Estimation of the Optimum Energy Received by Solar Energy Flat-Plate Convertors in Greece Using Typical Meteorological Years. Part I: South-Oriented Tilt Angles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Data Analysis
2.3. Definition of Energy Zones
3. Results
3.1. Annual Energy Yields
3.2. Intra-Annual Energy Yields
3.3. Seasonal Energy Yields
3.4. Maps of Annual Energy Yields
3.5. Comparison of Results with the PV-GIS Tool
4. Added Value of the Results
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hafez, A.Z.; Soliman, A.; El-Metwally, K.A.; Ismail, I.M. Tilt and azimuth angles in solar energy applications—A review. Renew. Sustain. Energy Rev. 2017, 77, 147–168. [Google Scholar] [CrossRef]
- Kambezidis, H.D. Annual and seasonal trends of solar radiation in Athens, Greece. J. Solar Energy Res. Updates 2018, 5, 14–24. [Google Scholar] [CrossRef]
- Kambezidis, H.D. The solar radiation climate of Athens: Variations and tendencies in the period 1992–2017, the brightening era. Sol. Energy 2018, 173, 328–347. [Google Scholar] [CrossRef]
- Kambezidis, H.D. The solar resource. In Comprehensive Renewable Energy; Sayigh, A., Ed.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 27–83. ISBN 978-0-08087-872-0. [Google Scholar]
- Willmott, C.J. On the climatic optimization of the tilt and azimuth of flat-plate solar collectors. Sol. Energy 1982, 28, 205–216. [Google Scholar] [CrossRef]
- Rowlands, I.H.; Kemery, B.P.; Beausoleil-Morrison, I. Optimal solar-PV tilt angle and azimuth: An Ontario (Canada) case-study. Energy Policy 2011, 39, 1397–1409. [Google Scholar] [CrossRef]
- Daut, I.; Irwanto, M.; Irwan, Y.M.; Gomesh, N.; Ahmad, N.S. Clear sky global solar irradiance on tilt angles of photovoltaic module in Perlis, Northern Malaysia. In Proceedings of the International Conference on Electrical, Control and Computer Engineering (INECCE), Pahang, Malaysia, 21–22 June 2011; pp. 445–450. [Google Scholar] [CrossRef]
- Khatib, T.; Mohamed, A.; Sopian, K. On the monthly optimum tilt angle of solar panel for five sites in Malaysia. In Proceedings of the IEEE International Power Eng. and Optimization Conference (PEDCO), Melaka, Malaysia, 6–7 June 2012; pp. 7–10. [Google Scholar] [CrossRef]
- Elhab, B.R.; Sopian, K.; Mat, S.; Lim, C.; Sulaiman, M.Y.; Ruslan, M.H.; Saadatian, O. Optimizing tilt angles and orientations of solar panels for Kuala Lumpur, Malaysia. Sci. Res. Essays 2012, 7, 3758–3765. [Google Scholar] [CrossRef]
- Tang, R.; Wu, T. Optimum tilt-angles for solar collectors used in China. Appl. Energy 2004, 79, 239–248. [Google Scholar] [CrossRef]
- Jamil Ahmad, M.N.; Tiwari, G. Optimization of tilt angle for solar collector to receive maximum radiation. The open renewable. Energy J. 2009, 2, 19–24. [Google Scholar] [CrossRef]
- Agarwal, A.; Vashishtha, V.K.; Mishra, S.N. Comparative approach for the optimization of tilt angle. Int. J. Eng. Res. Technol. 2012, 1. Paper ID: IJERTV1IS5008. Available online: https://www.ijert.org/volume-01-issue-05-july-2012 (accessed on 28 January 2021).
