Review on System Identification and Mathematical Modeling of Flapping Wing Micro-Aerial Vehicles
Abstract
:Featured Application
Abstract
1. Introduction
2. Micro-Aerial Vehicle Flight
3. System Identification and Mathematical Modeling of Flapping Wing Micro Air Vehicles (FWMAVs)
3.1. Tailed Flapping Wing Micro-Air Vehicles
3.1.1. System Identification of DelFly II Based on Least Mean Square Estimation
3.1.2. System Identification of DelFly II Based on Extended Kalman Filter
3.1.3. System Identification of Kinkade Slow Hawk Ornithopter
3.2. Tailless Flapping Wing Micro Air Vehicles
3.2.1. System Identification of In-Flight Dynamics of Robotic Bee
3.2.2. System Identification via Frequency Approach of Drosphilla melanogaster
3.2.3. Computational Fluid Dynamic Approach Based System Identification
3.2.4. Parameter Estimation for Linear Damping Model of DelFly Nimble
4. Conclusions
5. Future Works
- It is assumed that the control input derivatives are known and certain.
- The system’s stability derivatives are assumed to be unknown and separable.
- The states of the system are observable.
- The system under study must satisfy the flatness property [164].
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Inertial reference frame | |
Body reference Frame | |
Unit vectors in the axes | |
Orthonormal axes | |
Unit vector along | |
Principal moment of inertia in the body axis | |
Product of inertia for the and body axis | |
Mass of the system | |
Left-to-Right wing vector that connects the wing markers | |
, | Euler angles |
Angle of attack | |
Side slip angle | |
Elevator input angle | |
Flapping frequency | |
Rudder input angle | |
Angular velocity vector ) | |
Angular acceleration vector ) | |
( | Attitude angles (roll, pitch, yaw) |
∆ | Difference between two consecutive time-steps |
External tracking system recording frequency | |
Standard rotation matrix from inertial to body frame | |
Angular velocities in the body axis | |
Translational velocities in the body axis | |
Translational accelerations in the body axis | |
Aerodynamic moments of inertia in the body axis | |
Aerodynamic forces in the body axis | |
Time instant | |
Affine Coefficient for a specific aerodynamic force or moment | |
Coefficient for state s | |
Aerodynamic Force or Moment | |
Total number of state observations | |
Regression matrix | |
States vector | |
Total velocity | |
Density of the fluid | |
Surface area of the wing | |
Coefficient of drag | |
Speed of the wing relative to air | |
Normalized drag force | |
and | Rotational damping coefficients normalized by inertia |
Lumped aerodynamic forces | |
Gravitational force | |
Normalized thrust with dimension of acceleration | |
Axis along the body of the robots | |
Unknown normalized disturbance | |
, , , , , | Parameters contributed from the body velocity and angular velocity |
Unknown possible offset or affine term | |
Residual of an observation | |
N | Number of unknown parameters |
vector which is needed to be extracted | |
Vector of estimated parameters | |
Parameter, which indicates the goodness of the estimation | |
Nominal torque produced by flapping wings as command controller | |
Additional torque contributed by velocity and angular velocity |
References
- Dudley, R. The Biomechanics of Insect Flight: Form, Function, Evolution; Princeton University Press: Princeton, NJ, USA, 2000. [Google Scholar]
- Ellington, C.P. The aerodynamics of hovering insect flight: The quasi-steady analysis. Philos. Trans. R. Soc. Lond. 1984, 305, 1–15. [Google Scholar]
- Wakeling, J.; Ellington, C.P. Dragonfly flight I. Gliding flight and steady-state aerodynamics forces. J. Exp. Biol. 1997, 200, 543–556. [Google Scholar] [PubMed]
- Fry, S.N.; Sayaman, R.; Dickinson, M.H. The aerodynamics of free flight maneuvers in Drosophila. Science 2003, 300, 495–498. [Google Scholar] [CrossRef] [Green Version]
- Chirarattananon, P. Flight Control of a Millimeter-Scale Flapping-Wing Robot. Ph.D. Thesis, Harvard University, Cambridge, MA, USA, August 2014. [Google Scholar]
- Etkin, B.; Reid, L.D. Dynamics of Flight: Stability and Control, 3rd ed.; John Wiley & Sons, Inc.: New York, NY, USA, 1996. [Google Scholar]
- Stevens, B.L.; Lewis, F.L. Aircraft Control and Simulation, 2nd ed.; John Wiley & Sons, Inc.: New York, NY, USA, 2003. [Google Scholar]
- Dickinson, M.H.; Lighton, J.R.B. Muscle efficiency and elastic storage in the flight motor of Drosophila. Science 1995, 268, 87–90. [Google Scholar] [CrossRef] [Green Version]
- Phan, H.V.; Park, H.C. Insect-inspired, tailless, hover-capable flapping-wing robots: Recent progress, challenges, and future directions. Prog. Aerosp. Sci. 2019, 111, 100573. [Google Scholar] [CrossRef]
- Ma, K.; Chirarattananon, P.; Fuller, S.; Wood, R. Controlled flight of a biologically inspired, insect-scale robot. Science 2013, 340, 603–607. [Google Scholar] [CrossRef] [Green Version]
- Phan, H.V.; Aurecianus, S.; Kang, T.; Park, H.C. Attitude Control Mechanism in an Insect-like Tailless Two-winged Flying Robot by Simultaneous Modulation of Stroke Plane and Wing Twist. In Proceedings of the 10th International Micro-Air Vehicles Conference, Melbourne, Australia, 22–23 November 2018. [Google Scholar]
- Karasek, M. Robotic Hummingbird: Design of a Control Mechanism for a Hovering Apping Wing Micro Air Vehicle. Ph.D. Thesis, Universite Libre de Bruxelles, Brussels, Belgium, 2014. [Google Scholar]
- Malolan, V.; Dineshkumar, M.; Baskar, V. Design and development of flapping wing micro air-vehicles. In Proceedings of the 42nd AIAA Aerospace Science Meeting and Exhibits, Reno, Nevada, 5–8 January 2004. [Google Scholar]
- Festo. Festo-Smart Bird Inspired by Nature. 2011. Available online: https://www.festo.com/group/en/cms/10238.htm (accessed on 30 October 2020).
