A Smart and Sustainable Future for Viticulture Is Rooted in Soil: How to Face Cu Toxicity
Abstract
:1. Introduction
1.1. Cu in Agricultural Soils and Crops
1.2. Current Situation in Vineyards (Including Toxicity in Plants and Effects)
2. Current Challenges
2.1. Copper Effects on Soil Agrobiodiversity
2.2. Soil Management Considering the Root–Microorganism Interactions (Rhizosphere Management)
2.3. Biotechnologies and Breeding for a More Resistant Plant Material
2.4. Smart Viticulture
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- ONU. World Population Prospects 2019; Department of Economic and Social Affairs: New York, NY, USA, 2019. [Google Scholar]
- Meyers, W.H.; Kalaitzandonakes, N. World Population, Food Growth, and Food Security Challenges. Front. Econ. Glob. 2015, 15, 161–177. [Google Scholar] [CrossRef]
- Conijn, J.G.; Bindraban, P.S.; Schröder, J.J.; Jongschaap, R.E.E. Can our global food system meet food demand within planetary boundaries? Agric. Ecosyst. Environ. 2018, 251, 244–256. [Google Scholar] [CrossRef]
- Indoria, A.K.; Sharma, K.L.; Reddy, K.S. Hydraulic properties of soil under warming climate. Clim. Chang. Soil Interact. 2020, 473–508. [Google Scholar]
- González-Alemán, J.J.; Pascale, S.; Gutiérrez-Fernández, J.; Murakami, H.; Gaertner, M.Á.; Vecchi, G.A. Potential Increase in Hazard From Mediterranean Hurricane Activity With Global Warming. Geophys. Res. Lett. 2019, 46, 1754–1764. [Google Scholar] [CrossRef]
- Koppelaar, R.H.; Weikard, H. Assessing phosphate rock depletion and phosphorus recycling options. Glob. Environ. Chang. 2013, 23, 1454–1466. [Google Scholar] [CrossRef]
- Xie, H.; Huang, Y.; Chen, Q.; Zhang, Y.; Wu, Q. Prospects for Agricultural Sustainable Intensification: A Review of Research. Land 2019, 8, 157. [Google Scholar] [CrossRef] [Green Version]
- Miotto, A.; Ceretta, C.A.; Brunetto, G.; Nicoloso, F.T.; Girotto, E.; Farias, J.G.; Tiecher, T.L.; De Conti, L.; Trentin, G. Copper uptake, accumulation and physiological changes in adult grapevines in response to excess copper in soil. Plant Soil 2013, 374, 593–610. [Google Scholar] [CrossRef] [Green Version]
- Brunetto, G.; De Melo, G.W.B.; Terzano, R.; Del Buono, D.; Astolfi, S.; Tomasi, N.; Pii, Y.; Mimmo, T.; Cesco, S. Copper accumulation in vineyard soils: Rhizosphere processes and agronomic practices to limit its toxicity. Chemosphere 2016, 162, 293–307. [Google Scholar] [CrossRef] [Green Version]
- Oorts, K. Copper. In Heavy Metals in Soils: Trace Metals and Metalloids in Soils and Their Bioavailability; Springer Science + Business Media: Dordrecht, The Netherlands, 2013; pp. 367–394. [Google Scholar]
- Shabbir, Z.; Sardar, A.; Shabbir, A.; Abbas, G.; Shamshad, S.; Khalid, S.; Natasha, N.; Murtaza, G.; Dumat, C.; Shahid, M. Copper uptake, essentiality, toxicity, detoxification and risk assessment in soil-plant environment. Chemosphere 2020, 259, 127436. [Google Scholar] [CrossRef]
- Blume, H.-P.; Brümmer, G.W.; Fleige, H.; Horn, R.; Kandeler, E.; Kögel-Knabner, I.; Kretzschmar, R.; Stahr, K.; Wilke, B.-M. Chemical Properties and Processes. In Scheffer/Schachtschabel Soil Science; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2016; pp. 123–174. [Google Scholar]
- Astolfi, S.; Pii, Y.; Mimmo, T.; Lucini, L.; Miras-Moreno, B.; Coppa, E.; Violino, S.; Celletti, S.; Cesco, S. Single and Combined Fe and S Deficiency Differentially Modulate Root Exudate Composition in Tomato: A Double Strategy for Fe Acquisition? Int. J. Mol. Sci. 2020, 21, 4038. [Google Scholar] [CrossRef]
- Bernal, M.; Casero, D.; Singh, V.; Wilson, G.T.; Grande, A.; Yang, H.; Dodani, S.C.; Pellegrini, M.; Huijser, P.; Connolly, E.L.; et al. Transcriptome Sequencing Identifies SPL7-Regulated Copper Acquisition Genes FRO4/FRO5 and the Copper Dependence of Iron Homeostasis in Arabidopsis. Plant Cell 2012, 24, 738–761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marastoni, L.; Sandri, M.; Pii, Y.; Valentinuzzi, F.; Brunetto, G.; Cesco, S.; Mimmo, T. Synergism and antagonisms between nutrients induced by copper toxicity in grapevine rootstocks: Monocropping vs. intercropping. Chemosphere 2019, 214, 563–578. [Google Scholar] [CrossRef]