- Yakup, M.; Malik, A.Q. Optimum tilt angle and orientation for solar collector in Brunei Darussalam. Renew. Energy 2001, 24, 223–234. [Google Scholar] [CrossRef]
- Jafar Κazemi, F.; Saadabadi, S.A. Optimum tilt angle and orientation of solar surfaces in Abu Dhabi, UAE. Renew. Energy 2013, 56, 44–49. [Google Scholar] [CrossRef]
- Shariah, A.; Al-Akhras, M.A.; Al-Omari, I.A. Optimizing the tilt angle of solar collectors. Renew. Energy 2002, 26, 587–598. [Google Scholar] [CrossRef]
- Altarawneh, I.S.; Rawadieh, S.I.; Tarawneh, M.S.; Alsowwad, S.M.; Ramawi, F. Optimal tilt angle trajectory for maximizing solar energy potential in Ma’an area, Jordan. J. Renew. Sust. Energy 2016, 8, 033701. [Google Scholar] [CrossRef]
- Talebi Ζadeh, P.; Mehrabian, M.A.; Abdolzadeh, M. Prediction of the optimum slope and surface azimuth angles using the Genetic Algorithm. Energy Build. 2011, 43, 2998–3005. [Google Scholar] [CrossRef]
- Jafar Κazemi, F.; Saadabadi, S.A.; Pasdarshahri, H. The optimum tilt angle for flat-plate solar collectors in Iran. J. Renew. Sustain. Energy 2012, 4, 013118. [Google Scholar] [CrossRef]
- Moghadam, H.; Tabrizi, F.F.; Sharak, A.Z. Optimization of solar flat collector inclination. Desalination 2011, 265, 107–111. [Google Scholar] [CrossRef]
- Kamali, G.A.; Moradi, I.; Khalili, A. Estimating solar radiation on tilted surfaces with various orientations: A study case in Karaj (Iran). Theor. Appl. Climatol. 2006, 84, 235–241. [Google Scholar] [CrossRef]
- Saraf, G.R.; Hamad, F.A.W. Optimum tilt angle for a flat plate solar collector. Energy Convers. Manag. 1988, 28, 185–191. [Google Scholar] [CrossRef]
- Bakirci, K. General models for optimum tilt angles of solar panels: Turkey case study. Renew. Sustain. Energy Rev. 2012, 16, 6149–6159. [Google Scholar] [CrossRef]
- Kacira, M.; Simsek, M.; Babur, Y.; Demirkol, S. Determining optimum tilt angles and orientations of photovoltaic panels in Sanliurfa, Turkey. Renew. Energy 2004, 29, 1265–1275. [Google Scholar] [CrossRef]
- Skeiker, K. Optimum tilt angle and orientation for solar collectors in Syria. Energy Convers. Manag. 2009, 50, 2439–2448. [Google Scholar] [CrossRef]
- Ibrahim, D. Optimum tilt angle for solar collectors used in Cyprus. Renew. Energy 1995, 6, 813–819. [Google Scholar] [CrossRef]
- De Miguel, A.; Bilbao, J.; Diez, M. Solar radiation incident on tilted surfaces in Burgos, Spain: Isotropic models. Energy Convers. Manag. 1995, 36, 945–951. [Google Scholar] [CrossRef]
- Evseev, E.G.; Kudish, A.I. The assessment of different models to predict the solar radiation on a surface tilted to the south. Sol. Energy 2009, 83, 377–388. [Google Scholar] [CrossRef]
- Ghosh, H.R.; Bhowmik, N.C.; Hussain, M. Determining seasonal optimum tilt angles, solar radiations on variously oriented, single and double axis tracking surfaces at Dhaka. Renew. Energy 2010, 35, 1292–1297. [Google Scholar] [CrossRef]
- Gong, X.; Kulkarni, M. Design optimization of a large-scale rooftop photovoltaic system. Sol. Energy 2005, 78, 362–374. [Google Scholar] [CrossRef]
- Yan, R.; Saha, T.K.; Meredith, P.; Goodwin, S. Analysis of yearlong performance of differently tilted photovoltaic systems in Brisbane, Australia. Energy Convers. Manag. 2013, 74, 102–108. [Google Scholar] [CrossRef]
- Chang, Y.P. Optimal tilt angles for photovoltaic modules in Taiwan. Int. J. Electr. Power Energy Syst. 2010, 32, 956–964. [Google Scholar] [CrossRef]
- Liu, X. Calculation and analysis of optimal tilt angle for PV/T hybrid collectors. In Proceedings of the International Conference on Intelligent System Design and Engineering Applications, Sanya, China, 6–7 January 2012; pp. 791–795. [Google Scholar] [CrossRef]
