Experimental Study on Backflow Patterns Induced by a Bilateral Groin Pair with Different Spacing
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental Set-Up and Test Conditions
2.2. Particle Image Velocimetry (PIV) Measurements
3. Results
3.1. Horizontal Flow Patterns
3.1.1. Flow Fields of a Single Groin and Symmetrical Groins
3.1.2. Flow Fields of Two Alternating Groins with Various Spacing
3.2. Velocity along Cross-Section through Groin Tip and Its Influence on Recirculation Zone
3.3. Vorticity Distribution and Its Influence on Recirculating Flow
4. Discussion
4.1. Effect of Backflow Patterns of Groin B on Recirculation Zone Behind Groin A
4.2. Formula of Recirculation Zone Length Behind a Single Groin
4.3. Formula of Recirculation Zone Length Behind Alternating Groins
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- U.S. Army Corps of Engineers (USACE). Coastal Groins and Nearshore Breakwaters; U.S. Army Corps of Engineers: Washington, DC, USA, 1992. [Google Scholar]
- Fazli, M.; Ghodsian, M.; Neyshabouri, S.A.A.S. Scour and flow field around a spur dike in a 90° bend. Int. J. Sediment Res. 2008, 23, 56–68. [Google Scholar] [CrossRef]
- Ettema, R.; Muste, M. Scale effects in flume experiments on flow around spur dike in flatbed channel. J. Hydraul. Eng. 2004, 130, 635–646. [Google Scholar] [CrossRef]
- Abhari, M.N.; Ghodsian, M.; Vaghefi, M.; Panahpur, N. Experimental and numerical simulation of flow in a 90° bend. Flow Meas. Instrum. 2010, 21, 292–298. [Google Scholar] [CrossRef]
- Karami, H.; Ardeshir, A.; Behzadian, K.; Ghodsian, M. Protective spur dike for scour mitigation of existing spur dikes. J. Hydraul. Res. 2011, 49, 809–813. [Google Scholar] [CrossRef]
- Koken, M.; Constantinescu, G. An investigation of the flow and scour mechanisms around isolated spur dikes in a shallow open channel: 2. Conditions corresponding to the final stages of the erosion and deposition process. Water Resour. Res. 2008, 44, W08407. [Google Scholar] [CrossRef]
- Azinfar, H.; Kells, J.A. Flow resistance due to a single spur dike in an open channel. J. Hydraul. Res. 2009, 47, 755–763. [Google Scholar] [CrossRef]
- Weitbrecht, V.; Kuhn, G.; Jirka, G.H. Large scale PIV-measurements at the surface of shallow water flows. Flow Meas. Instrum. 2002, 13, 237–245. [Google Scholar] [CrossRef] [Green Version]
- Ohmoto, T.; Hirakawa, R.; Koreeda, N. Effects of water surface oscillation on turbulent flow in an open channel with a series of spur dikes. In Proceedings of the Hydraulic Measurements and Experimental Methods Specialty Conference (HMEM), Estes Park, CO, USA, 28 July–1 August 2002. [Google Scholar] [CrossRef]
- Uijttewaal, W.S.J. Effects of groyne layout on the flow in groyne fields: Laboratory experiments. J. Hydraul. Eng. 2005, 131, 782–791. [Google Scholar] [CrossRef]
- Kuhnle, R.A.; Jia, K.; Alonso, C.V. Measured and simulated flow near a submerged spur dike. J. Hydraul. Eng. 2008, 134, 916–924. [Google Scholar] [CrossRef]