- Keennon, M.; Klingebiel, K.; Won, H.; Andriukov, A. Development of the nano-hummingbird: A tailless flapping wing micro air vehicle. In Proceedings of the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, TN, USA, 9–12 January 2012; pp. 1–24. [Google Scholar]
- Ristroph, L.; Childress, S. Stable hovering of a jellyfish-like flying machine. J. R. Soc. Interface 2014, 11, 20130992. [Google Scholar] [CrossRef] [Green Version]
- De Croon, G.C.H.E.; De Clercq, K.M.E.; Ruijsink, R.; Remes, B.; De Wagter, C. Design, aerodynamics, and vision-based control of the Delfly. Int. J. Micro Air Veh. 2009, 1, 71–97. [Google Scholar] [CrossRef]
- Wood, R.J. The first takeoff of a biologically inspired at-scale robotic insect. IEEE Trans. Robot. 2008, 24, 341–347. [Google Scholar]
- Finio, B.M.; Wood, R.J. Open-loop roll, pitch and yaw torques for a Robotic Bee. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Algarve, Portugal, 7–12 October 2012; pp. 113–119. [Google Scholar]
- Ma, K.Y.; Felton, S.M.; Wood, R.J. Design, fabrication, and modeling of the split actuator micro-robotic bee. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Algarve, Portugal, 7–12 October 2012; pp. 1133–1140. [Google Scholar]
- Ramasamy, M.; Leishman, J.G.; Lee, T.E. Flow field of a rotating wing micro air vehicle. J. Aircr. 2007, 44, 1236–1244. [Google Scholar] [CrossRef]
- Gaissert, N.; Mugrauer, R.; Mugrauer, G.; Jebens, A.; Jebens, K.; Knubben, E.M. Inventing a micro aerial vehicle inspired by the mechanics of dragonfly flight. In Towards Autonomous Robotic Systems; TAROS 2013. Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2014; Volume 8069, pp. 90–100. [Google Scholar]
- Baek, S.S. Autonomous Ornithopter Flight with Sensor-Based Behavior; Univ. California, Berkeley, UC Berkeley: Berkeley, CA, USA, ProQuest ID: Baek_berkeley_0028E_11581. Merritt ID: Ark:/13030/m5sf314b; 2011; Available online: https://escholarship.org/uc/item/8f83m0xp.
- Baek, S.; Fearing, R. Flight forces and altitude regulation of 12gram i-bird. In Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), Tokyo, Japan, 26–29 September 2010; pp. 454–460. [Google Scholar]
- De Croon, G.C.H.E.; Groen, M.A.; De Wagter, C.; Remes, B.; Ruijsink, R.; Van Oudheusden, B. Design, aerodynamics, and autonomy of the Delfly. Bioinspir. Biomimet. 2012, 7, 025003. [Google Scholar] [CrossRef] [PubMed]
- De Croon, G.; De Weerdt, E.; De Wagter, C.; Remes, B.; Ruijsink, R. The appearance variation cue for obstacle avoidance. IEEE Trans. Robot. 2012, 28, 529–534. [Google Scholar] [CrossRef]
- Tijmons, S.; De Croon, G.; Remes, B.; De Wagter, C.; Ruijsink, R.; van Kampen, E.J.; Chu, Q.P. Stereo-vision based obstacle avoidance on flapping wing MAV. In Advances in Aerospace Guidance, Navigation and Control; Chu, Q., Mulder, B., Choukroun, D., van Kampen, E.J., de Visser, C., Looye, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Mueller, D.; Gerdes, J.; Gupta, S.K. Incorporation of passive wing folding in flapping wing miniature air vehicles. In Proceedings of the ASME Robotics and Mechatronics Conference, San Diego, CA, USA, 30 August–2 September 2009. [Google Scholar]
- Yang, L.J. The Micro-Air-Vehicle Golden Snitch and Its Figure-of-8 Flapping. J. Appl. Sci. Eng. 2012, 15, 197–212. [Google Scholar]
- Ellington, C.P. The aerodynamics of hovering insect flight. III. Kinematics. Philos. Trans. R. Soc. Lond. 1984, B305, 41–78. [Google Scholar]
- Willmott, A.P.; Ellington, C.P. Measuring the angle of attack of beating insect wings: Robust three-dimensional reconstruction from two dimensional images. J. Exp. Biol. 1997, 200, 2693–2704. [Google Scholar]
- Cloupeau, M.; Devillers, J.F.; Devezeaux, D. Direct measurements of instantaneous lift in desert locust; comparison with Jensen’s experiments on detached wings. J. Exp. Biol. 1979, 80, 1–15. [Google Scholar]
- Buckholz, R.H. Measurements of unsteady periodic forces generated by the blowfly flying in a wind tunnel. J. Exp. Biol. 1981, 90, 163–173. [Google Scholar]
- Somps, C.; Luttges, M. Dragonfly flight—novel uses of unsteady separated flows. Science 1985, 228, 1326–1329. [Google Scholar] [CrossRef]
- Zanker, J.M.; Gotz, K.G. The wing beat of Drosophila melanogaster II. Dynamics. Philos. Trans. R. Soc. Lond. 1990, B327, 19–44. [Google Scholar]
- Wilkin, P.J.; Williams, M.H. Comparison of the instantaneous aerodynamic forces on a sphingid moth with those predicted by quasi-steady aerodynamic theory. Physiol. Zool. 1993, 66, 1015–1044. [Google Scholar] [CrossRef]
- Bennett, L. Insect flight: Lift and the rate of change of incidence. Science 1970, 167, 177–179. [Google Scholar] [CrossRef] [PubMed]