- Yuan, M.; Li, X.; Xiao, J.; Wang, S. Molecular and functional analyses of COPT/Ctr-type copper transporter-like gene family in rice. BMC Plant Biol. 2011, 11, 69. [Google Scholar] [CrossRef] [Green Version]
- Korshunova, Y.O.; Eide, D.; Clark, W.G.; Guerinot, M.L.; Pakrasi, H.B. The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range. Plant Mol. Biol. 1999, 40, 37–44. [Google Scholar] [CrossRef]
- Wintz, H.; Fox, T.; Wu, Y.-Y.; Feng, V.; Chen, W.; Chang, H.-S.; Zhu, T.; Vulpe, C. Expression Profiles of Arabidopsis thalianain Mineral Deficiencies Reveal Novel Transporters Involved in Metal Homeostasis. J. Biol. 2003, 278, 47644–47653. [Google Scholar]
- Yruela, I. Copper in plants. Braz. J. Plant Physiol. 2005, 17, 145–156. [Google Scholar] [CrossRef] [Green Version]
- Tsai, H.-H.; Schmidt, W. One way. Or another? Iron uptake in plants. New Phytol. 2017, 214, 500–505. [Google Scholar] [CrossRef] [Green Version]
- Deng, F.; Yamaji, N.; Xia, J.; Ma, J.F. A Member of the Heavy Metal P-Type ATPase OsHMA5 Is Involved in Xylem Loading of Copper in Rice. Plant Physiol. 2013, 163, 1353–1362. [Google Scholar] [CrossRef] [Green Version]
- DiDonato, R.J.; Roberts, L.A.; Sanderson, T.; Eisley, R.B.; Walker, E. Arabidopsis Yellow Stripe-Like2 (YSL2): A metal-regulated gene encoding a plasma membrane transporter of nicotianamine-metal complexes. Plant J. 2004, 39, 403–414. [Google Scholar] [CrossRef]
- Irtelli, B.; Petrucci, W.A.; Navari-Izzo, F. Nicotianamine and histidine/proline are, respectively, the most important copper chelators in xylem sap of Brassica carinata under conditions of copper deficiency and excess. J. Exp. Bot. 2008, 60, 269–277. [Google Scholar] [CrossRef] [Green Version]
- Liao, M.T.; Hedley, M.J.; Woolley, D.J.; Brooks, R.R.; Nichols, M.A. Copper uptake and translocation in chicory ( Cichorium intybus L. cv. Grasslands Puna) and tomato (Lycopersicon esculentum Mill. cv. Rondy) plants grown in NFT system. I. Copper uptake and distribution in plants. Plant Soil 2000, 221, 135–142. [Google Scholar] [CrossRef]
- Cao, Y.; Ma, C.; Chen, H.; Zhang, J.; White, J.C.; Chen, G.; Xing, B. Xylem-based long-distance transport and phloem remobilization of copper in Salix integra Thunb. J. Hazard. Mater. 2020, 392, 122428. [Google Scholar] [CrossRef] [PubMed]
- Ryan, B.M.; Kirby, J.K.; Degryse, F.; Harris, H.; McLaughlin, M.J.; Scheiderich, K. Copper speciation and isotopic fractionation in plants: Uptake and translocation mechanisms. New Phytol. 2013, 199, 367–378. [Google Scholar] [CrossRef] [PubMed]
- Printz, B.; Lutts, S.; Hausman, J.-F.; Sergeant, K. Copper Trafficking in Plants and Its Implication on Cell Wall Dynamics. Front. Plant Sci. 2016, 7, 601. [Google Scholar] [CrossRef] [Green Version]
- Marschner, H.; Nutrition, M.; Plants, H.; Africa, W.; Marschner, P. Marschner’s Mineral Nutrition of Higher Plants; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Taiz, L.; Zeiger, E. Plant Physiology and Development; Sinauer Associates, Inc.: Sunderland, MA, USA, 2015. [Google Scholar]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Tiecher, T.L.; Tiecher, T.; Ceretta, C.A.; Ferreira, P.A.; Nicoloso, F.T.; Soriani, H.H.; Tassinari, A.; Paranhos, J.T.; De Conti, L.; Brunetto, G. Physiological and nutritional status of black oat (Avena strigosa Schreb.) grown in soil with interaction of high doses of copper and zinc. Plant Physiol. Biochem. 2016, 106, 253–263. [Google Scholar] [CrossRef]
- Ambrosini, V.G.; Rosa, D.; De Melo, G.W.B.; Zalamena, J.; Cella, C.; Simão, D.G.; Da Silva, L.S.; Dos Santos, H.P.; Toselli, M.; Tiecher, T.L.; et al. High copper content in vineyard soils promotes modifications in photosynthetic parameters and morphological changes in the root system of ‘Red Niagara’ plantlets. Plant Physiol. Biochem. 2018, 128, 89–98. [Google Scholar] [CrossRef] [Green Version]
- Morgan, R.K.; Bowden, R. Copper accumulation in soils from two different-aged apricot orchards in Central Otago, New Zealand. Int. J. Environ. Stud. 1993, 43, 161–167. [Google Scholar] [CrossRef]
- Novak, J.M.; Watts, D.; Stone, K.C. Copper and zinc accumulation, profile distribution, and crop removal in coastal plain soils receiving long-term, intensive applications of swine manure. Trans. ASAE 2004, 47, 1513–1522. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Jin, J.-Y. Status of heavy metals in agricultural soils as affected by different patterns of land use. Environ. Monit. Assess. 2007, 139, 317–327. [Google Scholar] [CrossRef]
