Spider Silk-Augmented Scaffolds and Adipose-Derived Stromal Cells Loaded with Uniaxial Cyclic Strain: First Investigations of a Novel Approach for Tendon-Like Constructs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation and Expansion of Adipose-Derived Stromal Cells (ASC)
2.2. Isolation of Collagen Type I
2.3. Animal Handling and Harvesting Procedure of Spider Silk
2.4. Preparation of Tendon-Like Constructs
2.5. Contraction Assay
2.6. Concept of Bioreactor Cultivation and Mechanical Induction of Differentiation
2.7. Cell Viability Analysis
2.8. Histology
2.9. Immunofluorescence Staining
3. Results
3.1. Successful Preparation of Tendon-Like Constructs with 4 × 105 ASC and Collagen Type I Hydrogel
3.2. Mechanical Induction of ASC Differentiation Using the Custom-Made Bioreactor Showed Macroscopic Results Comparable to Tendon Tissue
3.3. Histological Analysis Shows Long-Term Cell Survival and Histological Patterns Comparable to Tendon Tissue
3.4. Immunohistochemical Staining Showed Production of Own Extracellular Matrix and Expression of Tendon Specific Markers
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cowin, S.C. Tissue Growth and Remodeling. Annu. Rev. Biomed. Eng. 2004, 6, 77–107. [Google Scholar] [CrossRef]
- Nichols, A.E.C.; Best, K.T.; Loiselle, A.E. The cellular basis of fibrotic tendon healing: Challenges and opportunities. Transl. Res. 2019, 209, 156–168. [Google Scholar] [CrossRef]
- Fernandes, T.L.; De Santanna, J.P.C.; Frisene, I.; Gazarini, J.P.; Pinheiro, C.C.G.; Gomoll, A.H.; Lattermann, C.; Hernandez, A.J.; Bueno, D.F. Systematic Review of Human Dental Pulp Stem Cells for Cartilage Regeneration. Tissue Eng. Part B Rev. 2020, 26, 1–12. [Google Scholar] [CrossRef]
- Sharma, P.; Maffulli, N. Biology of tendon injury: Healing, modeling and remodeling. J. Musculoskelet. Neuronal Interact. 2006, 6, 181–190. [Google Scholar]
- Murakami, A.M.; Kompel, A.J.; Engebretsen, L.; Li, X.; Forster, B.B.; Crema, M.D.; Hayashi, D.; Jarraya, M.; Roemer, F.W.; Guermazi, A. The epidemiology of MRI detected shoulder injuries in athletes participating in the Rio de Janeiro 2016 Summer Olympics. BMC Musculoskelet. Disord. 2018, 19, 296. [Google Scholar] [CrossRef] [Green Version]
- Li, L.T.; Bokshan, S.L.; Ready, L.V.; Owens, B.D. The primary cost drivers of arthroscopic rotator cuff repair surgery: A cost-minimization analysis of 40,618 cases. J. Shoulder Elb. Surg. 2019, 28, 1977–1982. [Google Scholar] [CrossRef]
- Lim, W.L.; Liau, L.L.; Ng, M.H.; Chowdhury, S.R.; Law, J.X. Current Progress in Tendon and Ligament Tissue Engineering. Tissue Eng. Regen. Med. 2019, 16, 549–571. [Google Scholar] [CrossRef] [PubMed]
- Vasiliadis, A.V.; Katakalos, K.V. The Role of Scaffolds in Tendon Tissue Engineering. J. Funct. Biomater. 2020, 11, 78. [Google Scholar] [CrossRef] [PubMed]
- Doroski, D.M.; Levenston, M.E.; Temenoff, J.S. Cyclic Tensile Culture Promotes Fibroblastic Differentiation of Marrow Stromal Cells Encapsulated in Poly(Ethylene Glycol)-Based Hydrogels. Tissue Eng. Part A 2010, 16, 3457–3466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Messenger, M.P.; Raïf, E.M.; Seedhom, B.B.; Brookes, S.J. Enamel matrix derivative enhances tissue formation around scaffolds used for tissue engineering of ligaments. J. Tissue Eng. Regen. Med. 2010, 4, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, S.; Tateishi, T.; Ushida, T.; Glowacki, J. Hydrostatic fluid pressure enhances matrix synthesis and accumulation by bovine chondrocytes in three-dimensional culture. J. Cell. Physiol. 2002, 193, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, R.; Mizuno, S.; Murphy, G.F.; Orgill, D. The Effect of Hydrostatic Pressure on Three-Dimensional Chondroinduction of Human Adipose-Derived Stem Cells. Tissue Eng. Part A 2009, 15, 2937–2945. [Google Scholar] [CrossRef] [PubMed]
