Can Trunk Acceleration Differentiate Stroke Patient Gait Patterns Using Time- and Frequency-Domain Features?
Abstract
:1. Introductions
2. Materials and Methods
2.1. Participants
2.2. Equipment
2.3. Experimental Protocol
2.4. Data Processing and Feature Extraction
2.5. Statistical Analysis and Feature Selection
2.6. Classification
3. Results
Feature Extraction and Selection
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Celik, Y.; Stuart, S.; Woo, W.L.; Godfrey, A. Gait analysis in neurological populations: Progression in the use of wearables. Med. Eng. Phys. 2021, 87, 9–29. [Google Scholar] [CrossRef]
- Rehman, R.Z.U.; Buckley, C.; Micó-Amigo, M.E.; Kirk, C.; Dunne-Willows, M.; Mazzà, C.; Shi, J.Q.; Alcock, L.; Rochester, L.; Din, S.D. Accelerometry-Based Digital Gait Characteristics for Classification of Parkinson’s Disease: What Counts? IEEE Open J. Eng. Med. Biol. 2020, 1, 65–73. [Google Scholar] [CrossRef]
- Teufl, W.; Lorenz, M.; Miezal, M.; Taetz, B.; Fröhlich, M.; Bleser, G. Towards Inertial Sensor Based Mobile Gait Analysis: Event-Detection and Spatio-Temporal Parameters. Sensors 2019, 19, 38. [Google Scholar] [CrossRef] [Green Version]
- Doherty, A.; Jackson, D.; Hammerla, N.; Plötz, T.; Olivier, P.; Granat, M.H.; White, T.; van Hees, V.T.; Trenell, M.I.; Owen, C.G.; et al. Large Scale Population Assessment of Physical Activity Using Wrist Worn Accelerometers: The UK Biobank Study. PLoS ONE 2017, 12, e0169649. [Google Scholar] [CrossRef]
- Yang, M.; Zheng, H.; Wang, H.; McClean, S.; Hall, J.; Harris, N. A machine learning approach to assessing gait patterns for complex regional pain syndrome. Med. Eng. Phys. 2012, 34, 740–746. [Google Scholar] [CrossRef] [PubMed]
- Del Din, S.; Godfrey, A.; Galna, B.; Lord, S.; Rochester, L. Free-living gait characteristics in ageing and Parkinson’s disease: Impact of environment and ambulatory bout length. J. Neuroeng. Rehabil. 2016, 13, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, M.H.; Farid, M.S.; Grzegorzek, M. Spatiotemporal features of human motion for gait recognition. Signal Image Video Process. 2019, 13, 369–377. [Google Scholar] [CrossRef]
- Sejdic, E.; Lowry, K.A.; Bellanca, J.; Redfern, M.S.; Brach, J.S. A comprehensive assessment of gait accelerometry signals in time, frequency and time-frequency domains. IEEE Trans. Neural Syst. Rehabil. Eng. 2014, 22, 603–612. [Google Scholar] [CrossRef] [PubMed]
- Iosa, M.; Marro, T.; Paolucci, S.; Morelli, D. Stability and harmony of gait in children with cerebral palsy. Res. Dev. Disabil. 2012, 33, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Hsu, W.-C.; Sugiarto, T.; Lin, Y.-J.; Yang, F.-C.; Lin, Z.-Y.; Sun, C.-T.; Hsu, C.-L.; Chou, K.-N. Multiple-Wearable-Sensor-Based Gait Classification and Analysis in Patients with Neurological Disorders. Sensors 2018, 18, 3397. [Google Scholar] [CrossRef] [Green Version]
- Caramia, C.; Torricelli, D.; Schmid, M.; Muñoz-Gonzalez, A.; Gonzalez-Vargas, J.; Grandas, F.; Pons, J.L. IMU-Based Classification of Parkinson’s Disease From Gait: A Sensitivity Analysis on Sensor Location and Feature Selection. IEEE J. Biomed. Health Inform. 2018, 22, 1765–1774. [Google Scholar] [CrossRef]
- Mannini, A.; Trojaniello, D.; Cereatti, A.; Sabatini, A.M. A machine learning framework for gait classification using inertial sensors: Application to elderly, post-stroke and huntington’s disease patients. Sensors 2016, 16, 134. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Sun, Y.; Li, Q.; Liu, T.; Yi, J. Two Shank-Mounted IMUs-Based Gait Analysis and Classification for Neurological Disease Patients. IEEE Robot. Autom. Lett. 2020, 5, 1970–1976. [Google Scholar] [CrossRef]
