Thermoplastic Polymeric Materials for Spacecraft Applications: Flame Retardant Properties and UV/AtOx Aging Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Thermoplastic Material
2.2. Flammability Experimental Setup
- Char length—distance from the sample edge directly exposed to the flame up to the furthest point of visible damaging;
- After-flame time—time of sample flaming after the ignition source has been removed;
- After-glow time—time of sample glowing after ignition source removal and flame extinction.
2.3. UV/AtOx Exposure Experimental Setup
3. Results and Discussion
3.1. Flammability Test
3.2. UV and Atomic Oxygen Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fortescue, P.; Stark, J.; Swinerd, G. Spacecraft System Engineering, 4th ed.; Wiley: West Sussex, UK, 2011. [Google Scholar]
- Grossman, E.; Gouzman, I. Space environment effects on polymers in low earth orbit. Nucl. Instrum. Meth. B 2003, 208, 48–57. [Google Scholar] [CrossRef]
- Sharma, A.K.; Sridhara, N. Degradation of thermal control materials under a simulated radiative space environment. Adv. Space Res. 2012, 50, 1411–1424. [Google Scholar] [CrossRef]
- Balakrishnan, D.; Kurian, J. Material Thermal Degradation under Reentry Aerodynamic Heating. AIAA J. Spacecr. Rocket. 2014, 51, 1319–1328. [Google Scholar] [CrossRef]
- Pastore, R.; Delfini, A.; Albano, M.; Vricella, A.; Marchetti, M.; Santoni, F.; Piergentili, F. Outgassing effect in polymeric composites exposed to space environment thermal-vacuum conditions. Acta Astronaut. 2020, 170, 466–471. [Google Scholar] [CrossRef]
- Gordo, P.; Frederico, T.; Melicio, R.; Duzellier, S.; Amorim, A. System for space materials evaluation in LEO environment. Adv. Sp. Res. 2020, 66, 307–320. [Google Scholar] [CrossRef]
- Ohlemiller, T.J.; Villa, K.M. Material Flammability test Assessment for Space Station Freedom; Nist IR 4591; National Institute of Standards and Technology, Building and Fire Research Laboratory: Gaithersburg, MD, USA, 1991.
- ECSS-Q-70-21A: Flammability Testing for the Screening of Space Materials, 4 October 1999. Available online: https://ecss.nl/standard/ecss-q-70-21a-flammability-testing-for-the-screening-of-space-materials-4-october-1999/ (accessed on 1 December 2020).
- Zhang, H. Fire-Safe Polymers and Polymer Composites, Federal Aviation Administration Technical Report; U.S. Department of Transportation: Washington, DC, USA, 2004.
- Messidoro, P. From ISS to Human Space Exploration: TAS-I contribution and perspectives. Mem. Della Soc. Astron. Ital. 2011, 82, 443. [Google Scholar]
- Tomczak, S.J.; Vij, V.; Marchant, D.; Minton, T.K.; Brunsvold, A.L.; Wright, M.E.; Petteys, B.J.; Guenthner, A.J.; Yandek, G.R.; Mabry, J. Polyhedral oligomeric silsesquioxane (POSS) polyimides as space-survivable materials. In Photonics for Space Environments XI; Taylor, E.W., Ed.; SPIE: Bellingham, DC, USA, 2006; Volume 6308, p. 630804. [Google Scholar]
- Macocinschi, D.; Grigoriu, A.; Filip, D. Aromatic polysulfones for flame retardancy. Eur. Polym. J. 2002, 38, 1025–1031. [Google Scholar] [CrossRef]
- Raja Reddy, M. Effect of low earth orbit atomic oxygen on spacecraft materials. J. Mater. Sci. 1995, 30, 281–307. [Google Scholar] [CrossRef]
- Koontz, S.L.; Leger, L.J.; Albyn, K.; Cross, J. Vacuum ultraviolet radiation/atomic oxygen synergism in materials reactivity. J. Spacecr. Rocket. 1990, 27, 346–348. [Google Scholar] [CrossRef]
- Samwel, S.W. Low Earth Orbital Atomic Oxygen Erosion Effect on Spacecraft materials. Space Res. J. 2014, 7, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Micheli, D.; Apollo, C.; Pastore, R.; Bueno Morles, R.; Coluzzi, P.; Marchetti, M. Temperature, atomic oxygen and outgassing effects on dielectric parameters and electrical properties of nanostructured composite carbon-based materials. Acta Astronaut. 2012, 76, 127–135. [Google Scholar] [CrossRef]
- Tennyson, R.C. Atomic oxygen and its effect on materials. In The Behavior of Systems in the Space Environment; Kluwer Academic: Amsterdam, The Netherlands, 1993; pp. 233–257. [Google Scholar]
- Banks, B.A.; Stueber, T.J.; Synder, S.A.; Rutledge, S.K.; Noris, M.J. Atomic oxygen erosion phenomena. In Proceedings of the AIAA Defense and Space Programs Conference, Huntsville, AL, USA, 23–25 September 1997. [Google Scholar]
- Delfini, A.; Santoni, F.; Bisegna, F.; Piergentili, F.; Pastore, R.; Vricella, A.; Albano, M.; Familiari, G.; Battaglione, E.; Matassa, R.; et al. Evaluation of atomic oxygen effects on nano-coated carbon-carbon structures for re-entry applications. Acta Astronaut. 2019, 161, 276–282. [Google Scholar] [CrossRef]
- Delfini, A.; Vricella, A.; Bueno Morles, R.; Pastore, R.; Micheli, D.; Gugliermetti, F.; Marchetti, M. CVD nano-coating of carbon composites for space materials atomic oxygen shielding. Procedia Struct. Integr. 2017, 3, 208–216. [Google Scholar] [CrossRef]
- Solvay—Radel PPSU. Available online: http://www.solvayplastics.com/sites/solvayplastics (accessed on 1 December 2020).