- Zhao, Q.; Wang, P.; Goel, L. Optimal PV panel tilt angle based on solar radiation prediction. In Proceedings of the 11th International Conference on Probabilistic Methods Applied to Power Systems, Singapore, 14–17 June 2010; pp. 425–430. [Google Scholar] [CrossRef]
- Gunerhan, H.; Hepbasli, A. Determination of the optimum tilt angle of solar collectors for building applications. Build. Environ. 2007, 42, 779–783. [Google Scholar] [CrossRef]
- Ulgen, K. Optimum tilt angle for solar collectors. Energy Sour. Part A Recov. Util. Environ. Eff. 2006, 28, 1171–1180. [Google Scholar] [CrossRef]
- Ulgen, K.; Hepbasli, A. Prediction of solar radiation parameters through clearness index for Izmir, Turkey. Energy Sour. 2002, 24, 773–785. [Google Scholar] [CrossRef]
- Iacobescu, F.; Badescu, V. The potential of the local administration as driving force for the implementation of the National PV systems strategy in Romania. Renew. Energy 2012, 38, 117–125. [Google Scholar] [CrossRef]
- Colli, A.; Zaaiman, W.J. Maximum-power-based PV performance validation method: Application to single-axis tracking and fixed-Tilt c-Si systems in the Italian Alpine region. IEEE J. Photovolt. 2012, 2, 555–563. [Google Scholar] [CrossRef]
- Hussein, H.M.S.; Ahmad, G.E.; El-Ghetany, H.H. Performance evaluation of photovoltaic modules at different tilt angles and orientations. Energy Convers. Manag. 2004, 45, 2441–2452. [Google Scholar] [CrossRef]
- EL-Kassaby, M.M. Monthly and daily optimum tilt angle for south facing solar collectors; theoretical model, experimental and empirical correlations. Sol. Wind Technol. 1988, 5, 589–596. [Google Scholar] [CrossRef]
- Elminir, H.K.; Ghitas, A.E.; El-Hussainy, F.; Hamid, R.; Beheary, M.M.; Abdel-Moneim, K.M. Optimum solar flat-plate collector slope: Case study for Helwan, Egypt. Energy Convers. Manag. 2006, 4, 624–637. [Google Scholar] [CrossRef]
- Kaldellis, J.; Zafirakis, D. Experimental investigation of the optimum photovoltaic panels’ tilt angle during the summer period. Energy 2012, 38, 305–314. [Google Scholar] [CrossRef]
- Tsalides, P.; Thanailakis, A. Direct computation of the array optimum tilt angle in constant-tilt photovoltaic systems. Sol. Cells 1985, 14, 83–94. [Google Scholar] [CrossRef]
- Kambezidis, H.D.; Psiloglou, B.E.; Gueymard, C.A. Measurements and models for total solar irradiance on inclined surface in Athens, Greece. Sol. Energy 1994, 53, 177–185. [Google Scholar] [CrossRef]
- Kaddoura, T.O.; Ramli, M.A.M.; Al-Turki, Y.A. On the estimation of the optimum tilt angle of PV panel in Saudi Arabia. Renew. Sustain. Energy Rev. 2016, 65, 626–634. [Google Scholar] [CrossRef]
- Ohtake, H.; Uno, F.; Oozeki, T.; Yamada, Y.; Takenaka, H.; Nakajima, T.Y. Estimation of satellite-derived regional photovoltaic power generation using a satellite-estimated solar radiation data. Energy Sci. Eng. 2018, 6, 570–583. [Google Scholar] [CrossRef]
- Koronakis, P.S. On the choice of the angle of tilt for south facing solar collectors in the Athens basin area. Sol. Energy 1986, 36, 217–225. [Google Scholar] [CrossRef]
- Synodinou, B.M.; Katsoulis, B.D. A comparison of three models for estimation of global solar radiation on tilted and oriented surfaces in Athens. Int. J. Sol. Energy 1996, 18, 83–102. [Google Scholar] [CrossRef]
- Darhmaoui, H.; Lahjouji, D. Latitude based model for tilt angle optimization for solar collectors in the Mediterranean region. Energy Proc. 2013, 42, 426–435. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, M.Z.; Jadhav, V. World estimates of PV optimal tilt angles and ratios of sunlight incident upon tilted and tracked PV panels relative to horizontal panels. Sol. Energy 2018, 169, 55–66. [Google Scholar] [CrossRef]
- NREL (National Renewable Energy Laboratory). PV Watts Calculator 2017. Available online: https://pvwatts.nrel.gov (accessed on 30 September 2020).