- Maxworthy, T. Experiments on the Weis-Fogh mechanism of lift generation by insects in hovering flight. Part 1. Dynamics of the ‘fling’. J. Fluid Mech. 1979, 93, 47–63. [Google Scholar] [CrossRef]
- Spedding, G.R.; Maxworthy, T. The generation of circulation and lift in a rigid two-dimensional fling. J. Fluid Mech. 1986, 165, 247–272. [Google Scholar] [CrossRef]
- Dickinson, M.H.; Götz, K.G. Unsteady aerodynamic performance of model wings at low Reynolds numbers. J. Exp. Biol. 1993, 174, 45–64. [Google Scholar]
- Sunada, S.; Kawachi, K.; Watanabe, I.; Azuma, A. Fundamental analysis of 3-dimensional near fling. J. Exp. Biol. 1993, 183, 217–248. [Google Scholar]
- Ellington, C.P. The novel aerodynamics of insect flight: Applications to micro-air vehicles. J. Exp. Biol. 1999, 202, 3439–3448. [Google Scholar]
- Dickinson, M.H.; Lehmann, F.-O.; Sane, S.P. Wing rotation and the aerodynamic basis of insect flight. Science 1999, 284, 1954–1960. [Google Scholar] [CrossRef]
- Liu, H.; Ellington, C.P.; Kawachi, K.; Van den Berg, C.; Willmott, A.P. A computational fluid dynamic study of hawkmoth hovering. J. Exp. Biol. 1998, 201, 461–477. [Google Scholar]
- Liu, H.; Kawachi, K. A numerical study of insect flight. J. Comput. Phy. 1998, 146, 124–156. [Google Scholar] [CrossRef]
- Wang, Z.J. Two-dimensional mechanism for insect hovering. Phys. Rev. Lett. 2000, 85, 2216–2219. [Google Scholar] [CrossRef]
- Ramamurti, R.; Sandberg, W.C. A three-dimensional computational study of the aerodynamic mechanisms of insect flight. J. Exp. Biol. 2002, 205, 1507–1518. [Google Scholar] [PubMed]
- Sun, M.; Tang, J. Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion. J. Exp. Biol. 2002, 205, 55–70. [Google Scholar] [PubMed]
- Taha, H.E.; Hajj, M.R.; Nayfeh, A.H. Flight dynamics and control of flapping-wing MAVs: A review. Nonlinear Dyn. 2012, 70, 907–939. [Google Scholar] [CrossRef]
- Sun, M. Insect flight dynamics: Stability and control. Rev. Mod. Phys. 2014, 86, 615–646. [Google Scholar] [CrossRef]
- Taylor, G.K. Mechanics and aerodynamics of insect flight control. Biol. Rev. 2001, 76, 449–471. [Google Scholar] [CrossRef] [PubMed]
- Orlowski, C.T.; Girard, A.R. Dynamics, Stability and Control an analyses of flapping wing micro air vehicles. Progr. Aerosp. Sci. 2012, 51, 18–30. [Google Scholar] [CrossRef]
- Zadeh, L.A. On the identification problem. IRE Trans. Circuit Theory 1956, 3, 277–281. [Google Scholar] [CrossRef]
- Xiao, X.; Mullen, T.; Mukkamala, R. System Identification: A multi-signal approach for probing neural cardiovascular regulation, Phys. Meas. 2005, 26, R41–R71. [Google Scholar] [CrossRef]
- Morelli, E.A.; Klein, V. Aircraft System Identification: Theory and Practice; AIAA Education Series; AIAA: Reston, VA, USA, 2006. [Google Scholar]
- Lai, Y.-C.; Ting, W.O. Design and Implementation of an Optimal Energy Control System for Fixed-Wing Unmanned Aerial Vehicles. Appl. Sci. 2016, 6, 369. [Google Scholar] [CrossRef] [Green Version]
- Naeem, W.; Sutton, R.; Chudley, J. System Identification, Modelling and Control of an Autonomous Underwater Vehicle. IFAC Proc. 2003, 36, 19–24. [Google Scholar] [CrossRef]
- Ljung, L. System Identification Theory for the User, 2nd ed.; Prentice Hall: Englewood Cliffs, NJ, USA, 1999. [Google Scholar]
- Ghiaus, C.; Ghazal, R.; Joubert, P.; Hayyani, M.Y. Gray-box state-space model and parameter identification of desiccant wheels. J. Appl. Therm. Eng. 2013, 51, 742–752. [Google Scholar] [CrossRef]
- Shyy, W.; Lian, Y.; Tang, J.; Viieru, D.; Liu, H. Aerodynamics of Low Reynolds Number Fliers; Cambridge University Press: New York, NY, USA, 2008. [Google Scholar]
- Norberg, U.M.L. Structure, form, and function of flight in engineering and the living world. J. Morphol. 2002, 252, 52–81. [Google Scholar] [CrossRef] [PubMed]
- Shyy, W.; Aono, H.; Kang, C.K.; Liu, H. An Introduction to Flapping Wing Aerodynamics; Cambridge University Press: New York, NY, USA, 2013. [Google Scholar]
- Sun, M.; Wu, J.H. Aerodynamic force generation and power requirements in forward flight in a fruit fly with modeled wing motion. J. Exp. Biol. 2003, 206, 3065–3083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azuma, A. The Biokinetics of Flying and Swimming, 2nd ed.; AIAA Education Series; AIAA: Reston, VA, USA, 2006. [Google Scholar]
- Muijres, F.T.; Johansson, L.; Bareld, R.; Wolf, M.; Spedding, G.; Hedenstrm, A. Leading-edge vortex improves lift in slow-flying bats. Science 2008, 319, 1250–1253. [Google Scholar] [CrossRef] [PubMed]
- Warrick, D.; Hedrick, T.; Fernndez, M.J.; Tobalske, B.; Biewener, A. Hummingbird flight. Curr. Biol. 2012, 22, 472–477. [Google Scholar] [CrossRef] [Green Version]
- Dickinson, M.H.; Dudley, R. Flight. In Encyclopedia of Insects, 2nd ed.; Academic Press: San Diego, CA, USA, 2009. [Google Scholar]