- Francis, J.R.D.; Pattanaik, A.B.; Wearne, S.H. Technical Note: Observations of flow patterns around some simplified groyne structures in channels. ICE Proc. 1968, 41, 829–837. [Google Scholar] [CrossRef]
- Rajaratnam, N.; Nwachukwu, B.A. Flow near groin-like structures. J. Hydraul. Eng. 1983, 109, 463–480. [Google Scholar] [CrossRef]
- Schmidt, J.C.; Rubin, D.M.; Ikeda, H. Flume simulation of recirculating flow and sedimentation. Water Resour. Res. 1993, 29, 2925–2939. [Google Scholar] [CrossRef]
- Duan, J.G. Mean flow and turbulence around a laboratory. J. Hydraul. Eng. 2009, 135, 803–811. [Google Scholar] [CrossRef]
- Molls, T.; Chaudhry, M.H.; Khan, K.W. Numerical simulation of two-dimensional flow near a spur-dike. Adv. Water Resour. 1995, 18, 227–236. [Google Scholar] [CrossRef]
- Ouillon, S.; Dartus, D. Three-dimensional computation of flow around groyne. J. Hydraul. Eng. 1997, 123, 962–970. [Google Scholar] [CrossRef]
- Peng, J.; Kawahara, Y. Application of linear and non-linear k-ε model to flows around spur dikes. Ann. J. Hydraul. Eng. 1998, 42, 643–648. [Google Scholar] [CrossRef] [Green Version]
- Nagata, N.; Hosoda, T.; Nakato, T.; Muramot, Y. Three-dimensional numerical model for flow and bed deformation around river hydraulic structures. J. Hydraul. Eng. 2005, 131, 1074–1087. [Google Scholar] [CrossRef]
- Noh, J.W.; Lee, S.J.; Kim, J.S.; Molinas, A. Numerical modeling of flow and scouring around a cofferdam. J. Hydro-environ. Res. 2012, 6, 199–309. [Google Scholar] [CrossRef]
- Koken, M.; Constantinescu, G. An investigation of the dynamics of coherent structures in a turbulent channel flow with a vertical sidewall obstruction. Phys. Fluids 2009, 21, 085104. [Google Scholar] [CrossRef]
- Higham, J.E.; Brevis, W.; Keylock, C.J.; Safarzadeh, A. Using modal decompositions to explain the sudden expansion of the mixing layer in the wake of a groyne in a shallow flow. Adv. Water Resour. 2017, 107, 451–459. [Google Scholar] [CrossRef]
- Uijttewaal, W.S.J.; Lehmann, D.; van Mazijk, A. Exchange processes between a river and its groyne fields: Model experiments. J. Hydraul. Eng. 2001, 127, 928–936. [Google Scholar] [CrossRef]
- Weitbrecht, V.; Jirka, G.H. Flow patterns and exchange processes in dead zones of rivers. In Proceedings of the 29th IAHR Congress, Beijing, China, 16–21 September 2001; pp. 439–455. [Google Scholar]
- Sukhodolov, A.; Uijttewaal, W.S.J.; Engelhardt, C. On the correspondence between morphological and hydrodynamical patterns of groyne fields. Earth Surf. Process. Landf. 2002, 27, 289–305. [Google Scholar] [CrossRef]
- Uijttewaal, W.S.J. The flow in groyne field. In Water Quality Hazards and Dispersion of Pollutants; Czernuszenko, W., Rowinski, P., Eds.; Springer: Warsaw, Poland, 2005. [Google Scholar] [CrossRef]
- Yossef, M.F.M.; de Vriend, H.J. Flow details near river groynes: Experimental investigation. J. Hydraul. Eng. 2011, 137, 504–516. [Google Scholar] [CrossRef]
- Uijttewaal, W.S.J. Hydrodynamics of shallow flows: Application to rivers. J. Hydraul. Res. 2014, 52, 157–172. [Google Scholar] [CrossRef]