- Raptis, P.I.; Kazadzis, S.; Psiloglou, B.; Kouremeti, N.; Kosmopoulos, P.; Kazantzidis, A. Measurements and model simulations of solar radiation at tilted planes, towards the maximization of energy capture. Energy 2017, 130, 570–580. [Google Scholar] [CrossRef]
- Weissenbacher, M. Towards new renewable energy policies in urban areas: The re-definition of optimum inclination of photovoltaic panels. J. Sustain. Develop. Energy Water Environ. Syst. 2015, 3, 372–388. [Google Scholar] [CrossRef] [Green Version]
- Kambezidis, H.D.; Psiloglou, B.E.; Kaskaoutis, D.G.; Karagiannis, D.; Petrinoli, K.; Garviil, A.; Kavadias, K. Generation of typical meteorological years for 33 locations in Greece: Adaptation to the needs of various applications. Theor. Appl. Climatol. 2020. [Google Scholar] [CrossRef]
- Available online: https://e3p.jrc.ec.europa.eu/articles/typical-meteorological-year-tmy (accessed on 11 January 2021).
- Kambezidis, H.D.; Psiloglou, B.E.; Karagiannis, D.; Dumka, U.C.; Kaskaoutis, D.G. Recent improvements of the Meteorological Radiation Model for solar irradiance estimates under all-sky conditions. Renew. Energy 2016, 93, 142–158. [Google Scholar] [CrossRef]
- Kambezidis, H.D.; Psiloglou, B.E.; Karagiannis, D.; Dumka, U.C.; Kaskaoutis, D.G. Meteorological Radiation Model (MRM v6.1): Improvements in diffuse radiation estimates and a new approach for implementation of cloud products. Renew. Sustain. Energy Rev. 2017, 74, 616–637. [Google Scholar] [CrossRef]
- TOTEE. Analytical National Parameter Specifications for the Calculation of the Energy Efficiency of Buildings and the Edition of the Energy Ef-ficiency Certificate; Technical Guideline No. 20701-1; Technical Chamber of Greece: Athens, Greece, 2010. [Google Scholar]
- Walraven, R. Calculating the position of the sun. Sol. Energy 1978, 20, 393–397. [Google Scholar] [CrossRef]
- Wilkinson, B.J. An improved FORTRAN program for the rapid calculation of the solar position. Sol. Energy 1981, 27, 67–68. [Google Scholar] [CrossRef]
- Muir, L.R. Comments on “The effect of the atmospheric refraction in the solar azimuth”. Sol. Energy 1983, 30, 295. [Google Scholar] [CrossRef]
- Kambezidis, H.D.; Papanikolaou, N.S. Solar position and atmospheric refraction. Sol. Energy 1990, 44, 143–144. [Google Scholar] [CrossRef]
- Kambezidis, H.D.; Tsangrassoulis, A.E. Solar position and right ascension. Sol. Energy 1993, 50, 415–416. [Google Scholar] [CrossRef]
- Liu, B.Y.H.; Jordan, R.C. The long-term average performance of flat-plate solar energy collectors. Sol. Energy 1963, 7, 53–74. [Google Scholar] [CrossRef]
- Iqbal, M. An Introduction to Solar Radiation; Academic Press: Toronto, ON, Canada, 1983; pp. 304–307. ISBN 0-12-373750-8. [Google Scholar]
- Kambezidis, H.D.; Psiloglou, B.E. Climatology of the linke and unsworth-monteith turbidity parameters for Greece: Introduction to the notion of a typical atmospheric turbidity year. Appl. Sci. 2020, 10, 4043. [Google Scholar] [CrossRef]
- Available online: https://re.jrc.ec.europa.eu/pvg_tools/en/#PVP (accessed on 11 January 2021).