- Godfrey, A.; Del Din, S.; Barry, G.; Mathers, J.C.; Rochester, L. Within trial validation and reliability of a single tri-axial accelerometer for gait assessment. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Chicago, IL, USA, 26–30 August 2014; pp. 5892–5895. [Google Scholar]
- Din, S.D.; Godfrey, A.; Rochester, L. Validation of an Accelerometer to Quantify a Comprehensive Battery of Gait Characteristics in Healthy Older Adults and Parkinson’s Disease: Toward Clinical and at Home Use. IEEE J. Biomed. Health Inform. 2016, 20, 838–847. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, R.C.; Alvarez, D.; Lopez, A.M.; Alvarez, J.C. Modified pendulum model for mean step length estimation. In Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Lyon, France, 22–26 August 2007; pp. 1371–1374. [Google Scholar]
- Zijlstra, A.; Zijlstra, W. Trunk-acceleration based assessment of gait parameters in older persons: A comparison of reliability and validity of four inverted pendulum based estimations. Gait Posture 2013, 38, 940–944. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Ibarra, J.C.; Siqueira, A.A.G.; Krebs, H.I. Real-Time Identification of Gait Events in Impaired Subjects Using a Single-IMU Foot-Mounted Device. IEEE Sens. J. 2020, 20, 2616–2624. [Google Scholar] [CrossRef]
- Gadaleta, M.; Cisotto, G.; Rossi, M.; Rehman, R.Z.U.; Rochester, L.; Din, S.D. Deep Learning Techniques for Improving Digital Gait Segmentation. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 1834–1837. [Google Scholar]
- Iosa, M.; Morone, G.; Fusco, A.; Pratesi, L.; Bragoni, M.; Coiro, P.; Multari, M.; Venturiero, V.; De Angelis, D.; Paolucci, S. Effects of walking endurance reduction on gait stability in patients with stroke. Stroke Res. Treat. 2011, 2012. [Google Scholar] [CrossRef] [PubMed]
- Latt, M.D.; Menz, H.B.; Fung, V.S.; Lord, S.R. Acceleration patterns of the head and pelvis during gait in older people with Parkinson’s disease: A comparison of fallers and nonfallers. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2009, 64, 700–706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salatino, G.; Bergamini, E.; Marro, T.; Gentili, P.; Iosa, M.; Morelli, D.; Vannozzi, G. Gait stability assessment in Down and Prader-Willi syndrome children using inertial sensors. Gait Posture 2016, 49, S16. [Google Scholar] [CrossRef]
- MacDougall, H.G.; Moore, S.T. Marching to the beat of the same drummer: The spontaneous tempo of human locomotion. J. Appl. Physiol. 2005, 99, 1164–1173. [Google Scholar] [CrossRef] [Green Version]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Goh, L.; Song, Q.; Kasabov, N. A novel feature selection method to improve classification of gene expression data. In Proceedings of the Second Conference on Asia-Pacific Bioinformatics, Dunedin, New Zealand, 18–22 January 2004; Volume 29, pp. 161–166. [Google Scholar]
- Zhang, J.; Lockhart, T.E.; Soangra, R. Classifying lower extremity muscle fatigue during walking using machine learning and inertial sensors. Ann. Biomed. Eng. 2014, 42, 600–612. [Google Scholar] [CrossRef] [Green Version]
- Ly, Q.T.; Handojoseno, A.M.A.; Gilat, M.; Chai, R.; Martens, K.A.E.; Georgiades, M.; Naik, G.R.; Tran, Y.; Lewis, S.J.G.; Nguyen, H.T. Detection of gait initiation Failure in Parkinson’s disease based on wavelet transform and Support Vector Machine. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju Island, Korea, 11–15 July 2017; pp. 3048–3051. [Google Scholar]
- Tahafchi, P.; Molina, R.; Roper, J.A.; Sowalsky, K.; Hass, C.J.; Gunduz, A.; Okun, M.S.; Judy, J.W. Freezing-of-Gait detection using temporal, spatial, and physiological features with a support-vector-machine classifier. In Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jeju Island, Korea, 11–15 July 2017; pp. 2867–2870. [Google Scholar]