- Li, B.; Qiu, Y.; Song, Y.; Lin, H.; Yin, H. Dissecting horizontal and vertical gene transfer of antibiotic resistance plasmid in bacterial community using microfluidics. Environ. Int. 2019, 131, 105007. [Google Scholar] [CrossRef]
- Horsfall, J.G. Fungicides and Their Action. J. AOAC Int. 1946, 29, 116–117. [Google Scholar] [CrossRef]
- Millardet, A.; Gayon, U. The Discovery of Bordeaux Mixture: Three Papers: I. Treatment of Mildew and Rot. II. Treatment of Mildew with Copper Sulphate and Lime Mixture. III. Concerning the History of the Treatment of Mildew with Copper Sulphate; American Phytopathological Society: Saint Paul, MN, USA, 1933. [Google Scholar]
- Mirlean, N.; Roisenberg, A.; Chies, J.O. Metal contamination of vineyard soils in wet subtropics (southern Brazil). Environ. Pollut. 2007, 149, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Calviño, D.; Nóvoa-Muñoz, J.C.; Díaz-Raviña, M.; Arias-Estévez, M. Copper accumulation and fractionation in vineyard soils from temperate humid zone (NW Iberian Peninsula). Geoderma 2009, 153, 119–129. [Google Scholar] [CrossRef]
- Mackie, K.; Müller, T.; Zikeli, S.; Kandeler, E. Long-term copper application in an organic vineyard modifies spatial distribution of soil micro-organisms. Soil Biol. Biochem. 2013, 65, 245–253. [Google Scholar] [CrossRef]
- Ballabio, C.; Panagos, P.; Lugato, E.; Huang, J.-H.; Orgiazzi, A.; Jones, A.; Fernández-Ugalde, O.; Borrelli, P.; Montanarella, L. Copper distribution in European topsoils: An assessment based on LUCAS soil survey. Sci. Total Environ. 2018, 636, 282–298. [Google Scholar] [CrossRef]
- Dagostin, S.; Schärer, H.-J.; Pertot, I.; Tamm, L. Are there alternatives to copper for controlling grapevine downy mildew in organic viticulture? Crop. Prot. 2011, 30, 776–788. [Google Scholar] [CrossRef]
- Regulation 1981/2018. Renewing the Approval of the Active Substances Copper Compounds, as Candidates for Substitution, in Accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council Concerning the Placing of Plant Protection Products on the Market, and Amending the Annex to Commission Implementing Regulation (EU) No 540/2011. European Commission, Council of the European Union. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32018R1981 (accessed on 9 January 2021).
- La Torre, A.; Righi, L.; Iovino, V.; Battaglia, V. Control of late blight in organic farming with low copper dosages or natural products as alternatives to copper. Eur. J. Plant Pathol. 2019, 155, 769–778. [Google Scholar] [CrossRef]
- Kopittke, P.M.; Menzies, N.W. Effect of Cu Toxicity on Growth of Cowpea (Vigna unguiculata). Plant Soil 2006, 279, 287–296. [Google Scholar] [CrossRef] [Green Version]
- Guimarães, P.R.; Ambrosini, V.G.; Miotto, A.; Ceretta, C.A.; Simão, D.G.; Brunetto, G. Black Oat (Avena strigosa Schreb.) Growth and Root Anatomical Changes in Sandy Soil with Different Copper and Phosphorus Concentrations. Water Air Soil Pollut. 2016, 227, 1–10. [Google Scholar] [CrossRef]
- Baldi, E.; Miotto, A.; Ceretta, C.A.; Quartieri, M.; Sorrenti, G.; Brunetto, G.; Toselli, M. Soil-applied phosphorous is an effective tool to mitigate the toxicity of copper excess on grapevine grown in rhizobox. Sci. Hortic. 2018, 227, 102–111. [Google Scholar] [CrossRef]
- Feil, S.B.; Pii, Y.; Valentinuzzi, F.; Tiziani, R.; Mimmo, T.; Cesco, S. Copper toxicity affects phosphorus uptake mechanisms at molecular and physiological levels in Cucumis sativus plants. Plant Physiol. Biochem. 2020, 157, 138–147. [Google Scholar] [CrossRef] [PubMed]
- Del Buono, D.; Terzano, R.; Panfili, I.; Bartucca, M.L. Phytoremediation and detoxification of xenobiotics in plants: Herbicide-safeners as a tool to improve plant efficiency in the remediation of polluted environments. A mini-review. Int. J. Phytoremediation 2020, 22, 789–803. [Google Scholar] [CrossRef] [PubMed]
- International Organization of Vine and Wine, 2020. Current Situation Of The Vitivinicultural Sector At A Global Level. Available online: http://www.oiv.int/js/lib/pdfjs/web/viewer.html?file=/public/medias/7260/en-oiv-press-conference-april-2020-press-release.pdf (accessed on 18 November 2020).