- Urraca, R.; Huld, T.; Garcia-Amillo, A.; Martinez-de-Pison, F.J.; Kaspar, F.; Sanz-Garcia, A. Evaluation of global horizontal irradiance estimates from ERA5 and COSMO-REA6 reanalyses using ground and satellite-based data. Sol. Energy 2018, 164, 339–354. [Google Scholar] [CrossRef]
- Crook, J.A.; Jones, L.A.; Forster, P.M.; Crook, R. Climate change impacts on future photovoltaic and concentrated solar energy output. Energy Environ. Sci. 2011, 4, 3101–3109. [Google Scholar] [CrossRef]
Station | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Agrinio | 1999 | 2004 | 2000 | 1994 | 2001 | 1997 | 2000 | 1999 | 2004 | 1988 | 2010 | 1994 |
Irakleio | 1995 | 2001 | 2004 | 1994 | 1997 | 1987 | 2003 | 1996 | 1996 | 1997 | 2004 | 2003 |
Kastoria | 1987 | 1988 | 2005 | 1985 | 1995 | 1996 | 1996 | 1998 | 1991 | 1994 | 1989 | 2008 |
Tripoli | 1999 | 1985 | 1993 | 1993 | 1995 | 1987 | 1987 | 1986 | 1986 | 1991 | 2004 | 1994 |
Climatic Zone | HDD (Dimensionless) | CDH (Dimensionless) | SSR (kWhm−2·year−1) |
---|---|---|---|
A | <1000 | [1300, 4500] | [1700, 1900] |
B | [1000, 1500] | [2200, 5500] | [1500, 1700] |
C | (1500, 2000] | [1200, 3800] | [1450, 1600] |
D | ≥2000 | ≤1500 | ≤1500 |
# * | Site (Region of) | WHO Code ** φ/λ/z *** | Categorization Scheme | ||
---|---|---|---|---|---|
Climatic Zone | TOTEE Zone | PV0 Zone | |||
12 | Agrinio (Western Greece) | 16672 38.617/21.383/25 | B | A | B |
4 | Alexandroupoli (Eastern Macedonia and Thace) | 16627 40.85/25.933/3.5 | C | B/C | D |
10 | Anchialos (Thessaly) | 16665 39.217/22.8/15.3 | B | B | C |
14 | Andravida (Western Greece) | 16682 37.917/21.283/15.1 | B | A | B |
16 | Araxos (Western Greece) | 16687 38.317/23.55/139 | B | A | B |
18 | Chios (Northern Aegean) | 16706 38.35/26.15/4 | B | B | C |
20 | Elliniko (Attica) | 16716 37.9/23.75/15 | B | A | B |
7 | Ioannina (Epirus) | 16642 39.7/20.817/484 | C | B/C | D |
31 | Irakleio (also written as Heraklion, Crete) | 16754 35.333/25.183/39.3 | A | A | A |
23 | Kalamata (Peloponnese) | 16726 37.067/22/11.1 | A | A | B |
33 | Kasteli (Crete) | 16760 35.12/25.333/335 | A | A | A |
2 | Kastoria (Western Macedonia) | 16614 40.45/21.283/660.9 | D | B | C |
6 | Kerkyra (known as Corfu, Ionian Islands) | 16641 39.617/19.917/4 | B | B | D |
5 | Kozani (Western Macedonia) | 16632 40.283/21.783/625 | D | B | C |
27 | Kythira (Attica) | 16743 36.133/23.017/166.8 | A | A | A |
13 | Lamia (Sterea Ellada) | 16675 38.85/22.4/17.4 | B | B | C |
8 | Larisa (Thessaly) | 16648 39.65/22.45/73.6 | C | B | C |
11 | Lesvos (Northern Aegean) | 16667 39.067/26.6/4.8 | B | A | B |
9 | Limnos (Northern Aegean) | 16650 39.917/22.8/15.3 | B | B | C |
25 | Methoni (Peloponnese) | 16734 36.833/21.7/52.4 | A | A | B |