- Chandran, P.L.; Barocas, V.H. Microstructural Mechanics of Collagen Gels in Confined Compression: Poroelasticity, Viscoelasticity, and Collapse. J. Biomech. Eng. 2004, 126, 152–166. [Google Scholar] [CrossRef] [PubMed]
- Sellaro, T.L.; Hildebrand, D.; Lu, Q.; Vyavahare, N.; Scott, M.; Sacks, M.S. Effects of collagen fiber orientation on the response of biologically derived soft tissue biomaterials to cyclic loading. J. Biomed. Mater. Res. Part A 2007, 80, 194–205. [Google Scholar] [CrossRef] [PubMed]
- Arnoczky, S.P.; Lavagnino, M.; Whallon, J.H.; Hoonjan, A. In situ cell nucleus deformation in tendons under tensile load; a morphological analysis using confocal laser microscopy. J. Orthop. Res. 2002, 20, 29–35. [Google Scholar] [CrossRef]
- Dyment, N.; Barrett, J.G.; Awad, H.A.; Bautista, C.A.; Banes, A.J.; Butler, D.L. A brief history of tendon and ligament bioreactors: Impact and future prospects. J. Orthop. Res. 2020, 38, 2318–2330. [Google Scholar] [CrossRef]
- Santos, M.L.; Rodrigues, M.T.; Domingues, R.M.A.; Reis, R.L.; Gomes, M.E. Biomaterials as Tendon and Ligament Substitutes: Current Developments. In Regenerative Strategies for the Treatment of Knee Joint Disabilities; Oliveira, J., Reis, R., Eds.; Springer: Cham, Switzerland, 2017; Volume 21; pp. 349–371. [Google Scholar]
- Kuo, C.K.; Marturano, J.E.; Tuan, R.S. Novel strategies in tendon and ligament tissue engineering: Advanced biomaterials and regeneration motifs. BMC Sports Sci. Med. Rehabil. 2010, 2, 20. [Google Scholar] [CrossRef] [Green Version]
- Gosline, J.; Guerette, P.A.; Ortlepp, C.S.; Savage, K.N. The mechanical design of spider silks: From fibroin sequence to mechanical function. J. Exp. Biol. 1999, 202, 3295–3303. [Google Scholar]
- Lewis, R.V. Spider Silk: Ancient Ideas for New Biomaterials. Chem. Rev. 2006, 106, 3762–3774. [Google Scholar] [CrossRef]
- Schäfer-Nolte, F.; Hennecke, K.; Reimers, K.; Schnabel, R.; Allmeling, C.; Vogt, P.; Kuhbier, J.; Mirastschijski, U. Biomechanics and Biocompatibility of Woven Spider Silk Meshes During Remodeling in a Rodent Fascia Replacement Model. Ann. Surg. 2014, 259, 781–792. [Google Scholar] [CrossRef]
- Kuhbier, J.; Coger, V.; Mueller, J.; Liebsch, C.; Schlottmann, F.; Bucan, V.; Vogt, P.M.; Strauss, S. Influence of direct or indirect contact for the cytotoxicity and blood compatibility of spider silk. J. Mater. Sci. Mater. Electron. 2017, 28, 127. [Google Scholar] [CrossRef] [PubMed]
- Afizah, H.; Yang, Z.; Hui, J.H.; Ouyang, H.-W.; Lee, E.H. A Comparison Between the Chondrogenic Potential of Human Bone Marrow Stem Cells (BMSCs) and Adipose-Derived Stem Cells (ADSCs) Taken from the Same Donors. Tissue Eng. 2007, 13, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Vuornos, K.; Björninen, M.; Talvitie, E.; Paakinaho, K.; Kellomäki, M.; Huhtala, H.; Miettinen, S.; Seppänen-Kaijansinkko, R.; Haimi, S. Human Adipose Stem Cells Differentiated on Braided Polylactide Scaffolds Is a Potential Approach for Tendon Tissue Engineering. Tissue Eng. Part A 2016, 22, 513–523. [Google Scholar] [CrossRef] [PubMed]
- Kuhbier, J.W.; Weyand, B.; Radtke, C.; Vogt, P.M.; Kasper, C.; Reimers, K. Isolation, Characterization, Differentiation, and Application of Adipose-Derived Stem Cells. Bioreact. Syst. Tissue Eng. II 2010, 123, 55–105. [Google Scholar] [CrossRef]