- Akkermans, R.A.D.; Clesilk, A.R.; Kamp, L.P.J.; Trieling, R.R.; Clercx, H.J.H.; van Heijst, G.J.F. The three-dimensional structure of an electromagnetically generated dipolar vortex in a shallow fluid layer. Phys. Fluids 2008, 20, 116601. [Google Scholar] [CrossRef] [Green Version]
- Cieślik, A.R.; Akkermans, R.A.D.; Kamp, L.P.J.; Clercx, H.J.H.; van Heijst, G.J.F. Dipole-wall collision in a shallow fluid. Eur. J. Mech. B Fluids 2009, 28, 397–404. [Google Scholar] [CrossRef]
- Van Heijst, G.J.F.; Clercx, H.J.H. Laboratory modeling of geophysical vortices. Annu. Rev. Fluid Mech. 2009, 41, 143–164. [Google Scholar] [CrossRef]
- Akkermans, R.A.D.; Kamp, L.P.J.; Clercx, H.J.H.; van Heijst, G.J.F. Three-dimensional flow in electromagnetically driven shallow two-layer fluids. Phys. Rev. E 2010, 82, 026314. [Google Scholar] [CrossRef] [Green Version]
- McCoy, A.; Constantinescu, G.; Weber, L. Coherent structures and mass exchange processes in channel flow with spanwise obstructions. In Proceedings of the ERCOFTAC International Symposium on Engineering Turbulence Modelling and Measurements, ETMM6, Sardinia, Italy, 23–25 May 2005; IIHR-Hydroscience and Engineering, Department of Civil and Environmental Engineering, The University of Iowa: Iowa City, IA, USA, 2005. [Google Scholar] [CrossRef]
- Ahmed, H.S.; Hasan, M.M.; Tanaka, N. Analysis of flow around impermeable groynes on one side of symmetrical compound channel: An experimental study. Water Sci. Eng. 2010, 3, 56–66. [Google Scholar] [CrossRef]
- McCoy, A.; Constantinescu, G.; Weber, L.J. Numerical Investigation of Flow Hydrodynamics in a Channel with a Series of Groynes. J. Hydraul. Eng. 2008, 134, 157–172. [Google Scholar] [CrossRef]
- Fang, H.W.; Bai, J.; He, G.J.; Zhao, H.M. Calculations of nonsubmerged groin flow in a shallow open channel by Large-Eddy Simulation. J. Eng. Mech. 2014, 140, 04014016. [Google Scholar] [CrossRef] [Green Version]
- Koutrouveli, T.L.; Dimas, A.A.; Fourniotis, N.T.H.; Demetracopoulos, A.C. Groyne spacing role on the effective control of wall shear stress in open-channel flow. J. Hydraul. Res. 2019, 57, 167–182. [Google Scholar] [CrossRef]
- Ning, J.; Li, G.; Li, S. Numerical simulation of the influence of spur dikes spacing on local scour and flow. Appl. Sci. 2019, 9, 2306. [Google Scholar] [CrossRef] [Green Version]
- Gu, Z.P.; Ikeda, S. Experimental study of open channel flow with groins. In Proceedings of the 16th IAHR-APD Congress and 3rd Symposium of IAHR-ISHS 2009, Nanjing, China, 20–23 October 2008; pp. 1951–1956. [Google Scholar] [CrossRef]
- Cao, X.M.; Gu, Z.H.; Tang, H.W. Study on spacing threshold of nonsubmerged spur dikes with alternate layout. J. Appl. Math. 2013, 2013, 945984. [Google Scholar] [CrossRef]
- Krishna, P.S.; Indulekha, K.P.; Balan, K. Analysis of groyne placement on minimizing river bank erosion. Procedia Technol. 2016, 24, 47–53. [Google Scholar] [CrossRef] [Green Version]