- Tennekes, H. The Simple Science of Flight: From Insects to Jumbo Jets; The MIT Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Chin, D.D.; Lentink, D. Flapping wing aerodynamics: From insects to vertebrates. J. Exp. Biol. 2016, 219, 920–932. [Google Scholar]
- Shyy, W.; Kang, C.-k.; Chirarattananon, P.; Ravi, S.; Liu, H. Aerodynamics, sensing and control of insect-scale flapping-wing flight. Proc. R. Soc. A 2015, 472, 20150712. [Google Scholar] [CrossRef] [Green Version]
- Ravi, S.; Noda, R.; Gagliardi, S.; Kolomenskiy, D.; Combes, S.; Liu, H.; Biewener, A.A.; Konow, N. Modulation of Flight Muscle Recruitment and Wing Rotation Enables Hummingbirds to Mitigate Aerial Roll Perturbations. Curr. Biol. 2020, 30, 187–195. [Google Scholar] [CrossRef]
- Knowles, K.; Phillips, N. Reynolds number and stroke amplitude effects on the leading-edge vortex on an insect-like flapping wing. In Proceedings of the International Powered Lift Conference, Philadelphia, PA, USA, 5–7 October 2010. [Google Scholar]
- Weis-Fogh, T. Energetics of hovering flight in humming birds and drosophila. J. Exp. Biol. 1972, 56, 79–104. [Google Scholar]
- Weis-Fogh, T. Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production. J. Exp. Biol. 1973, 59, 169–230. [Google Scholar]
- Ellington, C.P. The aerodynamics of hovering insect flight II: Morphological parameters. Philos. Trans. R. Soc. Lond. 1984, 305, 17–40. [Google Scholar]
- Ellington, C.P. Aerodynamics and the Origin of Insect Flight. Adv. Insect Physiol. 1991, 23, 171–210. [Google Scholar]
- Ellington, C.P. The aerodynamics of hovering insect flight IV: Aerodynamic mechanisms. Philos. Trans. R. Soc. Lond. 1984, 305, 79–113. [Google Scholar]
- Ellington, C.P. The aerodynamics of hovering insect flight V: A vortex theory. Philos. Trans. R. Soc. Lond. 1984, 305, 115–144. [Google Scholar]
- Ellington, C.P. The aerodynamics of hovering insect flight VI: Lift and power requirements. Philos. Trans. R. Soc. Lond. 1984, 305, 145–181. [Google Scholar]
- Willmott, A.; Ellington, C.P. The mechanics of flight in the hawkmoth Manduca sexta i. Kinematics of hovering and forward flight. J. Exp. Biol. 1997, 200, 2705–2722. [Google Scholar]
- Cheng, B.; Deng, X.; Hedrick, T.L. The mechanics and control of pitching manoeuvres in a freely flying hawkmoth (manduca sexta). J. Exp. Biol. 2011, 214, 4092–4106. [Google Scholar] [CrossRef] [Green Version]
- Wakeling, J.; Ellington, C.P. Dragonfly flight II. Velocities, accelerations, and kinematics of flapping flight. J. Exp. Biol. 1997, 200, 557–582. [Google Scholar]
- Wakeling, J.; Ellington, C.P. Dragonfly flight III. Lift and power requirements. J. Exp. Biol. 1997, 200, 583–600. [Google Scholar]
- Dudley, R.; Ellington, C.P. Mechanics of forward flight in bumblebees I. Kinematics and morphology. J. Exp. Biol. 1990, 148, 19–52. [Google Scholar]
- Dudley, R.; Ellington, C.P. Mechanics of forward flight in bumblebees ii. Quasi-steady lift and power requirements. J. Exp. Biol. 1990, 148, 53–88. [Google Scholar]
- Taylor, G.K.; Thomas, A. Dynamic flight stability in the desert locus Schistocerca gregaria. J. Exp. Biol. 2003, 206, 2803–2829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sane, S.; Dickinson, M. The control of flight force by a flapping wing: Lift and drag production. J. Exp. Biol. 2001, 204, 2607–2626. [Google Scholar]
- Sane, S.; Dickinson, M.H. The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight. J. Exp. Biol. 2002, 205, 1087–1096. [Google Scholar] [PubMed]
- Sane, S. Review: The aerodynamics of insect flight. J. Exp. Biol. 2003, 206, 4191–4208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.J. Dissecting insect flight. Ann. Rev. Fluid. Mech. 2005, 37, 183–210. [Google Scholar] [CrossRef] [Green Version]
- Shyy, W.; Lian, Y.; Tang, J.; Liu, H.; Trizila, P.; Stanford, B. Computational aerodynamics of low Reynolds number plunging, pitching and flexible wings for MAV applications. Act. Mech. Sin. 2008, 24, 351–373. [Google Scholar] [CrossRef] [Green Version]
- Karásek, M.; Preumont, A. Flapping Flight Stability in Hover: A Comparison of Various Aerodynamic Models. Int. J. Micro Air Veh. 2012, 4, 203–226. [Google Scholar] [CrossRef]
- Caetano, J.V.; De Visser, C.C.; De Croon, G.C.H.E.; Remes, B.; De Wagter, C.; Verboom, J.; Mulder, M. Linear Aerodynamic Model Identification of a Flapping Wing MAV based on Flight Test Data. Int. J. Micro Air Veh. 2013, 5, 273–286. [Google Scholar] [CrossRef]
- Caetano, J.V.; De Visser, C.C.; Remes, B.; De Wagter, C.; Mulder, M. Controlled flight maneuvers of a flapping wing micro air vehicle: A step towards the DelFly II identication. In Proceedings of the AIAA Atmospheric Flight Mechanics Conference, Boston, MA, USA, 19–22 August 2013. [Google Scholar]