- Ceramer High Performance Polymer. Available online: http://www.ceramer.com/1ceramer (accessed on 1 December 2020).
- Hirsch, D.; Motto, S.; Hshieh, F.; Beeson, H. Limiting Conditions for Flammability of Polymers; SAE Technical Paper 2004-01-2284; SAE International: Warrendale, PA, USA, 2004. [Google Scholar]
- Zeus Technical Whitepaper, Flammability of Polymers, Zeus Industrial Products. 2005. Available online: https://it.scribd.com/document/461219565/zeus-flammability (accessed on 1 December 2020).
- Frazer, A.H. High Temperature Resistant Polymers; John Wiley & Sons: New York, NY, USA, 1968. [Google Scholar]
- Strakowska, A.; Członka, S.; Konca, P.; Strzelec, K. New Flame Retardant Systems Based on Expanded. Graphite for Rigid Polyurethane Foams. Appl. Sci. 2020, 10, 5817. [Google Scholar] [CrossRef]
- Bannov, A.G.; Nazarenko, O.B.; Maksimovskii, E.A.; Popov, M.V.; Berdyugina, I.S. Thermal Behavior and Flammability of Epoxy Composites Based on Multi-Walled Carbon Nanotubes and Expanded Graphite: A Comparative Study. Appl. Sci. 2020, 10, 6928. [Google Scholar] [CrossRef]
- Guo, W.; Zhao, Y.; Wang, X.; Cai, W.; Wang, J.; Song, L.; Hu, Y. Multifunctional epoxy composites with highly flame retardant and effective electromagnetic interference shielding performances. Comp. B Eng. 2020, 192, 107990. [Google Scholar] [CrossRef]
- McCulla, R.D. Atomic Oxygen O(3P): Photogeneration and Reactions with Biomolecules. In ACS 55th Annual Report on Research; St. Louis University: St. Louis, MO, USA, 2010. [Google Scholar]
Sample Series | R | R-2L | R-HY | R-2T |
---|---|---|---|---|
Material | Radel R | Radel R double layer | Ceramer-coated Radel R | Radel R |
# of samples | 4 | 3 | 3 | 4 |
dimensions (mm) | 300 × 64 × 6 | 300 × 64 × 12 | 300 × 64 × 6 * | 300 × 64 × 6 |
flame time (s) | 12 | 12 | 12 | 24 |
smokes length (mm) | 163 | 70 | 208 | 225 |
damage length (mm) | 11 | 17 | 42 | 26 |
char length (mm) | 4.5 | 8.4 | 4.6 | 11.2 |
char width (mm) | 24.4 | 30.0 | 21.5 | 15.1 |
after flame time (s) | 1.1 | 1.4 | 1.1 | 0.9 |
after glow time (s) | no glow | no glow | no glow | no glow |
material spread | N | N | Y | N |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pastore, R.; Albano, M.; Delfini, A.; Santoni, F.; Marchetti, M. Thermoplastic Polymeric Materials for Spacecraft Applications: Flame Retardant Properties and UV/AtOx Aging Analysis. Appl. Sci. 2021, 11, 949. https://doi.org/10.3390/app11030949
Pastore R, Albano M, Delfini A, Santoni F, Marchetti M. Thermoplastic Polymeric Materials for Spacecraft Applications: Flame Retardant Properties and UV/AtOx Aging Analysis. Applied Sciences. 2021; 11(3):949. https://doi.org/10.3390/app11030949
Chicago/Turabian StylePastore, Roberto, Marta Albano, Andrea Delfini, Fabio Santoni, and Mario Marchetti. 2021. "Thermoplastic Polymeric Materials for Spacecraft Applications: Flame Retardant Properties and UV/AtOx Aging Analysis" Applied Sciences 11, no. 3: 949. https://doi.org/10.3390/app11030949
APA StylePastore, R., Albano, M., Delfini, A., Santoni, F., & Marchetti, M. (2021). Thermoplastic Polymeric Materials for Spacecraft Applications: Flame Retardant Properties and UV/AtOx Aging Analysis. Applied Sciences, 11(3), 949. https://doi.org/10.3390/app11030949