- Benoît, L.; William, A.; Lindsey, H.; Adrienne, L.F.; Marianne, M.W. Wine Sector: Definitions and Nuances from Global to Country Analysis—A Comparison between Old World, New World, and Emerging Wine Countries from 2005 to Current; Elsevier BV: Amsterdam, The Netherlands, 2019; pp. 7–32. [Google Scholar]
- European Commission. Council Regulation (EC) No 479/2008. Off. J. Eur. Union. 2008, 148, 1–61. [Google Scholar]
- European Parliament and of the Council. EU regulation No 1308/2013. Off. J. Eur. Communities 2008, 347, 1–22. [Google Scholar]
- Meloni, G.; Anderson, K.; Deconinck, K.; Swinnen, J. Wine Regulations. Appl. Econ. Perspect. Policy 2019, 41, 620–649. [Google Scholar] [CrossRef]
- Jones, G.V.; Webb, L.B. Climate Change, Viticulture, and Wine: Challenges and Opportunities. J. Wine Res. 2010, 21, 103–106. [Google Scholar] [CrossRef]
- Vigl, L.E.; Schmid, A.; Moser, F.; Balotti, A.; Gartner, E.; Katz, H.; Quendler, S.; Ventura, S.; Raifer, B. Upward shifts in elevation—a winning strategy for mountain viticulture in the context of climate change? E3S Web Conf. 2018, 50, 02006. [Google Scholar] [CrossRef]
- Couto, R.D.R.; Benedet, L.; Comin, J.J.; Filho, P.B.; Martins, S.R.; Gatiboni, L.C.; Radetski, M.; De Valois, C.M.; Ambrosini, V.G.; Brunetto, G. Accumulation of copper and zinc fractions in vineyard soil in the mid-western region of Santa Catarina, Brazil. Environ. Earth Sci. 2014, 73, 6379–6386. [Google Scholar] [CrossRef]
- Carlon, C. Derivation methods of soil screening values in Europe: A review and evaluation of national procedures towards harmonization. In JRC Scientific and Technical Reports; Office for Official Publications of the European Communities: Luxembourg, 2007. [Google Scholar]
- Komárek, M.; Čadková, E.; Chrastný, V.; Bordas, F.; Bollinger, J.-C. Contamination of vineyard soils with fungicides: A review of environmental and toxicological aspects. Environ. Int. 2010, 36, 138–151. [Google Scholar] [CrossRef]
- Mackie, K.; Müller, T.; Kandeler, E. Remediation of copper in vineyards—A mini review. Environ. Pollut. 2012, 167, 16–26. [Google Scholar] [CrossRef]
- Italian Ministry for Environment Land and Sea Protection. DECRETO 1 Marzo 2019, n. 46; Italian Ministry for Environment Land and Sea Protection: Rome, Italy, 2019. [Google Scholar]
- Vácha, R.; Sanka, M.; Hauptman, I.; Zimova, M.; Čechmánková, J. Assessment of limit values of risk elements and persistent organic pollutants in soil for Czech legislation. Plant Soil Environ. 2014, 60, 191–197. [Google Scholar] [CrossRef] [Green Version]
- Dykhuizen, D. Species Numbers in Bacteria. Proc. Calif. Acad. Sci. 2005, 56, 62–71. [Google Scholar]
- Schmidt, T.; Waldron, C. Microbial Diversity in Soils of Agricultural Landscapes and Its Relation to Ecosystem Function. In The Ecology of Agricultural Landscapes: Long-term Research on the Path to Sustainability; Oxford University Press: New York, NY, USA, 2015; pp. 135–157. [Google Scholar]
- Bennett, A.E.; Classen, A.T. Climate change influences mycorrhizal fungal–plant interactions, but conclusions are limited by geographical study bias. Ecology 2020, 101, e02978. [Google Scholar] [CrossRef]
- Pii, Y.; Mimmo, T.; Tomasi, N.; Terzano, R.; Cesco, S.; Crecchio, C. Microbial interactions in the rhizosphere: Beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review. Biol. Fertil. Soils 2015, 51, 403–415. [Google Scholar] [CrossRef]
- Rolli, E.; Marasco, R.; Saderi, S.; Corretto, E.; Mapelli, F.; Cherif, A.; Borin, S.; Valenti, L.; Sorlini, C.; Daffonchio, D. Root-associated bacteria promote grapevine growth: From the laboratory to the field. Plant Soil 2016, 410, 369–382. [Google Scholar] [CrossRef] [Green Version]
- Abdu, N.; Abdullahi, A.A.; Abdulkadir, A. Heavy metals and soil microbes. Environ. Chem. Lett. 2017, 15, 65–84. [Google Scholar] [CrossRef]
- Dell’Amico, E.; Mazzocchi, M.; Cavalca, L.; Allievi, L.; Andreoni, V. Assessment of bacterial community structure in a long-term copper-polluted ex-vineyard soil. Microbiol. Res. 2008, 163, 671–683. [Google Scholar] [CrossRef] [Green Version]
- Giller, K.E.; Witter, E.; McGrath, S.P. Heavy metals and soil microbes. Soil Biol. Biochem. 2009, 41, 2031–2037. [Google Scholar] [CrossRef]
- Lejon, D.P.; Pascault, N.; Ranjard, L. Differential copper impact on density, diversity and resistance of adapted culturable bacterial populations according to soil organic status. Eur. J. Soil Biol. 2010, 46, 168–174. [Google Scholar] [CrossRef]
- Borruso, L.; Zerbe, S.; Brusetti, L. Bacterial community structures as a diagnostic tool for watershed quality assessment. Res. Microbiol. 2015, 166, 38–44. [Google Scholar] [CrossRef]
- Cavani, L.; Manici, L.M.; Caputo, F.; Peruzzi, E.; Ciavatta, C. Ecological restoration of a copper polluted vineyard: Long-term impact of farmland abandonment on soil bio-chemical properties and microbial communities. J. Environ. Manag. 2016, 182, 37–47. [Google Scholar] [CrossRef]
- Vest, K.E.; Zhu, X.; Cobine, P.A. Copper Disposition in Yeast. In Clinical and Translational Perspectives on WILSON DISEASE; Elsevier BV: Amsterdam, The Netherlands, 2019; pp. 115–126. [Google Scholar]
- Winge, D.R.; Nielson, K.B.; Gray, W.R.; Hamer, D.H. Yeast metallothionein. J. Biol. Chem. 1985, 260, 14464–14470. [Google Scholar] [CrossRef]