- Zhu, J.Y.; Zhou, C.Y. Aerodynamic performance of a two-dimensional flapping wing in asymmetric stroke. J. Aerosp. Eng. 2014, 228, 641–651. [Google Scholar] [CrossRef]
- Wang, C.; Zhou, C.; Xie, P. Numerical investigation on aerodynamic performance of a 2-D inclined hovering wing in asymmetric strokes. J. Mech. Sci. Technol. 2016, 30, 199–210. [Google Scholar] [CrossRef]
- Kang, C.K.; Shyy, W. Analytical model for instantaneous lift and shape deformation of an insect-scale flapping wing in hover. J. R. Soc. Interface 2014, 11, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergou, A.J.; Xu, S.; Wang, Z.J. Passive wing pitch reversal in insect flight. J. Fluid Mech. 2007, 591, 321–337. [Google Scholar] [CrossRef] [Green Version]
- Berman, G.J.; Wang, Z.J. Energy-minimizing kinematics in hovering insect flight. J. Fluid Mech. 2007, 582, 153–168. [Google Scholar] [CrossRef] [Green Version]
- Cheng, B.; Deng, X. Translational and rotational damping of flapping flight and its dynamics and stability at hovering. IEEE Trans. Robot. 2011, 27, 849–864. [Google Scholar] [CrossRef]
- Kim, J.K.; Han, J.H. A multibody approach for 6-dof flight dynamics and stability analysis of the hawkmoth Manduca Sexta. Bioinspir. Biomimet. 2014, 9. [Google Scholar] [CrossRef] [Green Version]
- Zheng, L.; Hedrick, T.L.; Mittal, R. A multi-fidelity modeling approach for evaluation and optimization of wing stroke aerodynamics in flapping flight. J. Fluid Mech. 2013, 721, 118–154. [Google Scholar] [CrossRef] [Green Version]
- Liu, H. Integrated modeling of insect flight: From morphology, kinematics to aerodynamics. J. Comput. Phys. 2009, 228, 439–459. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Aono, H. Size effects on insect hovering aerodynamics: An integrated computational study. Bioinspir. Biomimet. 2009, 4. [Google Scholar] [CrossRef]
- Young, J.; Walker, S.M.; Bomphrey, R.J.; Taylor, G.K.; Thomas, A.L.R. Details of insect wing design and deformation enhance aerodynamic function and flight efficiency. Science 2009, 325, 1549–1552. [Google Scholar] [CrossRef]
- Nakata, T.; Liu, H.; Bomphrey, R.J. A CFD-informed quasi-steady model of flapping-wing aerodynamics. J. Fluid Mech. 2015, 783, 323–343. [Google Scholar] [CrossRef] [Green Version]
- Le, T.Q.; Truong, T.V.; Tran, H.T.; Park, S.H.; Ko, J.H.; Park, H.C.; Yoon, K.J.; Byun, D. Two and Three-Dimensional Simulations of Beetle Hind Wing Flapping during Free Forward Flight. J. Bionic Eng. 2013, 10, 316–328. [Google Scholar] [CrossRef]
- Le, T.Q.; Truong, T.V.; Tran, H.T.; Park, S.H.; Ko, J.H.; Park, H.C.; Byun, D. How Could Beetle’s Elytra Support Their Own Weight during Forward Flight? J. Bionic Eng. 2014, 11, 529–540. [Google Scholar] [CrossRef]
- Koopmans, J.A.; Tijmons, S.; De Wagter, C.; De Croon, G. Passively Stable Flapping Flight from Hover to Fast Forward through Shift in Wing Position. Int. J. Micro Air Veh. 2015, 7, 407–418. [Google Scholar] [CrossRef] [Green Version]
- Ward, T.A.; Rezadad, M.; Fearday, C.J.; Viyapuri, R. A Review of Biomimetic Air Vehicle Research: 1984–2014. Int. J. of Micro Air Veh. 2015, 7, 375–394. [Google Scholar] [CrossRef]
- Au, L.T.K. Dynamic Flight Stability of the Vertically Flying Insect Mimicking Flapping Wing System. Master’s Thesis, Konkuk University, Seoul, South Korea, 2013. [Google Scholar]
- Sun, M.; Xiong, Y. Dynamic flight stability of a hovering bumblebee. J. Exp. Biol. 2005, 208, 447–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wood, R.J. Design, fabrication, and analysis, of a 3DOF flapping-wing MAV. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robotics and Systems 2007, San Diego, CA, USA, 29 October–2 November 2007; pp. 1576–1581. [Google Scholar]
- Whitney, J.P.; Wood, R.J. Aeromechanics of passive rotation in flapping flight. J. Fluid. Mech. 2010, 1, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Wood, R.J.; Steltz, E.; Fearing, R.S. Nonlinear performance limits for high energy density piezoelectric bending actuators. In Proceedings of the International Conference on Robotics and Automation, Barcelona, Spain, 18–22 April 2005; pp. 3633–3640. [Google Scholar]
- Fino, B.M.; Perez-Arancibia, N.O.; Wood, R.J. System Identification and Linear Time Invariant Modeling of an Insect Sized Flapping Wing Micro Air Vehicle. In Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September 2011; pp. 1107–1114. [Google Scholar]
- Faruque, I. Control-Oriented Reduced Order Modeling of Dipteran Flapping Flight. Ph.D. Thesis, Faculty of the Graduate School of the University of Maryland, College Park, MD, USA, 2011. [Google Scholar]