- Cuong, T.V.; Hung, N.T.; Te, V.T.; Tuan, P.A. Analysis of spur dikes spatial layout to river bed degradation under reversing tidal flow. In Proceedings of the 10th International Conference on Asian and Pacific Coasts (APAC 2019), Hanoi, Vietnam, 25–28 September 2019. [Google Scholar] [CrossRef]
- Mostafaa, M.M.; Ahmeda, H.S.; Ahmed, A.A.; Abdel-Raheeme, G.A.; Ali, N.A. Experimental study of flow characteristics around floodplain single groyne. J. Hydro-Environ. Res. 2019, 22, 1–13. [Google Scholar] [CrossRef]
- Shields, F.D. Fate of Lower Mississippi River habitats associated with river training dikes. Aquat. Conserv. 1995, 5, 97–108. [Google Scholar] [CrossRef]
- Jamieson, E.C.; Rennie, C.D. 3-D flow and scour near a submerged wing dike: ADCP measurements on the Missouri River. Water Resour. Res. 2011, 47, W07544. [Google Scholar] [CrossRef]
- Braun, A.P.; Sobotka, M.J.; Phelps, Q.E. Fish Associations among Un-notched, Notched and L-head Dikes in the Middle Mississippi River. River Res. Appl. 2016, 32, 804–811. [Google Scholar] [CrossRef]
- Ten Brinke, W.B.M.; Schulze, F.H.; Van der Veer, P. Sand exchange between groyne-field beaches and the navigation channel of the Dutch Rhine: The impact of navigation versus river flow. River Res. Appl. 2004, 20, 899–928. [Google Scholar] [CrossRef]
- Sieben, J. Sediment management in the Dutch Rhine branches. Int. J. River Basin Manag. 2009, 7, 43–53. [Google Scholar] [CrossRef]
- Arnaud, F.; Schmitt, L.; Johnstone, K.; Rollet, A.J.; Piégay, H. Engineering impacts on the Upper Rhine channel and floodplain over two centuries. Geomorphology 2019, 330, 13–27. [Google Scholar] [CrossRef]
- Wu, C.P.; Qi, P.; Zhang, L.Z.; Guo, H.M.; Chen, J.J.; Guo, Z.L. Test and Study on Banks Regulation Model of Wandering Section in the Lower Yellow River. Yellow River 2005, 27, 12–19. (In Chinese) [Google Scholar]
- Liu, Y.; Wang, B.M.; Li, Y.Q. Research on application of removable non-rescue submerged groins in lower Yellow River training works. Procedia Eng. 2012, 28, 781–785. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Wu, B.F.; Yin, K.; Li, X.S.; Kia, K.; Zhu, L. Impacts of human activities on the evolution of estuarine wetland in the Yangtze Delta from 2000 to 2010. Environ. Earth Sci. 2015, 73, 435–447. [Google Scholar] [CrossRef]
- Deng, Y.; Cao, M.X.; Ma, A.X.; Hu, Y.; Chang, L.H. Mechanism study on the impacts of hydraulic alteration on fish habitat induced by spur dikes in a tidal reach. Ecol. Eng. 2019, 134, 78–92. [Google Scholar] [CrossRef]
- Jiao, J.; Dou, X.P.; Gao, X.Y.; Ding, L.; Yang, X.Y. Morphodynamic characteristics and medium-term simulation of the North−South Passage under the impact of the Yangtze Estuary deepwater navigation channel project. China Ocean Eng. 2020, 34, 198–209. [Google Scholar] [CrossRef]
- Yossef, M.F.M. The Effect of Groynes on Rivers: Literature Review; Delft Cluster Project No.03.03.04 2002; Delft University of Technology: Delft, The Netherlands, 2002; Available online: http://resolver.tudelft.nl/uuid:b9545ba7-2423-4c20-ace2-0e1cd799d18a (accessed on 23 August 2002).