- Culotta, V.C.; Howard, W.R.; Liu, X.F. CRS5 encodes a metallothionein-like protein in Saccharomyces cerevisiae. J. Biol. Chem. 1994, 269, 25295–25302. [Google Scholar] [CrossRef]
- Jensen, L.T.; Howard, W.R.; Strain, J.J.; Winge, D.R.; Culotta, V.C. Enhanced Effectiveness of Copper Ion Buffering by CUP1 Metallothionein Compared with CRS5 Metallothionein inSaccharomyces cerevisiae. J. Biol. Chem. 1996, 271, 18514–18519. [Google Scholar] [CrossRef] [Green Version]
- Gerwien, F.; Skrahina, V.; Kasper, L.; Hube, B.; Brunke, S. Metals in fungal virulence. FEMS Microbiol. Rev. 2018, 42, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Carroll, M.C.; Girouard, J.B.; Ulloa, J.L.; Subramaniam, J.R.; Wong, P.C.; Valentine, J.S.; Culotta, V.C. Mechanisms for activating Cu- and Zn-containing superoxide dismutase in the absence of the CCS Cu chaperone. Proc. Natl. Acad. Sci. USA 2004, 101, 5964–5969. [Google Scholar] [CrossRef] [Green Version]
- Raffa, N.; Osherov, N.; Keller, N.P. Copper Utilization, Regulation, and Acquisition by Aspergillus fumigatus. Int. J. Mol. Sci. 2019, 20, 1980. [Google Scholar] [CrossRef] [Green Version]
- Solioz, M. Copper Disposition in Bacteria; Elsevier BV: Amsterdam, The Netherlands, 2019; pp. 101–113. [Google Scholar]
- Outten, F.W.; Outten, C.E.; Hale, J.; O’Halloran, T.V. Transcriptional Activation of anEscherichia coliCopper Efflux Regulon by the Chromosomal MerR Homologue, CueR. J. Biol. Chem. 2000, 275, 31024–31029. [Google Scholar] [CrossRef] [Green Version]
- Djoko, K.Y.; Xiao, Z.; Wedd, A.G. Copper Resistance in E. coli: The Multicopper Oxidase PcoA Catalyzes Oxidation of Copper(I) in CuICuII-PcoC. ChemBioChem 2008, 9, 1579–1582. [Google Scholar] [CrossRef]
- Rademacher, C.; Masepohl, B. Copper-responsive gene regulation in bacteria. Microbiology 2012, 158, 2451–2464. [Google Scholar] [CrossRef]
- Berg, J.; Tom-Petersen, A.; Nybroe, O. Copper amendment of agricultural soil selects for bacterial antibiotic resistance in the field. Lett. Appl. Microbiol. 2005, 40, 146–151. [Google Scholar] [CrossRef]
- Borruso, L.; Harms, K.; Johnsen, P.J.; Nielsen, K.M.; Brusetti, L. Distribution of class 1 integrons in a highly impacted catchment. Sci. Total Environ. 2016, 566–567, 1588–1594. [Google Scholar] [CrossRef]
- Hao, X.; Luthje, F.L.; Qin, Y.; McDevitt, S.F.; Lutay, N.; Hobman, J.L.; Asiani, K.; Soncini, F.C.; German, N.; Zhang, S.; et al. Survival in amoeba—a major selection pressure on the presence of bacterial copper and zinc resistance determinants? Identification of a “copper pathogenicity island”. Appl. Microbiol. Biotechnol. 2015, 99, 5817–5824. [Google Scholar]
- Shan, Y.; Tysklind, M.; Hao, F.; Ouyang, W.; Chen, S.; Lin, C. Identification of sources of heavy metals in agricultural soils using multivariate analysis and GIS. J. Soils Sediments 2013, 13, 720–729. [Google Scholar] [CrossRef]
- Zhang, S.; Abbas, M.; Rehman, M.U.; Huang, Y.; Zhou, R.; Gong, S.; Yang, H.; Chen, S.; Wang, M.; Cheng, A. Dissemination of antibiotic resistance genes (ARGs) via integrons in Escherichia coli: A risk to human health. Environ. Pollut. 2020, 266, 115260. [Google Scholar] [CrossRef]
- Baker-Austin, C.; Wright, M.S.; Stepanauskas, R.; McArthur, J. Co-selection of antibiotic and metal resistance. Trends Microbiol. 2006, 14, 176–182. [Google Scholar] [CrossRef]
- Hu, H.H.; Wang, J.; Li, J.; Li, J.-J.; Ma, Y.-B.; Chen, D.; He, J. Field-based evidence for copper contamination induced changes of antibiotic resistance in agricultural soils. Environ. Microbiol. 2016, 18, 3896–3909. [Google Scholar] [CrossRef]
- Tomasi, N.; Kretzschmar, T.; Espen, L.; Weisskopf, L.; Fuglsang, A.T.; Palmgren, M.G.; Neumann, G.; Varanini, Z.; Pinton, R.; Martinoia, E.; et al. Plasma membrane H+-ATPase-dependent citrate exudation from cluster roots of phosphate-deficient white lupin. Plant Cell Environ. 2009, 32, 465–475. [Google Scholar] [CrossRef] [Green Version]
- Tomasi, N.; Mimmo, T.; Terzano, R.; Alfeld, M.; Janssens, K.; Zanin, L.; Pinton, R.; Varanini, Z.; Cesco, S. Nutrient accumulation in leaves of Fe-deficient cucumber plants treated with natural Fe complexes. Biol. Fertil. Soils 2014, 50, 973–982. [Google Scholar] [CrossRef]
- Bravin, M.N.; Martí, A.L.; Clairotte, M.; Hinsinger, P. Rhizosphere alkalisation—a major driver of copper bioavailability over a broad pH range in an acidic, copper-contaminated soil. Plant Soil 2009, 318, 257–268. [Google Scholar] [CrossRef]
- Faget, M.; Blossfeld, S.; Von Gillhaussen, P.; Schurr, U.; Temperton, V.M. Disentangling who is who during rhizosphere acidification in root interactions: Combining fluorescence with optode techniques. Front. Plant Sci. 2013, 4, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Leitenmaier, B.; Kupper, H. Compartmentation and complexation of metals in hyperaccumulator plants. Front. Plant Sci. 2013, 4, 374. [Google Scholar] [CrossRef] [Green Version]
- Dell’Orto, M.; Santi, S.; Cesco, S.; Varanini, Z.; Zocchi, G.; De Nisi, P.; Pinton, R. Development of Fe?deficiency responses in cucumber ( Cucumis sativus L.) roots: Involvement of plasma membrane H + ?ATPase activity. J. Exp. Bot. 2000, 51, 695–701. [Google Scholar] [CrossRef] [Green Version]