3 | Mikra (outskirts of Thessaloniki, Central Macedonia) | 16622 40.517/22.967/4.8 | C | B/C | D |
24 | Naxos (Southern Aegean) | 16732 37.1/25.533/9.8 | A | A | B |
30 | Rodos (known as Rhodes, Southern Aegean) | 16749 36.4/28.117/11.5 | A | A | A |
22 | Samos (Northern Aegean) | 16723 37.7/26.917/7.3 | A | A | B |
1 | Serres (Central Macedonia) | 16606 41.083/23.567/34.5 | D | B/C | D |
32 | Siteia (Crete) | 16757 35.12/26.1/115.6 | A | A | A |
15 | Skyros (Sterea Ellada) | 16684 38.9/24.55/17.9 | B | B/C | D |
29 | Souda (Crete) | 16746 35.55/24.117/140 | A | A | A |
26 | Spata (Attica) | 16741 37.967/23.917/67 | B | A | B |
17 | Tanagra (Sterea Ellada) | 16699 38.317/23.55/139 | B | A | B |
28 | Thira (known as Santorini, Southern Aegean) | 16744 36.417/25.433/36.5 | A | A | A |
19 | Tripoli (Peloponnese) | 16710 37.533/22.4/652 | C | A | A |
21 | Zakynthos (known as Zante, Ionian Islands) | 16719 37.783/20.9/7.9 | A | A | B |
Position of the Solar Panel | Annual Mean Energy Sum Ge (kWhm−2 year−1) | |||
---|---|---|---|---|
PVctts Zone A | PVctts Zone B | PVctts Zone C | PVctts Zone D | |
Inclined at β in the range 5–60° in steps of 5° (φ° included) to the south | 1900 < Ge,βS | 1850 < Ge,βS ≤ 1900 | 1800 < Ge,βS ≤ 1850 | Ge,βS ≤ 1800 |
Horizontal, PV0 classification Horizontal, TOTEE classification | 1775 < Ge,0S 1700 < Ge,0S | 1700 < Ge,0S ≤ 1775 1500 < Ge,0S ≤ 1700 | 1625 < Ge,0S ≤ 1700 1450 < Ge,0S ≤ 1600 | Ge,0S ≤ 1625 Ge,0S ≤ 1500 |
Site | PV0 Zone | PVctts Zone | Optimum β (Degrees S) |
---|---|---|---|
Agrinio | B | A | 30 |
Alexandroupoli | D | D | 30 |
Anchialos | C | C | 30 |
Andravida | B | A | 30 |
Araxos | B | A | 30 |
Chios | C | C | 25 |
Elliniko | B | A | 25 |
Ioannina | D | D | 30 |
Irakleio | A | A | 25 |
Kalamata | B | A | 30 |
Kasteli | A | A | 25 |
Kastoria | C | C | 30 |
Kerkyra | D | D | 25 |
Kozani | C | B | 30 |
Kythira | A | A | 25 |
Lamia | C | C | 25 |
Larisa | C | D | 25 |
Lesvos | B | B | 30 |
Limnos | C | C | 25 |
Methoni | B | B | 25 |
Mikra | D | D | 25 |
Naxos | B | A | 25 |
Rodos | A | A | 25 |
Samos | B | B | 25 |
Serres | D | D | 30 |
Siteia | A | A | 25 |
Skyros | D | D | 25 |
Souda | A | A | 25 |
Spata | B | B | 25 |
Tanagra | B | B | 25 |
Thira | A | A | 25 |
Tripoli | A | A | 25 |
Zakynthos | B | A | 30 |
PVctts Zone | Equation | R2 |
---|---|---|
A | Ge,βS = 0.0065 t6 − 0.2119 t5 + 2.6031 t4 − 15.6520 t3 + 46.4010 t2 − 17.3060 t + 340.0000 | 0.9911 |
B | Ge,βS = 0.0024 t6 − 0.0718 t5 + 0.8320 t4 − 5.5786 t3 + 21.7070 t2 − 11.0270 t + 78.1620 | 0.9916 |
C | Ge,βS = − 0.0007 t6 + 0.0531 t5 − 1.0940 t4 + 8.9273 t3 − 33.2980 t2 + 84.4560 t + 23.5210 | 0.9948 |
D | Ge,βS = 0.0033 t6 − 0.1047 t5 + 1.3230 t4 − 8.8159 t3 + 29.7600 t2 − 10.9440 t + 61.1720 | 0.9922 |