- Zheng, H.; Yang, M.; Wang, H.; McClean, S. Machine learning and statistical approaches to support the discrimination of neuro-degenerative diseases based on gait analysis. In Intelligent Patient Management; Springer: Berlin/Heidelberg, Germany, 2009; pp. 57–70. [Google Scholar]
- Lau, H.-Y.; Tong, K.-y.; Zhu, H. Support vector machine for classification of walking conditions of persons after stroke with dropped foot. Hum. Mov. Sci. 2009, 28, 504–514. [Google Scholar] [CrossRef] [PubMed]
- Begg, R.K.; Palaniswami, M.; Owen, B. Support vector machines for automated gait classification. Ieee Trans. Biomed. Eng. 2005, 52, 828–838. [Google Scholar] [CrossRef] [PubMed]
- Vapnik, V. The Nature of Statistical Learning Theory; Springer Science & Business Media: Berlin, Germany, 2013. [Google Scholar]
- Das, K.D.; Saji, A.J.; Kumar, C.S. Frequency analysis of gait signals for detection of neurodegenerative diseases. In Proceedings of the 2017 International Conference on Circuit, Power and Computing Technologies (ICCPCT), Kollam, India, 20–21 April 2017; pp. 1–6. [Google Scholar]
- Altilio, R.; Paoloni, M.; Panella, M. Selection of clinical features for pattern recognition applied to gait analysis. Med. Biol. Eng. Comput. 2017, 55, 685–695. [Google Scholar] [CrossRef] [PubMed]
- Laudanski, A.; Brouwer, B.; Li, Q. Activity classification in persons with stroke based on frequency features. Med. Eng. Phys. 2015, 37, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Caby, B.; Kieffer, S.; de Saint Hubert, M.; Cremer, G.; Macq, B. Feature extraction and selection for objective gait analysis and fall risk assessment by accelerometry. Biomed. Eng. Online 2011, 10, 1. [Google Scholar] [CrossRef] [Green Version]
- Parisi, F.; Ferrari, G.; Baricich, A.; Innocenzo, M.D.; Cisari, C.; Mauro, A. Accurate gait analysis in post-stroke patients using a single inertial measurement unit. In Proceedings of the 2016 IEEE 13th International Conference on Wearable and Implantable Body Sensor Networks (BSN), San Francisco, CA, USA, 14–17 June 2016; pp. 335–340. [Google Scholar]
- Mizuike, C.; Ohgi, S.; Morita, S. Analysis of stroke patient walking dynamics using a tri-axial accelerometer. Gait Posture 2009, 30, 60–64. [Google Scholar] [CrossRef]
- Bergamini, E.; Vannozzi, G.; Bricca, A.; Iosa, M.; Paolucci, S.; Cappozzo, A. Gait stability indices and their relationship with clinical scale scores in stroke patients. Gait Posture 2015, 42, S7. [Google Scholar] [CrossRef]
- Kaczmarczyk, K.; Wit, A.; Krawczyk, M.; Zaborski, J. Gait classification in post-stroke patients using artificial neural networks. Gait Posture 2009, 30, 207–210. [Google Scholar] [CrossRef] [PubMed]
Feature No. | Name | Abbreviation |
---|---|---|
1–3 | Acceleration SD on 1 stride gait cycle | SD ACC V/AP/ML |
4–6 | Acceleration Skewness on 1 stride gait cycle | Skew ACC V/AP/ML |
7–9 | Acceleration Kurtosis on 1 stride gait cycle | Kurt ACC V/AP/ML |
10–12 | Acceleration RMS on 1 stride gait cycle | RMS ACC V/AP/ML |
13–15 | Peak-to-peak angular velocity on 1 stride gait cycle | P2P Gyro V/AP/ML |
16–18 | Acceleration first dominant frequency | FD Freq V/AP/ML |
19–21 | Acceleration band power on 3 dB bandwidth | Power 3dB V/AP/ML |
22–24 | Acceleration bandwidth frequency on 3 dB bandwidth | BW 3dB V/AP/ML |
25–27 | Acceleration lower bounds frequency on 3 dB bandwidth | Flo 3dB V/AP/ML |
28–30 | Acceleration upper bounds frequency on 3 dB bandwidth | Fhi 3dB V/AP/ML |
31–33 | Acceleration band power on 99% occupied bandwidth | Power all V/AP/ML |
34–36 | Acceleration bandwidth frequency on 99% occupied bandwidth | BW all V/AP/ML |