- Earmijo, G.; Eschlechter, R.; Eagurto, M.; Emuñoz, D.; Enúñez, C.; Arce-Johnson, P. Grapevine Pathogenic Microorganisms: Understanding Infection Strategies and Host Response Scenarios. Front. Plant Sci. 2016, 7, 382. [Google Scholar] [CrossRef] [Green Version]
- Zendler, D.; Schneider, P.; Töpfer, R.; Zyprian, E. Fine mapping of Ren3 reveals two loci mediating hypersensitive response against Erysiphe necator in grapevine. Euphytica 2017, 213, 1–23. [Google Scholar] [CrossRef]
- Gessler, C.; Pertot, I.; Perazzolli, M. Plasmopara viticola: A review of knowledge on downy mildew of grapevine and effective disease management. Phytopathol. Mediterr. 2011, 50, 3–44. [Google Scholar] [CrossRef]
- Zini, E.; Dolzani, C.; Stefanini, M.; Gratl, V.; Bettinelli, P.; Nicolini, D.; Betta, G.; Dorigatti, C.; Velasco, R.; Letschka, T.; et al. R-Loci Arrangement Versus Downy and Powdery Mildew Resistance Level: A Vitis Hybrid Survey. Int. J. Mol. Sci. 2019, 20, 3526. [Google Scholar] [CrossRef] [Green Version]
- Di Gaspero, G.; Foria, S. Molecular Grapevine Breeding Techniques; Elsevier BV: Amsterdam, The Netherlands, 2015; pp. 23–37. [Google Scholar]
- Bove, F.; Rossi, V. Components of partial resistance to Plasmopara viticola enable complete phenotypic characterization of grapevine varieties. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Qiu, W.; Feechan, A.; Dry, I.B. Current understanding of grapevine defense mechanisms against the biotrophic fungus (Erysiphe necator), the causal agent of powdery mildew disease. Hortic. Res. 2015, 2, 15020. [Google Scholar] [CrossRef] [Green Version]
- Giacomelli, L.; Zeilmaker, T.; Malnoy, M.; Van Der Voort, J.R.; Moser, C. Generation of mildew-resistant grapevine clones via genome editing. Acta Hortic. 2019, 1248, 195–200. [Google Scholar] [CrossRef]
- Dalla Costa, L.; Malnoy, M.; Lecourieux, D.; Deluc, L.; Lecourieux, F.O.-; Thomas, M.R.; Torregrosa, L. The state-of-the-art of grapevine biotechnology and new breeding technologies (NBTS). OENO One 2019, 53, 189–212. [Google Scholar] [CrossRef] [Green Version]
- Feechan, A.; Jermakow, A.M.; Torregrosa, L.; Panstruga, R.; Dry, I.B. Identification of grapevine MLO gene candidates involved in susceptibility to powdery mildew. Funct. Plant Biol. 2008, 35, 1255–1266. [Google Scholar] [CrossRef]
- Winterhagen, P.; Howard, S.F.; Qiu, W.; Kovács, L.G. Transcriptional Up-Regulation of Grapevine MLO Genes in Response to Powdery Mildew Infection. Am. J. Enol. Vitic. 2008, 59, 159–168. [Google Scholar]
- Pirrello, C.; Zeilmaker, T.; Bianco, L.; Giacomelli, L.; Moser, C.; Vezzulli, S. Mining downy mildew susceptibility genes: A diversity study in grapevine. bioRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Cesco, S.; Tolotti, A.; Nadalini, S.; Rizzi, S.; Valentinuzzi, F.; Mimmo, T.; Porfido, C.; Allegretta, I.; Giovannini, O.; Perazzolli, M.; et al. Plasmopara viticola infection affects mineral elements allocation and distribution in Vitis vinifera leaves. Sci. Rep. 2020, 10, 1–18. [Google Scholar] [CrossRef]
- Chitarrini, G.; Riccadonna, S.; Zulini, L.; Vecchione, A.; Stefanini, M.; Larger, S.; Pindo, M.; Cestaro, A.; Franceschi, P.; Magris, G.; et al. Two-omics data revealed commonalities and differences between Rpv12- and Rpv3-mediated resistance in grapevine. Sci. Rep. 2020, 10, 1–15. [Google Scholar] [CrossRef]
- Malacarne, G.; Vrhovsek, U.; Zulini, L.; Cestaro, A.; Stefanini, M.; Mattivi, F.; Delledonne, M.; Velasco, R.; Moser, C. Resistance to Plasmopara viticola in a grapevine segregating population is associated with stilbenoid accumulation and with specific host transcriptional responses. BMC Plant Biol. 2011, 11, 114. [Google Scholar] [CrossRef] [Green Version]
- Badalucco, L.; Nannipieri, P. Nutrient transformations in the rhizosphere. In The Rhizosphere Biochemistry and Organic Substances at the Soil-plant Interface; CRC Press: Boca Raton, FL, USA, 2007; Volume 11, pp. 111–133. [Google Scholar]
- Terrazas, R.A.; Giles, C.; Paterson, E.; Robertson-Albertyn, S.; Cesco, S.; Mimmo, T.; Pii, Y.; Bulgarelli, D. Plant–Microbiota Interactions as a Driver of the Mineral Turnover in the Rhizosphere. Adv. Clin. Chem. 2016, 95, 1–67. [Google Scholar] [CrossRef]
- Pii, Y.; Borruso, L.; Brusetti, L.; Crecchio, C.; Cesco, S.; Mimmo, T. The interaction between iron nutrition, plant species and soil type shapes the rhizosphere microbiome. Plant Physiol. Biochem. 2016, 99, 39–48. [Google Scholar] [CrossRef]
- Mimmo, T.; Pii, Y.; Valentinuzzi, F.; Astolfi, S.; Lehto, N.; Robinson, B.; Brunetto, G.; Terzano, R.; Cesco, S. Nutrient availability in the rhizosphere: A review. Acta Hortic. 2018, 1217, 13–28. [Google Scholar] [CrossRef]
- Bayer, P.E.; Edwards, D. Machine learning in agriculture: From silos to marketplaces. Plant Biotechnol. J. 2020. [Google Scholar] [CrossRef]
- Mulla, D.J. Spatial Variability in Precision Agriculture. In Encyclopedia of GIS; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2016; pp. 1–8. [Google Scholar]
- Matese, A.; Di Gennaro, S.F. Technology in precision viticulture: A state of the art review. Int. J. Wine Res. 2015, 7, 69–81. [Google Scholar] [CrossRef] [Green Version]
- Landonio, S.; (ARVAtec srl, Rescaldina, Italy). Personal Communication, 2020.