- Khan, Z.; Agrawal, S. Modeling and simulation of flapping wing micro air vehicles. In Proceedings of the IDETC/CIE’2005 2005 ASME International Design Engineering Technical Conferences, Long Beach, CA, USA, 24–28 September 2005. [Google Scholar]
- Percin, M.; Hu, Y.; Van Oudheusden, B.; Remes, B.; Scarano, F. Wing flexibility effects in clap-and fling. Int. J. Micro Air Veh. 2011, 3, 217–227. [Google Scholar] [CrossRef]
- Percin, M.; Eisma, H.; Van Oudheusden, B.; Remes, B.; Ruijsink, R.; De Wagter, C. Flow visualization in the wake of the flapping-wing MAV ‘DelFly II’ in forward flight. In Proceedings of the 30th AIAA Applied Aerodynamics Conference, New Orleans, LA, USA, 25–28 June 2012. [Google Scholar]
- Orlowski, C.T.; Girard, A.R. Modeling and simulation of nonlinear dynamics of flapping wing micro air vehicles. AIAA J. 2011, 49, 969–981. [Google Scholar] [CrossRef] [Green Version]
- Dietl, J.M.; Garcia, E. Stability in ornithopter longitudinal flight dynamics. J. Guid. Control Dyn. 2008, 31, 1157–1162. [Google Scholar] [CrossRef]
- Dietl, J.M.; Herrmann, T.; Reich, G.; Garcia, E. Dynamic modeling, testing, and stability analysis of an ornithoptic blimp. J. Bionic Eng. 2011, 8, 375–386. [Google Scholar] [CrossRef]
- Dietl, J.M.; Garcia, E. Ornithopter optimal trajectory control. Aerosp. Sci. Technol. 2013, 26, 192–199. [Google Scholar] [CrossRef]
- Bolender, M.A. Rigid multi-body equations-of-motion for flapping wing MAVs using Kane equations. In Proceedings of the AIAA Guidance, Navigation, and Control Conference, Chicago, IL, USA, 10–13 August 2009. [Google Scholar]
- Grauer, J.H. Modeling of ornithopter flight dynamics for state estimation and control. In Proceedings of the 2010 American Control Conference, Baltimore, MD, USA, 30 June–2 July 2010; pp. 524–529. [Google Scholar]
- Grauer, J.; Ulrich, E.; Hubbard, J.E.; Pines, D.; Humbert, J.S. Testing and system identification of an ornithopter in longitudinal flight. J. Aircr. 2011, 48, 660–667. [Google Scholar] [CrossRef]
- Caetano, J.V.; Verboom, J.; de Visser, C.C.; de Croon, G.C.H.E.; Remes, B.D.W.; de Wagter, C.; Mulder, M. Near Hover Flapping Wing MAV Aerodynamic Modelling-a linear model approach. In Proceedings of the International Micro Air Vechicle Conference and Flight Competition, Toulouse, France, 17–20 September 2017. [Google Scholar]
- Mulder, J.A.; Chu, Q.P.; Sridhar, J.K.; Breeman, J.H.; Laban, M. Non-linear aircraft flight path reconstruction review and new advances. Prog. Aerosp. Sci. 1999, 35, 673–726. [Google Scholar] [CrossRef]
- Au, L.T.K.; Park, H.C. Influence of Center of Gravity Location on Flight Dynamic Stability in a Hovering Tailless FW-MAV: Longitudinal Motion. J. Bionic Eng. 2019, 16, 130–144. [Google Scholar] [CrossRef]
- Au, L.T.K.; Park, H.C. Influence of Center of Gravity Location on Flight Dynamic Stability in a Hovering Tailless FW-MAV: Lateral Motion. J. Bionic Eng. 2020, 17, 148–160. [Google Scholar] [CrossRef]
- Caetano, J.V.; Weehuizen, M.B.; De Visser, C.C.; De Croon, G.C.H.E.; De Wagter, C.; Remes, B.; Mulder, M. Rigid vs. Flapping: The Effects of Kinematic Formulations in Force Determination of a Free Flying Flapping Wing Micro Air Vehicle. In Proceedings of the International Conference on Unmanned Aircraft Systems (ICUAS), Orlando, FL, USA, 27–30 May 2014. [Google Scholar]
- Caetano, J.V.; Percinz, M.; de Visser, C.C.; van Oudheusdenz, B.; de Croon, G.C.H.E.; de Wagter, C.; Remes, B.; Mulder, M. Tethered vs. Free Flight Force Determination of the DelFly II Flapping Wing Micro Air Vehicle. In Proceedings of the International Conference on Unmanned Aircraft Systems (ICUAS), Orlando, FL, USA, 27–30 May 2014. [Google Scholar]
- Armanini, S.F.; Karasek, M.; de Croon, G.C.H.E.; de Visser, C.C. Onboard/Offboard Sensor Fusion for High-Fidelity Flapping-Wing MAV Flight Data. AIAA J. Guid. Control Dyn. 2017, 40, 2121–2132. [Google Scholar] [CrossRef] [Green Version]
- Grauer, J. Modeling and System Identification of an Ornithopter Flight Dynamics Model. Ph.D. Thesis, University of Maryland, College Park, MD, USA, 2012. [Google Scholar]
- Hoburg, W.; Tedrake, R. System identification of post stall aerodynamics for UAV perching. In Proceedings of the AIAA Infotech@Aerospace Conference, Seattle, WA, USA, 6–9 April 2009. [Google Scholar]
- Forssell, U.; Ljung, L. Closed-loop identification revisited. Automatica 1999, 35, 1215–1241. [Google Scholar] [CrossRef] [Green Version]
- Gustavsson, I.; Ljung, L.; Söderström, T. Identification of processes in closed loop-identifiability and accuracy aspects. Automatica 1977, 13, 59–75. [Google Scholar] [CrossRef] [Green Version]
