Buckling of Rectangular Composite Pipes under Torsion
Abstract
:Featured Application
Abstract
1. Introduction
2. Numerical Calculation
2.1. Energy Method
2.2. Case of a Constant Edge Angle
2.3. Case of a Variable Edge Angle
3. Closed-Form Polynomial Equation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fujita, K.; Nagai, H.; Oyama, A. A Parametric Study of Mars Airplane Concept for Science Mission on Mars. Trans. JSASS Aerosp. Technol. Jpn. 2016, 14, Pk_83–Pk_88. [Google Scholar] [CrossRef]
- Nagai, K.; Oyama, A.; Mars Airplane, W.G. Mission Scenario of Mars Exploration by Airplane. In Proceedings of the 2013 Asia-Pacific International Symposium on Aerospace Technology, Takamatsu, Japan, 20–22 November 2013. [Google Scholar]
- Airoldi, A.; Bettini, P.; Boiocchi, M.; Sala, G. Composite Elements for Biomimetic Aerospace Structures with Progressive Shape Variation Capabilities. Adv. Technol. Innov. 2016, 1, 13–15. [Google Scholar]
- Chang, C.Y. Segmented Compression Molding for Composite Manufacture. Proc. Eng. Technol. Innov. 2017, 5, 41–44. [Google Scholar]
- Sahu, V.; Gayathri, V. Strength Studies of Dadri Fly Ash Modified with Lime Sludge–A Composite Material. Int. J. Eng. Technol. Innov. 2014, 4, 161–169. [Google Scholar]
- Liu, C.M.; Chiang, M.S.; Chuang, W.C. Lean Transformation for Composite-Material Bonding Processes. Int. J. Eng. Technol. Innov. 2012, 2, 48–62. [Google Scholar]
- Takano, A. Buckling Experiment on Anisotropic Long and Short Cylinders. Adv. Technol. Innov. 2016, 1, 25–27. [Google Scholar]
- Ning, A.X.; Pellegrino, S. Experiments on Imperfection Insensitive Axially Loaded Cylindrical Shells. Int. J. Solids Struct. 2017, 115–116, 73–86. [Google Scholar] [CrossRef]
- Wagner, H.N.R.; Petersen, E.; Khakimova, R.; Hühne, C. Buckling Analysis of an Imperfection-Insensitive Hybrid Composite Cylinder under axial Compression–Numerical Simulation, Destructive and Nondestructive Experimental Testing. Compos. Struct. 2019, 225, 111152. [Google Scholar] [CrossRef]
- Podvornyi, A.V.; Semenyuk, N.P.; Trach, V.M. Stability of Inhomogeneous Cylindrical Shells under Distributed External Pressure in a Three-Dimensional Statement. Int. Appl. Mech. 2018, 53, 623–638. [Google Scholar] [CrossRef]
- Weaver, P. On Optimisation of Long Anisotropic Flat Plates Subject to Shear Buckling Loads. In Proceedings of the 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, Palm Springs, CA, USA, 19–22 April 2004. [Google Scholar]
- Raju, G.; Wu, Z.; Weaver, P.M. Buckling and Postbuckling of Variable Angle Tow Composite Plates under In-Plane Shear Loading. Int. J. Solids Struct. 2015, 58, 270–287. [Google Scholar] [CrossRef] [Green Version]
- Omidvari, A.; Hematiyan, M.R. Approximate Closed-form Formulae for Buckling Analysis of Rectangular Tubes under Torsion. Ije Trans. B: Appl. 2015, 28, 1226–1232. [Google Scholar]
- Banks, W.M.; Rhodes, J. The Postbuckling Behaviour of Composite Box Sections. In Composite Structures; Marshall, I.H., Ed.; Springer: Berlin/Heidelberg, Germany, 1981; pp. 402–414. [Google Scholar]
- Loughlan, J. The buckling of composite stiffened box sections subjected to compression and bending. Compos. Struct. 1996, 35, 101–116. [Google Scholar] [CrossRef]
- Vo, T.P.; Lee, J. Flexural–torsional buckling of thin-walled composite box beams. Thin-Walled Struct. 2007, 45, 790–798. [Google Scholar] [CrossRef] [Green Version]
- Column Research Committee of Japan (Ed.) Handbook of Structural Stability; Corona Publishing Company: Tokyo, Japan, 1971; Part 4.
- Furusu, K. Studies on the Buckling of the Box Beam Composed of Thin Plates. Ph.D. Thesis, Seikei University, Tokyo, Japan, 2016. (In Japanese). [Google Scholar]
- Jones, R.M. Mechanics of Composite Materials; CRC Press: Boca Raton, FL, USA, 1998. [Google Scholar]
- Ng, Y.C. Deriving composite lamina properties from laminate properties using classical lamination theory and failure criteria. J. Compos. Mater. 2005, 39, 1295–1306. [Google Scholar] [CrossRef]
- Kalkan, A.; Mecitoğlu, Z. A Method Based on Classical Lamination Theory to Calculate Stiffness Properties of Closed Composite Sections. J. Aeronaut. Space Technol. 2017, 10, 31–44. [Google Scholar]
Item | Value |
---|---|
Young’s modulus Ex = Ey [MPa] | 56,400 |
Shear modulus Gxy [MPa] | 21,500 |
Poisson’s ratio vx = vy [-] | 0.313 |
Item | Value |
---|---|
EL [MPa] | 147,000 |
ET [MPa] | 9800 |
GLT [MPa] | 5096 |
vL [-] | 0.32 |
Number of Layers | Ratio of 0/90 Layer | Bending Stiffness [N-mm2] | ||||
---|---|---|---|---|---|---|
0/90 | ±45 | r | Dxx | Dxy | Dyy | Dss |
0 | 32 | 0 | 3845 | 2996 | 3845 | 3158 |
4 | 28 | 0.125 | 4187 | 2654 | 4187 | 2816 |
8 | 24 | 0.25 | 4529 | 2313 | 4529 | 2474 |
12 | 20 | 0.375 | 4870 | 1971 | 4870 | 2133 |
16 | 16 | 0.5 | 5212 | 1630 | 5212 | 1791 |
20 | 12 | 0.625 | 5553 | 1288 | 5553 | 1450 |
24 | 8 | 0.75 | 5895 | 946.4 | 5895 | 1108 |
28 | 4 | 0.875 | 6237 | 604.7 | 6237 | 766.3 |
32 | 0 | 1 | 6578 | 263.1 | 6578 | 424.7 |
H00 | 1.1137 | H01 | 0.22213 |
H10 | −3.3798 | H11 | 6.0957 |
H20 | 11.382 | H21 | −7.4961 |
R1 | 1.0348 | R2 | 0.26278 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takano, A.; Mizukami, R.; Kitamura, R. Buckling of Rectangular Composite Pipes under Torsion. Appl. Sci. 2021, 11, 1342. https://doi.org/10.3390/app11031342
Takano A, Mizukami R, Kitamura R. Buckling of Rectangular Composite Pipes under Torsion. Applied Sciences. 2021; 11(3):1342. https://doi.org/10.3390/app11031342
Chicago/Turabian StyleTakano, Atsushi, Ryo Mizukami, and Ryuta Kitamura. 2021. "Buckling of Rectangular Composite Pipes under Torsion" Applied Sciences 11, no. 3: 1342. https://doi.org/10.3390/app11031342
APA StyleTakano, A., Mizukami, R., & Kitamura, R. (2021). Buckling of Rectangular Composite Pipes under Torsion. Applied Sciences, 11(3), 1342. https://doi.org/10.3390/app11031342