- Maheswari, R.; Ashok, K.R.; Prahadeeswaran, M. Precision farming technology, adoption decisions and produc-tivity of vegetables in resource-poor environments. Agric. Econ. Res. Rev. 2008, 21, 415–424. [Google Scholar]
- McBride, W.D.; Daberkow, S.G. Information and the adoption of precision farming technologies. J. Agri-Bus. 2003, 21, 21–38. [Google Scholar]
- Kutter, T.; Tiemann, S.; Siebert, R.; Fountas, S. The role of communication and co-operation in the adoption of precision farming. Precis. Agric. 2011, 12, 2–17. [Google Scholar] [CrossRef]
- Vecchio, Y.; Agnusdei, G.P.; Miglietta, P.P.; Capitanio, F. Adoption of Precision Farming Tools: The Case of Italian Farmers. Int. J. Environ. Res. Public Health 2020, 17, 869. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Molano, J.I.; Triana-Casallas, J.A.; Contreras-Bravo, L.E. Modeling and Simulation of Integration of Internet of Things and Manufacturing Industry 4.0. Programmieren für Ingenieure und Naturwissenschaftler 2018, 916, 231–241. [Google Scholar] [CrossRef]
- Shamim, S.; Cang, S.; Yu, H.; Li, Y. Management approaches for Industry 4.0: A human resource management perspective. In Proceedings of the 2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver, BC, Canada, 24–29 July 2016; pp. 5309–5316. [Google Scholar]
- Wan, J.; Cai, H.; Zhou, K. Industrie 4.0: Enabling technologies. In Proceedings of the 2015 International Conference on Intelligent Computing and Internet of Things, Harbin, China, 17–18 January 2015; pp. 135–140. [Google Scholar]
- Mazzetto, F.; Gallo, R.; Riedl, M.; Sacco, P. Proposal of an ontological approach to design and analyse farm information systems to support Precision Agriculture techniques. IOP Conf. Ser. Earth Environ. Sci. 2019, 275, 012008. [Google Scholar] [CrossRef]
- Balafoutis, A.T.; Koundouras, S.; Anastasiou, E.; Fountas, S.; Arvanitis, K. Life Cycle Assessment of Two Vineyards after the Application of Precision Viticulture Techniques: A Case Study. Sustainability 2017, 9, 1997. [Google Scholar] [CrossRef] [Green Version]
- Brunori, E.; Maesano, M.; Moresi, F.V.; Scarascia Mugnozza, G.; Biasi, R. Towards sustainable viticulture: Key role of vineyard’s precision monitoring. In Proceedings of the International Symposium on Technologies for Smart City, Malaga, Spain, 11–12 November 2019; p. 6. [Google Scholar]
- Kuflik, T.; Prodorutti, D.; Frizzi, A.; Gafni, Y.; Simon, S.; Pertot, I. Optimization of copper treatments in organic viticulture by using a web-based decision support system. Comput. Electron. Agric. 2009, 68, 36–43. [Google Scholar] [CrossRef]
- Román, C.; Llorens, J.; Uribeetxebarria, A.; Sanz, R.; Planas, S.; Arnó, J. Spatially variable pesticide application in vineyards: Part II, field comparison of uniform and map-based variable dose treatments. Biosyst. Eng. 2020, 195, 42–53. [Google Scholar] [CrossRef]
- Lindblom, J.; Lundström, C.; Ljung, M.; Jonsson, A. Promoting sustainable intensification in precision agriculture: Review of decision support systems development and strategies. Precis. Agric. 2017, 18, 309–331. [Google Scholar] [CrossRef] [Green Version]
- Santesteban, L. Precision viticulture and advanced analytics. A short review. Food Chem. 2019, 279, 58–62. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Hubbard, N.; Loudjani, P. Precision Agriculture: An Opportunity for eu Farmers—Potential Support with the Cap 2014–2020; Joint Research Centre (JRC) of the European Commission: Ispra, Italy, 2014. [Google Scholar]
- Mazzetto, F.; Calcante, A.; Mena, A.; Vercesi, A. Integration of optical and analogue sensors for monitoring canopy health and vigour in precision viticulture. Precis. Agric. 2010, 11, 636–649. [Google Scholar] [CrossRef]
- Vidoni, R.; Gallo, R.; Ristorto, G.; Carabin, G.; Mazzetto, F.; Scalera, L.; Gasparetto, A. ByeLab: An agricultural mobile robot prototype for proximal sensing and precision farming. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Tampa, FL, USA, 3–9 November 2017. [Google Scholar]