- Rajan, N.; Habermehl, J.; Coté, M.-F.; Doillon, C.J.; Mantovani, D. Preparation of ready-to-use, storable and reconstituted type I collagen from rat tail tendon for tissue engineering applications. Nat. Protoc. 2006, 1, 2753–2758. [Google Scholar] [CrossRef]
- Desjardins, P.; Hansen, J.B.; Allen, M. Microvolume Protein Concentration Determination Using the NanoDrop 2000c Spectrophotometer. J. Vis. Exp. 2009, e1610. [Google Scholar] [CrossRef] [Green Version]
- Liebsch, C.; Fliess, M.; Kuhbier, J.W.; Vogt, P.M.; Strauß, S. Nephila edulis—Breeding and care under laboratory conditions. Dev. Genes Evol. 2020, 230, 203–211. [Google Scholar] [CrossRef] [Green Version]
- Kuhbier, J.W.; Allmeling, C.; Reimers, K.; Hillmer, A.; Kasper, C.; Menger, B.; Brandes, G.; Guggenheim, M.; Vogt, P.M. Interactions between Spider Silk and Cells—NIH/3T3 Fibroblasts Seeded on Miniature Weaving Frames. PLoS ONE 2010, 5, e12032. [Google Scholar] [CrossRef] [Green Version]
- Kall, S.; Noth, U.; Reimers, K.; Choi, C.Y.U.; Muehlberger, T.; Allmeling, C.; Jahn, S.; Heymer, A.; Vogt, P.M. In vitroHerstellung von Sehnenkonstrukten aus humanen mesenchymalen Stammzellen und einem Kollagen Typ I Gel. Handchir. Mikrochir. Plast. Chir. 2004, 36, 205–211. [Google Scholar] [CrossRef]
- Ratzlaff, M.H.; Grant, B.D.; Rathgeber-Lawrence, R.; Kunka, K.L. Stride rates of horses trotting and cantering on a treadmill. J. Equine Vet. Sci. 1995, 15, 279–283. [Google Scholar] [CrossRef]
- Chen, X.; Yin, Z.; Chen, J.-L.; Shen, W.-L.; Liu, H.-H.; Tang, Q.-M.; Fang, Z.; Lu, L.-R.; Ji, J.; Ouyang, H.-W. Force and scleraxis synergistically promote the commitment of human ES cells derived MSCs to tenocytes. Sci. Rep. 2012, 2, 977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atkinson, F.; Evans, R.; Guest, J.E.; Bavin, E.P.; Cacador, D.; Holland, C.; Guest, D.J. Cyclical strain improves artificial equine tendon constructs in vitro. J. Tissue Eng. Regen. Med. 2020, 14, 690–700. [Google Scholar] [CrossRef] [PubMed]
- Legerlotz, K.; Jones, G.C.; Screen, H.R.C.; Riley, G.P. Cyclic loading of tendon fascicles using a novel fatigue loading system increases interleukin-6 expression by tenocytes. Scand. J. Med. Sci. Sports 2013, 23, 31–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaudhury, S.; Holland, C.; Thompson, M.; Vollrath, F.; Carr, A.J. Tensile and shear mechanical properties of rotator cuff repair patches. J. Shoulder Elb. Surg. 2012, 21, 1168–1176. [Google Scholar] [CrossRef] [PubMed]
- Hennecke, K.; Redeker, J.; Kuhbier, J.W.; Strauss, S.; Allmeling, C.; Kasper, C.; Reimers, K.; Vogt, P.M. Bundles of Spider Silk, Braided into Sutures, Resist Basic Cyclic Tests: Potential Use for Flexor Tendon Repair. PLoS ONE 2013, 8, e61100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tohidnezhad, M.; Zander, J.; Slowik, A.; Kubo, Y.; Dursun, G.; Willenberg, W.; Zendedel, A.; Kweider, N.; Stoffel, M.; Pufe, T. Impact of Uniaxial Stretching on Both Gliding and Traction Areas of Tendon Explants in a Novel Bioreactor. Int. J. Mol. Sci. 2020, 21, 2925. [Google Scholar] [CrossRef] [Green Version]
- Michal, C.A.; Simmons, A.; Chew, B.; Zax, D.; Jelinski, L. Presence of phosphorus in Nephila clavipes dragline silk. Biophys. J. 1996, 70, 489–493. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Zhu, D.; Lu, W.; Liu, B.; Li, Y.; Cao, S. The Characteristics of Intrinsic Fluorescence of Type I Collagen Influenced by Collagenase I. Appl. Sci. 2018, 8, 1947. [Google Scholar] [CrossRef] [Green Version]