- Chirarattananon, P.; Wood, R.J. Identification of flight aerodynamics for flapping-wing microrobots. In Proceedings of the International Conference on Robotics and Automation (ICRA), Karlsruhe, Germany, 6–10 May 2013; pp. 1389–1396. [Google Scholar]
- Ristroph, L.; Bergou, A.J.; Guckenheimer, J.; Wang, Z.J.; Cohen, I. Paddling mode of forward flight in insects. Phy. Rev. Lett. 2011, 106, 178103. [Google Scholar] [CrossRef] [Green Version]
- Ristroph, L.; Ristroph, G.; Morozova, S.; Bergou, A.J.; Chang, S.; Guckenheimer, J.; Wang, Z.J.; Cohen, I. Active and passive stabilization of body pitch in insect flight. J. R. Soc. Interface 2013, 10, 20130237. [Google Scholar] [CrossRef] [Green Version]
- Faruque, A.I.; Humbert, J.S. Dipteran Insect Flight Dynamics Part 1: Longitudinal Motion about Hover. J. Theor. Biol. 2010, 264, 538–552. [Google Scholar] [CrossRef]
- Humbert, J.S.; Faruque, I. Analysis of Insect-Inspired Wingstroke Kinematic Perturbations for Longitudinal Control. AIAA J. Guid. Control Dyn. 2011, 34, 618–623. [Google Scholar] [CrossRef]
- Cheng, B.; Fry, S.N.; Huang, Q.; Dickson, W.B. Turning Dynamics and Passive Damping in Flapping Flight. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009. [Google Scholar]
- Hesselberg, T.; Lehmann, F.O. Turning Behaviour Depends on Frictional Damping in the Fruit Fly Drosophila. J. Exp. Biol. 2007, 210, 4319–4334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, G.K.; Thomas, A.L.R. Animal Flight Dynamics II. Longitudinal Stability in Flapping Flight. J. Theor. Biol. 2002, 214, 351–370. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Schenato, L.; Sastry, S.S. Flapping Flight for Biomimetic Robotic Insects: Part II, Flight Control Design. IEEE Trans. Robot. Autom. 2006, 22, 789–803. [Google Scholar] [CrossRef]
- Faruque, I.A.; Muijres, F.T.; Macfarlane, K.M.; Kehlenbeck, A.; Humbert, J.S. Identification of optimal feedback control rules from micro-quadrotor and insect flight trajectories. Biol. Cybern. 2018, 112, 165–179. [Google Scholar] [CrossRef] [PubMed]
- Tischler, M.B.; Remple, R.K. Aircraft and Rotorcraft System Identification: Engineering Methods with Flight-Test Examples; AIAA: Reston, VA, USA, 2006. [Google Scholar]
- Ansari, S.A.; Knowles, K.; Zbikowski, R. Insect-like flapping wings in the hover part 1: Effect of wing kinematics. J. Aircr. 2008, 45, 1945–1954. [Google Scholar] [CrossRef]
- Ansari, S.A.; Knowles, K.; Zbikowski, R. Insect-like flapping wings in the hover part 2: Effect of wing geometry. J. Aircr. 2008, 45, 1976–1990. [Google Scholar] [CrossRef]
- Orlowski, C.T.; Girard, A.R.; Shyy, W. Derivation and Simulation of the Nonlinear Dynamics of a Flapping Wing Micro-Air Vehicle. In Proceedings of the European Micro-Air Vehicle Conference and Competition, Delft, The Netherlands, 14–17 September 2009. [Google Scholar]
- Sibilski, K.; Pietrucha, J.; Zlocka, M. The comparative evaluation of power requirements for fixed, rotary, and flapping wings micro air vehicles. In Proceedings of the AIAA Atmospheric Flight Mechanics Conference and Exhibit, No. 2007-6498, Hilton Head, SC, USA, 20–23 August 2007. [Google Scholar]
- Lee, S.; Han, J.H. Experimental study on the flight dynamics of a bio-inspired ornithopter: Free flight testing and wind tunnel testing. J. Smart Mater. Struct. 2012, 21, 094023. [Google Scholar] [CrossRef]
- Au, L.T.K.; Phan, V.H.; Tran, S.K.; Park, H.C. A Modified Framework for Longitudinal Dynamic Stability Analysis on Vertical Takeoff of an Insect-Mimicking Flapping-Wing Micro Air Vehicle. In Proceedings of the 11th International Conference on Intelligent Unmanned Systems (ICIUS 2015), Bali, Indonesia, 26–28 August 2015. [Google Scholar]
- Sun, M.; Wang, J.K. Flight stabilization control of a hovering model insect. J. Exp. Biol. 2007, 210, 2714–2722. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Sun, M. Dynamic flight stability of a hovering model insect: Lateral motion. Acta Mech. Sin. 2010, 26, 175–190. [Google Scholar] [CrossRef]
- Kajak, K.M.; Karasek, M.; Chu, Q.P.; de Croon, G.C.H.E. A Minimal Longitudinal Dynamic Model of a Tailless Flapping Wing Robot for Control Design. Bioinspir. Biomimet. 2019, 14, 046008. [Google Scholar] [CrossRef] [PubMed]
- Teoh, Z.E.; Fuller, S.B.; Chirarattananon, P.; Perez-Arancibia, N.O.; Greeberg, J.D.; Wood, R.J. A Hovering Flapping-Wing Microrobot with Altitude Control and Passive Upright Stability. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems, Vilamoura, Algarve, Portugal, 7–12 October 2012. [Google Scholar]
- Tijani, I.B.; Akmeliawati, R.; Legowo, A.; Budiyono, A. Nonlinear Identification of a Small Scale Unmanned Helicopter using Optimized NARX Network with Multiobjective Differential Evolution. Eng. Appl. Artif. Intell. 2014, 33, 99–115. [Google Scholar] [CrossRef]