- Mazzetto, F.; Gallo, R.; Importuni, P.; Petrera, S.; Sacco, P. Automatic filling of field activities register, from challenge into reality. Chem. Eng. Trans. 2017, 58, 667–672. [Google Scholar] [CrossRef]
- Lee, S.-G.; Yang, A.; Jeon, B.-H.; Park, H.-D. A structure of scalable and configurable interface for sensor and actuator devices in smart farming system. Int. J. Inn. Tech. Exp. Eng. 2019, 8, 2779–2786. [Google Scholar]
- Pérez-Expósito, J.P.; Fernández-Caramés, T.M.; Fraga-Lamas, P.; Castedo, L. VineSens: An Eco-Smart Decision-Support Viticulture System. Sensors 2017, 17, 465. [Google Scholar] [CrossRef]
- Fuentes, S.; Tongson, E. Advances and requirements for machine learning and artificial intelligence applications in viticulture. Wine Vitic. J. 2018, 33, 3–47. [Google Scholar]
- De Mauro, A.; Greco, M.; Grimaldi, M. A formal definition of Big Data based on its essential features. Libr. Rev. 2016, 65, 122–135. [Google Scholar] [CrossRef]
- Delgado, J.A.; Short, N.M.; Roberts, D.P.; Vandenberg, B. Big Data Analysis for Sustainable Agriculture on a Geospatial Cloud Framework. Front. Sustain. Food Syst. 2019, 3. [Google Scholar] [CrossRef] [Green Version]
- Lioutas, E.D.; Charatsari, C.; La Rocca, G.; De Rosa, M. Key questions on the use of big data in farming: An activity theory approach. NJAS Wagening. J. Life Sci. 2019, 90, 100297. [Google Scholar] [CrossRef]
- Penn, C. Twelve innovations from Vinitech 2018. Aust. N. Z. Grapegrow. Winemak. 2019, 660, 56. [Google Scholar]
- Siebers, M.H.; Edwards, E.J.; Jimenezberni, J.A.; Thomas, M.R.; Salim, M.; Walker, R. Fast Phenomics in Vineyards: Development of GRover, the Grapevine Rover, and LiDAR for Assessing Grapevine Traits in the Field. Sensors 2018, 18, 2924. [Google Scholar] [CrossRef] [Green Version]
- Mendes, J.; Pinho, T.M.; Dos Santos, F.N.; Sousa, J.J.; Peres, E.; Cunha, J.B.; Cunha, M.; Morais, R. Smartphone Applications Targeting Precision Agriculture Practices—A Systematic Review. Agronomy 2020, 10, 855. [Google Scholar] [CrossRef]
- Caffaro, F.; Cremasco, M.M.; Roccato, M.; Cavallo, E. Drivers of farmers’ intention to adopt technological innovations in Italy: The role of information sources, perceived usefulness, and perceived ease of use. J. Rural. Stud. 2020, 76, 264–271. [Google Scholar] [CrossRef]
- Tey, Y.S.; Brindal, M. Factors influencing the adoption of precision agricultural technologies: A review for policy implications. Precis. Agric. 2012, 13, 713–730. [Google Scholar] [CrossRef]
- Bai, C.; Ciano, M.P.; Orzes, G.; Sarkis, J. Industry 4.0 technologies assessment: A sustainability perspective. Int. J. Prod. Econ. 2020, 229, 107776. [Google Scholar] [CrossRef]
- Luo, Y.; Guo, W.; Ngo, H.H.; Nghiem, L.D.; Hai, F.I.; Zhang, J.; Liang, S.; Wang, X.C. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total Environ. 2014, 473–474, 619–641. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cesco, S.; Pii, Y.; Borruso, L.; Orzes, G.; Lugli, P.; Mazzetto, F.; Genova, G.; Signorini, M.; Brunetto, G.; Terzano, R.; et al. A Smart and Sustainable Future for Viticulture Is Rooted in Soil: How to Face Cu Toxicity. Appl. Sci. 2021, 11, 907. https://doi.org/10.3390/app11030907
Cesco S, Pii Y, Borruso L, Orzes G, Lugli P, Mazzetto F, Genova G, Signorini M, Brunetto G, Terzano R, et al. A Smart and Sustainable Future for Viticulture Is Rooted in Soil: How to Face Cu Toxicity. Applied Sciences. 2021; 11(3):907. https://doi.org/10.3390/app11030907
Chicago/Turabian StyleCesco, Stefano, Youry Pii, Luigimaria Borruso, Guido Orzes, Paolo Lugli, Fabrizio Mazzetto, Giulio Genova, Marco Signorini, Gustavo Brunetto, Roberto Terzano, and et al. 2021. "A Smart and Sustainable Future for Viticulture Is Rooted in Soil: How to Face Cu Toxicity" Applied Sciences 11, no. 3: 907. https://doi.org/10.3390/app11030907
APA StyleCesco, S., Pii, Y., Borruso, L., Orzes, G., Lugli, P., Mazzetto, F., Genova, G., Signorini, M., Brunetto, G., Terzano, R., Vigani, G., & Mimmo, T. (2021). A Smart and Sustainable Future for Viticulture Is Rooted in Soil: How to Face Cu Toxicity. Applied Sciences, 11(3), 907. https://doi.org/10.3390/app11030907