900 | 10 | Non-isothermal analysis method | Paper: 60–65; Textile: 51–56; Plastic: 5–92; | [33] |
Proximate (wt%, as Received) | RDF | Plastic | Paper | Textile |
---|---|---|---|---|
Moisture | 1.5 | 0.8 | 2.6 | 1.2 |
Volatile matter | 86.7 | 87.3 | 85.7 | 86.7 |
Ash | 8.2 | 8.7 | 8.5 | 4.0 |
Fixed carbon | 3.6 | 3.2 | 3.2 | 8.1 |
Ultimate (wt%, and dry ash free) | ||||
Carbon | 66.5 | 83.5 | 46.8 | 47.8 |
Hydrogen | 9.9 | 13.0 | 6.4 | 6.1 |
Nitrogen | 0.6 | 0.5 | 0.6 | 1.3 |
Sulfur | 0.2 | 0.3 | 0.1 | 0.2 |
Oxygen * | 22.8 | 2.7 | 46.1 | 44.6 |
Gross Calorific value (MJ/kg) ** | 23.4 | 32.6 | 16.4 | 20.1 |
Sample | Paper | Plastic | Textile | RDF | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Heating rate (°C/min) | 10 | 20 | 30 | 10 | 20 | 30 | 10 | 20 | 30 | 10 | 20 | 30 |
DTG1 (%/min) | 9.4 | 19.9 | 26.1 | 5.5 | 8.1 | 9.7 | 7.3 | 14.8 | 19.7 | 7.3 | 13.8 | 23.3 |
Temperature at DTG1 (°C) | 320 | 329 | 326 | 312 | 326 | 340 | 328 | 347 | 344 | 309 | 319 | 326 |
DTG2 (%/min) | 3.9 | 5.5 | 7.1 | 3.2 | 7.8 | 16.2 | 4.1 | 7.2 | 11.4 | 3.0 | 5.8 | 7.3 |
Temperature DTG2 (°C) | 434 | 458 | 471 | 424 | 450 | 451 | 424 | 429 | 434 | 417 | 426 | 440 |
DTG3 (%/min) | 0.4 | 0.5 | 0.9 | 5.1 | 6.7 | 8.5 | 3.3 | 6.4 | 7.8 | 2.6 | 4.6 | 6.7 |
Temperature at DTG3 (°C) | 640 | 662 | 679 | 476 | 495 | 500 | 502 | 504 | 531 | 457 | 478 | 471 |
DTG4 (%/min) | - | - | - | 0.3 | 0.9 | 1.2 | 0.2 | 0.4 | 0.7 | 0.4 | 0.7 | 1.0 |
Temperature at DTG4 (°C) | - | - | - | 614 | 671 | 678 | 607 | 631 | 663 | 645 | 672 | 663 |
α | FWO | KAS | Friedman | ||||||
---|---|---|---|---|---|---|---|---|---|
A (min−1) | Ea (kJ/mol) | R2 | A (min−1) | Ea (kJ/mol) | R2 | A (min−1) | Ea (kJ/mol) | R2 | |
0.1 | 1.10 × 1035 | 365.27 | 1.00 | 4.88 × 1035 | 375.13 | 1.00 | 7.47 × 1029 | 331.47 | 1.00 |
0.2 | 1.55 × 1021 | 236.04 | 0.98 | 2.55 × 1021 | 238.74 | 0.98 | 7.58 × 1017 | 215.22 | 0.99 |
0.3 | 1.71 × 1018 | 208.55 | 0.94 | 2.06 × 1018 | 209.57 | 0.94 | 2.41 × 1015 | 191.04 | 0.95 |
0.4 | 8.90 × 1016 | 197.52 | 0.87 | 9.17 × 1016 | 197.74 | 0.85 | 2.47 × 1014 | 182.18 | 0.87 |
0.5 | 2.66 × 1016 | 195.28 | 0.69 | 2.54 × 1016 | 195.11 | 0.66 | 1.46 × 1014 | 182.41 | 0.68 |
0.6 | 7.94 × 108 | 111.15 | 0.27 | 2.14 × 108 | 106.17 | 0.23 | 1.61 × 107 | 102.72 | 0.25 |
0.7 | 4.78 × 1015 | 203.62 | 0.81 | 4.06 × 1015 | 202.83 | 0.80 | 6.84 × 1013 | 193.26 | 0.81 |
0.8 | 2.69 × 1012 | 169.23 | 0.67 | 1.40 × 1012 | 166.09 | 0.96 | 6.57 × 1010 | 159.3 | 0.97 |
0.9 | 7.52 × 109 | 140.31 | 0.98 | 2.37 × 109 | 135.00 | 0.97 | 3.69 × 108 | 131.11 | 0.98 |
Mean | 1.22 × 1034 | 203 | 5.42 × 1034 | 202.93 | 8.30 × 1028 | 187.63 | |||
SD | 3.67 × 1034 | 71.63 | 1.63 × 1035 | 76.16 | 2.49 × 1029 | 63.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuspangaliyeva, B.; Suleimenova, B.; Shah, D.; Sarbassov, Y. Thermogravimetric Study of Refuse Derived Fuel Produced from Municipal Solid Waste of Kazakhstan. Appl. Sci. 2021, 11, 1219. https://doi.org/10.3390/app11031219
Kuspangaliyeva B, Suleimenova B, Shah D, Sarbassov Y. Thermogravimetric Study of Refuse Derived Fuel Produced from Municipal Solid Waste of Kazakhstan. Applied Sciences. 2021; 11(3):1219. https://doi.org/10.3390/app11031219
Chicago/Turabian StyleKuspangaliyeva, Botagoz, Botakoz Suleimenova, Dhawal Shah, and Yerbol Sarbassov. 2021. "Thermogravimetric Study of Refuse Derived Fuel Produced from Municipal Solid Waste of Kazakhstan" Applied Sciences 11, no. 3: 1219. https://doi.org/10.3390/app11031219
APA StyleKuspangaliyeva, B., Suleimenova, B., Shah, D., & Sarbassov, Y. (2021). Thermogravimetric Study of Refuse Derived Fuel Produced from Municipal Solid Waste of Kazakhstan. Applied Sciences, 11(3), 1219. https://doi.org/10.3390/app11031219