- Bahrami-Yarahmadi, M.; Pagliarab, S.; Yabarehpourc, E.; Najafic, N. Study of Scour and Flow Patterns around Triangular-Shaped Spur Dikes. KSCE J. Civ. Eng. 2020, 24, 3279–3288. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, Y.Y.; Nicolleau, F.C.G.A.; Wang, Z.C. PIV of swirling flow in a conical pipe with vibrating wall. Int. J. Appl. Mech. 2018, 10, 1850022. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Shan, X.B.; Xie, T. Enhancing flow field performance of a small circulating water channel based on porous grid plate. Appl. Sci. 2020, 10, 5103. [Google Scholar] [CrossRef]
- Sterczyńska, M.; Jakubowski, M. Research on particles’ velocity distribution in a whirlpool separator using the PIV method of measurement. Int. J. Food Eng. 2017, 13, 0316. [Google Scholar] [CrossRef]
- Sterczyńska, M.; Stachnik, M.; Poreda, A.; Piepiórka-Stepuk, J.; Zdaniewicz, M.; Jakubowski, M. The improvement of flow conditions in a whirlpool with a modified bottom: An experimental study based on particle image velocimetry (PIV). J. Food Eng. 2021, 289, 110164. [Google Scholar] [CrossRef]
- Dou, G.R.; Chai, T.S.; Fan, M. An investigation on the whirlpool flow and its similarity laws. Hydro-Sci. Eng. 1978, 3, 1–24. (In Chinese) [Google Scholar]
Case | Spacing between Groins/x (m) | Recirculation Zone Behind the Fixed Groin A | Feature | |||
---|---|---|---|---|---|---|
Length/L (m) | Width/W (m) | Normalized Length (L/b) | Normalized Width (W/b) | |||
1 | −0.55 | 0.314 | 0.073 | 6.276 | 1.465 | Groin B moving upstream (alternate layout) |
2 | −0.45 | 0.325 | 0.077 | 6.506 | 1.534 | |
3 | −0.35 | 0.345 | 0.078 | 6.903 | 1.552 | |
4 | −0.25 | 0.355 | 0.081 | 7.063 | 1.616 | |
5 | −0.15 | 0.384 | 0.082 | 7.683 | 1.630 | |
6 | −0.05 | 0.350 | 0.075 | 6.999 | 1.504 | |
7 | 0.00 | 0.245 | 0.063 | 4.905 | 1.265 | Symmetrical groins (both banks) |
8 | 0.05 | 0.170 | 0.056 | 3.395 | 1.121 | Groin B moving downstream (alternate layout) |
9 | 0.15 | 0.160 | 0.057 | 3.193 | 1.149 | |
10 | 0.25 | 0.187 | 0.060 | 3.745 | 1.194 | |
11 | 0.35 | 0.212 | 0.064 | 4.234 | 1.276 | |
12 | 0.45 | 0.226 | 0.067 | 4.526 | 1.344 | |
13 | 0.55 | 0.236 | 0.067 | 4.721 | 1.334 | |
14 | —— | 0.250 | 0.066 | 5.002 | 1.329 | Single Groin A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuang, C.; Zheng, Y.; Gu, J.; Zou, Q.; Han, X. Experimental Study on Backflow Patterns Induced by a Bilateral Groin Pair with Different Spacing. Appl. Sci. 2021, 11, 1486. https://doi.org/10.3390/app11041486
Kuang C, Zheng Y, Gu J, Zou Q, Han X. Experimental Study on Backflow Patterns Induced by a Bilateral Groin Pair with Different Spacing. Applied Sciences. 2021; 11(4):1486. https://doi.org/10.3390/app11041486
Chicago/Turabian StyleKuang, Cuiping, Yuhua Zheng, Jie Gu, Qingping Zou, and Xuejian Han. 2021. "Experimental Study on Backflow Patterns Induced by a Bilateral Groin Pair with Different Spacing" Applied Sciences 11, no. 4: 1486. https://doi.org/10.3390/app11041486
APA StyleKuang, C., Zheng, Y., Gu, J., Zou, Q., & Han, X. (2021). Experimental Study on Backflow Patterns Induced by a Bilateral Groin Pair with Different Spacing. Applied Sciences, 11(4), 1486. https://doi.org/10.3390/app11041486