37–39 | Acceleration lower bounds frequency on 99% occupied bandwidth | Flo all V/AP/ML |
40–42 | Acceleration upper bounds frequency on 99% occupied bandwidth | Fhi all V/AP/ML |
Feature Number | Feature Name (Abbreviation) | p-Value (ANOVA) | Achieved Statistical Power | SNR Value |
---|---|---|---|---|
1 | SD ACC V | 0.000 | 0.99816 | 0.42581 |
2 | SD ACC AP | 0.000 | 0.99999 | 0.37793 |
4 | Skew ACC V | 0.050 | 0.79921 | 0.17291 |
10 | RMS ACC V | 0.000 | 0.99810 | 0.42377 |
11 | RMS ACC AP | 0.000 | 0.99999 | 0.37786 |
17 | FD Freq AP | 0.002 | 0.99990 | 0.35230 |
19 | Power 3dB V | 0.001 | 0.90132 | 0.40920 |
20 | Power 3dB AP | 0.004 | 0.82464 | 0.39399 |
26 | Flo 3dB AP | 0.001 | 0.99994 | 0.35812 |
29 | Fhi 3dB AP | 0.002 | 0.99981 | 0.33804 |
31 | Power all V | 0.000 | 0.98057 | 0.41361 |
32 | Power all AP | 0.000 | 0.99999 | 0.53191 |
33 | Power all ML | 0.038 | 0.80151 | 0.15502 |
36 | BW all ML | 0.002 | 0.91135 | 0.33509 |
42 | Fhi all ML | 0.002 | 0.91121 | 0.32780 |
Performance Index | SVM Linear | SVM Gaussian | SVM Quadratics | SVM Cubic |
---|---|---|---|---|
Train/Validation | ||||
Accuracy (%) | 91.59 | 92.52 | 93.46 | 90.65 |
Sensitivity (%) | 92.16 | 90.20 | 90.20 | 88.24 |
Specificity (%) | 91.07 | 94.64 | 96.43 | 92.86 |
Testing | ||||
Accuracy (%) | 89.29 | 89.29 | 96.55 | 96.55 |
Sensitivity (%) | 82.35 | 82.35 | 94.44 | 94.44 |
Specificity (%) | 100.00 | 100.00 | 100.00 | 100.00 |
Authors/Year | Subjects | Sensor Placement | Features and Classifier | Results |
---|---|---|---|---|
Kaczmarczyk et al., 2009 [40] | 74 hemiplegic patients | Only 3D motion capture and no wearable sensors |
| 100% and 86% accuracy from kinematic feature |
Mannini et al., 2016 [12] | 15 post-stroke, 17 Huntington’s disease, 10 healthy elderly | 3 IMU sensors placed on both shank and lumbar spine |
| 90.5% |
Hsu et al., 2018 [10] | 20 subjects of post-stroke and other neurological disorder | Multiple placement: 7 IMU on lower back, both thigh, shank, and foot |
| 89.13% testing accuracy from shank-based sensor and DT model |
Caramia et al., 2018 [11] | 27 healthy control and 27 PD with different stages | 8 IMU placed on lower limbs and trunk |
| 96% when using all IMU and majority voting classifiers |
L. Wang et al., 2020 [13] | 8 peripheral neuropathy, 15 PD, 13 post-stroke, and 13 healthy control | 2 IMU placed on shank |
| 93.9% |
Ours | 11 healthy control and 12 post-stroke | 1 IMU placed on lower back (L5) |
| 96.55% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, W.-C.; Sugiarto, T.; Liao, Y.-Y.; Lin, Y.-J.; Yang, F.-C.; Hueng, D.-Y.; Sun, C.-T.; Chou, K.-N. Can Trunk Acceleration Differentiate Stroke Patient Gait Patterns Using Time- and Frequency-Domain Features? Appl. Sci. 2021, 11, 1541. https://doi.org/10.3390/app11041541
Hsu W-C, Sugiarto T, Liao Y-Y, Lin Y-J, Yang F-C, Hueng D-Y, Sun C-T, Chou K-N. Can Trunk Acceleration Differentiate Stroke Patient Gait Patterns Using Time- and Frequency-Domain Features? Applied Sciences. 2021; 11(4):1541. https://doi.org/10.3390/app11041541
Chicago/Turabian StyleHsu, Wei-Chun, Tommy Sugiarto, Ying-Yi Liao, Yi-Jia Lin, Fu-Chi Yang, Dueng-Yuan Hueng, Chi-Tien Sun, and Kuan-Nien Chou. 2021. "Can Trunk Acceleration Differentiate Stroke Patient Gait Patterns Using Time- and Frequency-Domain Features?" Applied Sciences 11, no. 4: 1541. https://doi.org/10.3390/app11041541
APA StyleHsu, W. -C., Sugiarto, T., Liao, Y. -Y., Lin, Y. -J., Yang, F. -C., Hueng, D. -Y., Sun, C. -T., & Chou, K. -N. (2021). Can Trunk Acceleration Differentiate Stroke Patient Gait Patterns Using Time- and Frequency-Domain Features? Applied Sciences, 11(4), 1541. https://doi.org/10.3390/app11041541