All | Ge,βS = 0.0052 t6 − 0.1390 t5 + 1.0938 t4 − 1.0223 t3 − 23.9260 t2 + 139.6400 t + 206.1700 | 0.9938 |
PV Scheme | Historical Annual Ge (kWhm−2·year−1) | Future Annual Ge (kWhm−2·year−1) |
---|---|---|
PV0 upper threshold | 1775 | 1828.25 |
PV0 middle threshold | 1700 | 1751.00 |
PV0 lower threshold | 1625 | 1673.75 |
PVctts upper threshold | 1900 | 1957.00 |
PVctts middle threshold | 1850 | 1905.50 |
PVctts lower threshold | 1800 | 1854.00 |
HNMS Station | Optimum ψ’ (Degrees) | Optimum β (Degrees) | Ge,ψ’β (kWhm−2·year−1) |
---|---|---|---|
Agrinio | 166 | 29 | 1898.66 |
Alexandroupoli | 164 | 29 | 1731.92 |
Anchialos | 169 | 29 | 1829.39 |
Andravida | 174 | 29 | 1923.10 |
Araxos | 168 | 29 | 1927.48 |
Chios | 174 | 26 | 1820.86 |
Elliniko | 172 | 27 | 1906.17 |
Ioannina | 179 | 29 | 1745.51 |
Irakleio | 168 | 24 | 1934.43 |
Kalamata | 168 | 28 | 1916.94 |
Kasteli | 167 | 26 | 1937.86 |
Kastoria | 172 | 29 | 1794.31 |
Kerkyra | 172 | 28 | 1761.94 |
Kozani | 153 | 33 | 1904.14 |
Kythira | 163 | 26 | 1952.81 |
Lamia | 169 | 27 | 1839.38 |
Larisa | 171 | 28 | 1772.59 |
Lesvos | 168 | 27 | 1878.96 |
Limnos | 167 | 27 | 1819.81 |
Methoni | 174 | 28 | 1892.05 |
Mikra | 174 | 28 | 1735.11 |
Naxos | 171 | 27 | 1914.38 |
Rodos | 172 | 26 | 1951.10 |
Samos | 171 | 26 | 1882.61 |
Serres | 175 | 29 | 1741.09 |
Siteia | 169 | 25 | 1952.64 |
Skyros | 170 | 27 | 1725.02 |
Souda | 166 | 25 | 1945.01 |
Spata | 166 | 26 | 1891.33 |
Tanagra | 169 | 27 | 1855.87 |
Thira | 171 | 25 | 1921.75 |
Tripoli | 172 | 28 | 1987.37 |
Zakynthos | 173 | 29 | 1917.92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kambezidis, H.D.; Psiloglou, B.E. Estimation of the Optimum Energy Received by Solar Energy Flat-Plate Convertors in Greece Using Typical Meteorological Years. Part I: South-Oriented Tilt Angles. Appl. Sci. 2021, 11, 1547. https://doi.org/10.3390/app11041547
Kambezidis HD, Psiloglou BE. Estimation of the Optimum Energy Received by Solar Energy Flat-Plate Convertors in Greece Using Typical Meteorological Years. Part I: South-Oriented Tilt Angles. Applied Sciences. 2021; 11(4):1547. https://doi.org/10.3390/app11041547
Chicago/Turabian StyleKambezidis, Harry D., and Basil E. Psiloglou. 2021. "Estimation of the Optimum Energy Received by Solar Energy Flat-Plate Convertors in Greece Using Typical Meteorological Years. Part I: South-Oriented Tilt Angles" Applied Sciences 11, no. 4: 1547. https://doi.org/10.3390/app11041547
APA StyleKambezidis, H. D., & Psiloglou, B. E. (2021). Estimation of the Optimum Energy Received by Solar Energy Flat-Plate Convertors in Greece Using Typical Meteorological Years. Part I: South-Oriented Tilt Angles. Applied Sciences, 11(4), 1547. https://doi.org/10.3390/app11041547