- Phan, H.V.; Park, H.C. Mimicking Nature’s Fliers: A Review of Insect-Inspired Flying Robots. Curr. Opin. Insect Sci. 2020, 42, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Levant, A. Higher-order sliding modes, differentiation and output feedback control. Int. J. Control 2003, 76, 924–941. [Google Scholar] [CrossRef]
- Iqbal, M.; Bhatti, A.I.; Iqbal, S.; Khan, Q. Robust parameter estimation of nonlinear systems using sliding mode differentiator observer. IEEE Trans. Ind. Electron. 2011, 58, 680–689. [Google Scholar] [CrossRef]
- Ramirez, H.S.; Agarwal, S.K. Differentially Flat Systems; Marcel Dekker: New York, NY, USA, 2004. [Google Scholar]
- Utkin, V.; Guldner, I.; Shi, J. Sliding Mode Control in Electro Mechanical Systems; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
Model | Force | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mom-ent | Avg | Std. Dev. | Avg | Std. Dev. | Avg | Std. Dev. | Avg | Std. Dev. | Avg | Std. Dev. | Avg | Std. Dev. | Avg | Std. Dev. | Avg | Std. Dev. | |
Full | X | 0.1538 | 0.1131 | 0.0110 | 0.0194 | 0.0483 | 0.0431 | −0.0100 | 0.0221 | −0.049 | 0.0246 | −0.1095 | 0.1114 | −0.0027 | 0.0358 | 5.4100E-4 | 0.0018 |
Y | 0.0225 | 0.028 | 0.0055 | 0.0316 | −0.0205 | 0.0245 | −0.0274 | 0.0006 | 8.9522E-4 | 0.0169 | −0.0614 | 0.0540 | −0.0158 | 0.0331 | −0.0073 | 0.0029 | |
Z | −0.2861 | 0.0297 | −0.0097 | 0.0132 | 0.1699 | 0.0168 | −0.0030 | 0.0094 | 0.0014 | 0.0084 | −0.0134 | 0.0478 | −0.0047 | 0.0121 | −4.4929E-4 | 0.0007 | |
L | 9.6231E-4 | 0.0004 | −8.426E-5 | 2.970E-5 | −6.9285E-4 | 0.0002 | 1.4884E-5 | 3.660E-5 | −1.8120E-4 | 0.0006 | 7.9049E-5 | 0.0004 | −6.1030E-4 | 0.0007 | −2.1300E-5 | 5E-6 | |
M | 0.0414 | 0.0191 | 0.0033 | 0.0056 | −0.0203 | 0.0078 | 0.0041 | 0.0019 | −0.0054 | 0.0044 | 0.0014 | 0.0084 | −0.0144 | 0.0059 | −0.0021 | 0.0006 | |
N | −0.088 | 0.0134 | −0.0017 | 0.0012 | 0.0011 | 0.0047 | −4.3412E-4 | 0.0011 | −2.2278E-4 | 0.01678 | −0.0155 | 0.0166 | 0.0011 | 0.0269 | 1.2782E-4 | 0.0002 | |
X | 0.0067 | 0.0024 | 0.0067 | 0.0093 | 0.0108 | 0.0019 | −0.1252 | 0.0430 | 0.0829 | 0.0037 | −0.0035 | 0.0160 | 0.0039 | 0.1243 | |||
Y | 3.6187E-4 | 0.0014 | −0.0014 | 0.0091 | 0.0265 | 0.0244 | 0.0124 | 0.0237 | 0.0018 | 0.0008 | −0.0011 | 0.0021 | 0.021 | 0.0008 | |||
Z | −0.0018 | 0.0010 | −0.0051 | 0.0049 | −0.0065 | 0.0005 | 0.0519 | 0.0240 | −0.0100 | 0.0013 | 4.2333E-4 | 0.0081 | −0.0012 | 0.0343 | |||
L | 7.4992E-5 | 5.16E-5 | 1.358E-5 | 7.86E-6 | 1.9198E-4 | 0.0007 | 1.0647E-4 | 0.0004 | −7.0396E-5 | 1.18E-6 | 6.5270E-6 | 8.14E-5 | −5.5306E-6 | 2.118E-5 | |||
M | 0.0013 | 0.0005 | 5.516E-4 | 0.0014 | −6.6045E-4 | 0.0002 | −0.0478 | 0.0181 | 5.1973E-4 | 0.0007 | −3.1036E-4 | 0.0035 | −1.6626E-4 | 0.0148 | |||
N | 2.7412E-4 | 0.0008 | −0.0019 | 0.0003 | 1.9530E-4 | 0.0245 | 0.0280 | 0.0162 | 0.0033 | 0.0003 | 4.2332E-4 | 0.0032 | −2.4090E-4 | 0.0011 | |||
Reduced | X | 0.1385 | 0.0254 | 0.0354 | 0.0007 | ||||||||||||
Y | −0.0353 | 0.0184 | −0.0412 | 0.0231 | −0.007 | 0.0019 | |||||||||||
Z | −0.2437 | 0.0224 | 0.1650 | 0.0022 | |||||||||||||
L | 1.0851E-5 | 0.0001 | 9.1882E-6 | 3.66E-5 | |||||||||||||
M | −0.0067 | 0.0191 | −0.0031 | 0.0032 | |||||||||||||
N | 0.0016 | 0.0057 | −7.1896E-4 | 0.0016 | |||||||||||||
. | |||||||||||||||||
0.055 | 0.0009 | −0.017 | 0.0019 | 0.0093 | 0.0023 | ||||||||||||
Y | 0.0028 | 0.0015 | −0.0059 | 0.0077 | |||||||||||||
Z | 0.0016 | 0.0014 | −0.0012 | 0.0019 | −0.0055 | 0.0024 | |||||||||||
L | −4.0721E-6 | 5.26E-6 | −5.9233E-4 | 6.68E-6 | |||||||||||||
M | 8.007E-4 | 0.018 | 0.0023 | 0.0039 | |||||||||||||
N | 2.7054E-5 | 0.0003 | 0.0208 | 0.0004 |
Parameter | Value | Standard Deviation |
---|---|---|
Xu | −12.3 | 4.0% |
Zw | −4.7 | 9.1% |
Mu | 547 | 3.6% |
−33.3 | 4.6% | |
12.7 | 12.2% | |
20.7 | 7.6% | |
−17.4 | 4.8% | |
6028 | 3.6% | |
−2826 | 3.8% | |
−12360 | 5.0% | |
−87.74 | 10.7% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, Q.; Akmeliawati, R. Review on System Identification and Mathematical Modeling of Flapping Wing Micro-Aerial Vehicles. Appl. Sci. 2021, 11, 1546. https://doi.org/10.3390/app11041546
Khan Q, Akmeliawati R. Review on System Identification and Mathematical Modeling of Flapping Wing Micro-Aerial Vehicles. Applied Sciences. 2021; 11(4):1546. https://doi.org/10.3390/app11041546
Chicago/Turabian StyleKhan, Qudrat, and Rini Akmeliawati. 2021. "Review on System Identification and Mathematical Modeling of Flapping Wing Micro-Aerial Vehicles" Applied Sciences 11, no. 4: 1546. https://doi.org/10.3390/app11041546
APA StyleKhan, Q., & Akmeliawati, R. (2021). Review on System Identification and Mathematical Modeling of Flapping Wing Micro-Aerial Vehicles. Applied Sciences, 11(4), 1546. https://doi.org/10.3390/app11041546