- Awad, H.A.; Butler, D.L.; Harris, M.T.; Ibrahim, R.E.; Wu, Y.; Young, R.G.; Kadiyala, S.; Boivin, G.P. In vitro characterization of mesenchymal stem cell-seeded collagen scaffolds for tendon repair: Effects of initial seeding density on contraction kinetics. J. Biomed. Mater. Res. 2000, 51, 233–240. [Google Scholar] [CrossRef]
- Hilton, S.A.; Dewberry, L.C.; Hodges, M.M.; Hu, J.; Xu, J.; Liechty, K.W.; Zgheib, C. Mesenchymal stromal cells contract collagen more efficiently than dermal fibroblasts: Implications for cytotherapy. PLoS ONE 2019, 14, e0218536. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.-H.; Thoreson, A.R.; Gingery, A.; Larson, D.R.; Passe, S.M.; An, K.-N.; Zhao, C.; Amadio, P.C. Collagen gel contraction as a measure of fibroblast function in an animal model of subsynovial connective tissue fibrosis. J. Orthop. Res. 2015, 33, 668–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jo, C.H.; Lim, H.-J.; Yoon, K.S. Characterization of Tendon-Specific Markers in Various Human Tissues, Tenocytes and Mesenchymal Stem Cells. Tissue Eng. Regen. Med. 2019, 16, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Doral, M.N.; Alam, M.; Bozkurt, M.; Turhan, E.; Atay, O.A.; Dönmez, G.; Maffulli, N. Functional anatomy of the Achilles tendon. Knee Surg. Sports Traumatol. Arthrosc. 2010, 18, 638–643. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, J.H.-C. The Effects of Mechanical Loading on Tendons—An In Vivo and In Vitro Model Study. PLoS ONE 2013, 8, e71740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fleischhacker, V.; Klatte-Schulz, F.; Minkwitz, S.; Schmock, A.; Rummler, M.; Seliger, A.; Willie, B.M.; Wildemann, B. In Vivo and In Vitro Mechanical Loading of Mouse Achilles Tendons and Tenocytes—A Pilot Study. Int. J. Mol. Sci. 2020, 21, 1313. [Google Scholar] [CrossRef] [Green Version]
- Long, C.; Wang, Z.; Legrand, A.; Chattopadhyay, A.; Chang, J.; Fox, P. Tendon Tissue Engineering: Mechanism and Effects of Human Tenocyte Coculture With Adipose-Derived Stem Cells. J. Hand Surg. 2018, 43, 183.e1–183.e9. [Google Scholar] [CrossRef]
- Shen, H.; Gelberman, R.H.; Silva, M.J.; Sakiyama-Elbert, S.E.; Thomopoulos, S. BMP12 induces tenogenic differentiation of adipose-derived stromal cells. PLoS ONE 2013, 8, e77613. [Google Scholar] [CrossRef] [Green Version]
- Kokubu, S.; Inaki, R.; Hoshi, K.; Hikita, A. Adipose-derived stem cells improve tendon repair and prevent ectopic ossification in tendinopathy by inhibiting inflammation and inducing neovascularization in the early stage of tendon healing. Regen. Ther. 2020, 14, 103–110. [Google Scholar] [CrossRef]
- Kuhbier, J.W.; Weyand, B.; Sorg, H.; Radtke, C.; Vogt, P.M.; Reimers, K. Stem cells from fatty tissue: A new resource for regenerative medicine? Chir. Z. Alle Geb. Oper. Medizen 2010, 81, 826–832. [Google Scholar] [CrossRef]
- Agnarsson, I.; Kuntner, M.; Blackledge, T.A. Bioprospecting Finds the Toughest Biological Material: Extraordinary Silk from a Giant Riverine Orb Spider. PLoS ONE 2010, 5, e11234. [Google Scholar] [CrossRef] [Green Version]
- Pan, L.; Wang, F.; Cheng, Y.; Leow, W.R.; Zhang, Y.-W.; Wang, M.; Cai, P.; Ji, B.; Li, D.; Chen, X. A supertough electro-tendon based on spider silk composites. Nat. Commun. 2020, 11, 1332. [Google Scholar] [CrossRef] [PubMed]
- Moore, C.A.; Shah, N.N.; Smith, C.P.; Rameshwar, P. 3D Bioprinting and Stem Cells. In Methods in Molecular Biology; Clifton, N.J., Ed.; Humana Press: New York, NY, USA, 2018; Volume 1842; pp. 93–103. [Google Scholar]
- Agostinacchio, F.; Mu, X.; Dirè, S.; Motta, A.; Kaplan, D.L. In Situ 3D Printing: Opportunities with Silk Inks. Trends Biotechnol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Ng, W.L.; Chua, C.K.; Shen, Y.-F. Print Me An Organ! Why We Are Not There Yet. Prog. Polym. Sci. 2019, 97, 101145. [Google Scholar] [CrossRef]
- Gilbert, F.; O’Connell, C.D.; Mladenovska, T.; Dodds, S. Print Me an Organ? Ethical and Regulatory Issues Emerging from 3D Bioprinting in Medicine. Sci. Eng. Ethic 2018, 24, 73–91. [Google Scholar] [CrossRef] [PubMed]
- Sapudom, J.; Mohamed, W.K.E.; Garcia-Sabaté, A.; Alatoom, A.; Karaman, S.; Mahtani, N.; Teo, J.C.M. Collagen Fibril Density Modulates Macrophage Activation and Cellular Functions during Tissue Repair. Bioengineering 2020, 7, 33. [Google Scholar] [CrossRef] [Green Version]
- Flaig, I.; Radenković, M.; Najman, S.; Proehl, A.; Jung, O.; Barbeck, M. In Vivo Analysis of the Biocompatibility and Immune Response of Jellyfish Collagen Scaffolds and its Suitability for Bone Regeneration. Int. J. Mol. Sci. 2020, 21, 4518. [Google Scholar] [CrossRef]
Bioreactor (9 Days of Incubation Followed by 21 days of Mechanical Stimulation) | Controls (9 Days of Incubation Followed by 21 days of Unstressed Culture) | |
---|---|---|
Constructs with spider silk | A (n = 6) | C (n = 6) |
Constructs without spider silk | B (n = 6) | D (n = 6) |
5.0 × 105 ASC | 5.0 × 106 ASC | |
---|---|---|
Constructs with spider silk | E (n = 3) | G (n = 3) |
Constructs without spider silk | F (n = 3) | H (n = 3) |
Experimental Group (n = 3) | Day 0 | Day 1 | Day 2 | Day 9 | Day 16 | Day 23 | Day 30 |
---|---|---|---|---|---|---|---|
E | 15.00 ± 0.00 | 14.83 ± 0.29 | 13.70 ± 0.46 | 11.07 ± 0.23 | 7.23 ± 1.63 | 6.20 ± 2.18 | 5.73 ± 1.99 |
F | 15.00 ± 0.00 | 14.83 ± 0.29 | 14.33 ± 0.21 | 11.10 ± 1.13 | 5.47 ± 1.24 | 5.00 ± 1.57 | 4.67 ± 1.78 |
G | 15.00 ± 0.00 | 15.00 ± 0.00 | 13.00 ± 0.40 | 3.27 ± 0.32 | 2.63 ± 0.45 | 2.30 ± 0.17 | 2.07 ± 0.20 |
H | 15.00 ± 0.00 | 15.00 ± 0.00 | 14.23 ± 0.30 | 5.20 ± 2.95 | 3.00 ± 0.36 | 2.50 ± 0.10 | 2.27 ± 0.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schlottmann, F.; Strauss, S.; Plaass, C.; Welke, B.; Vogt, P.M.; Kuhbier, J.W. Spider Silk-Augmented Scaffolds and Adipose-Derived Stromal Cells Loaded with Uniaxial Cyclic Strain: First Investigations of a Novel Approach for Tendon-Like Constructs. Appl. Sci. 2021, 11, 1218. https://doi.org/10.3390/app11031218
Schlottmann F, Strauss S, Plaass C, Welke B, Vogt PM, Kuhbier JW. Spider Silk-Augmented Scaffolds and Adipose-Derived Stromal Cells Loaded with Uniaxial Cyclic Strain: First Investigations of a Novel Approach for Tendon-Like Constructs. Applied Sciences. 2021; 11(3):1218. https://doi.org/10.3390/app11031218
Chicago/Turabian StyleSchlottmann, Frederik, Sarah Strauss, Christian Plaass, Bastian Welke, Peter M. Vogt, and Joern W. Kuhbier. 2021. "Spider Silk-Augmented Scaffolds and Adipose-Derived Stromal Cells Loaded with Uniaxial Cyclic Strain: First Investigations of a Novel Approach for Tendon-Like Constructs" Applied Sciences 11, no. 3: 1218. https://doi.org/10.3390/app11031218
APA StyleSchlottmann, F., Strauss, S., Plaass, C., Welke, B., Vogt, P. M., & Kuhbier, J. W. (2021). Spider Silk-Augmented Scaffolds and Adipose-Derived Stromal Cells Loaded with Uniaxial Cyclic Strain: First Investigations of a Novel Approach for Tendon-Like Constructs. Applied Sciences, 11(3), 1218. https://doi.org/10.3390/app11031218