A Molecularly Imprinted Polymer for Selective Extraction of Phenolic Acids from Human Urine
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Solutions
2.2. Samples
2.3. Chromatographic Conditions
2.4. Synthesis of Molecularly Imprinted Polymers
2.5. MIP and NIP Characterizations
2.6. Batch Mode Binding Experiments
2.7. MISPE Cartridge Preparation and Extraction Conditions
2.8. Analytical Figure of Merit
3. Results and Discussion
3.1. MIP Design, Template, and Analogues Selection
3.2. Polymer Characterizations
3.3. Binding Properties and Adsorption Isotherms
3.4. Optimization of MISPE Procedure
3.5. Validation of the MISPE Procedure
3.6. Selectivity of MIP
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Williamson, G.; Kay, C.D.; Crozier, A. The bioavailability, transport, and bioactivity of dietary flavonoids: A review from a historical perspective. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1054–1112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Achaintre, D.; Buleté, A.; Cren-Olivé, C.; Li, L.; Rinaldi, S.; Scalbert, A. Differential isotope labeling of 38 dietary polyphenols and their quantification in urine by liquid chromatography electrospray ionization tandem mass spectrometry. Anal. Chem. 2016, 88, 2637–2644. [Google Scholar] [CrossRef]
- Penczynski, K.J.; Krupp, D.; Bring, A.; Bolzenius, K.; Remer, T.; Buyken, A.E. Relative validation of 24-h urinary hippuric acid excretion as a biomarker for dietary flavonoid intake from fruit and vegetables in healthy adolescents. Eur. J. Nutr. 2017, 56, 757–766. [Google Scholar] [CrossRef]
- Pérez-Jiménez, J.; Hubert, J.; Hooper, L.; Cassidy, A.; Manach, C.; Williamson, G.; Scalbert, A. Urinary metabolites as biomarkers of polyphenol intake in humans: A systematic review. Am. J. Clin. Nutr. 2010, 92, 801–809. [Google Scholar] [CrossRef] [PubMed]
- Ulaszewska, M.M.; Trost, K.; Stanstrup, J.; Tuohy, K.M.; Franceschi, P.; Chong, M.F.F.; George, T.; Minihane, A.M.; Lovegrove, J.A.; Mattivi, F. Urinary metabolomic profiling to identify biomarkers of a flavonoid-rich and flavonoid-poor fruits and vegetables diet in adults: The FLAVURS trial. Metabolomics 2016, 12. [Google Scholar] [CrossRef]
- De Rijke, E.; Out, P.; Niessen, W.M.A.; Ariese, F.; Gooijer, C.; Brinkman, U.A.T. Analytical separation and detection methods for flavonoids. J. Chromatogr. A 2006, 1112, 31–63. [Google Scholar] [CrossRef] [PubMed]
- Pereira-Caro, G.; Ludwig, I.A.; Polyviou, T.; Malkova, D.; Garcia, A.; Moreno-Rojas, J.M.; Crozier, A. Identification of plasma and urinary metabolites and catabolites derived from orange juice (poly)phenols: Analysis by high-performance liquid chromatography-high-resolution mass spectrometry. J. Agric. Food Chem. 2016, 64, 5724–5735. [Google Scholar] [CrossRef] [Green Version]
- Mora-Granados, M.; González-Gómez, D.; Gallego-Picó, A. Feasibility of the determination of three flavan-3-ols metabolites in urine samples via parallel factor analysis of fluorescence emission matrices. J. Funct. Foods 2017, 37, 303–309. [Google Scholar] [CrossRef]
- Casado, N.; Morante-Zarcero, S.; Pérez-Quintanilla, D.; Cámara, J.S.; Sierra, I. Two novel strategies in food sample preparation for the analysis of dietary polyphenols: Micro-extraction techniques and new silica-based sorbent materials. Trends Food Sci. Tech. 2020, 98, 167–180. [Google Scholar] [CrossRef]
- Dmitrienko, S.G.; Irkha, V.V.; Duisebaeva, T.B.; Mikhailik, Y.V.; Zolotov, Y.A. Synthesis and study of the sorption properties of 4-hydroxybenzoic acid-imprinted polymers. J. Anal. Chem. 2006, 61, 14–19. [Google Scholar] [CrossRef]
- Dmitrienko, S.G.; Kudrinskaya, V.A.; Apyari, V.V. Methods of extraction, preconcentration, and determination of quercetin. J. Anal. Chem. 2012, 67, 299–311. [Google Scholar] [CrossRef]
- Karasova, G.; Lehotay, J.; Klodzinska, E.; Gadzala-Kopciuch, R.; Buszewski, B. Comparison of several extraction methods for the isolation of benzoic acid derivatives from Melissa officinalis. J. Liq. Chrom. Relat. Tech. 2006, 29, 1633–1644. [Google Scholar] [CrossRef]
- Karasova, G.; Lehotay, J.; Sadecka, J.; Skacani, I.; Lachova, M. Selective extraction of derivates of p-hydroxy-benzoic acid from plant material by using a molecularly imprinted polymer. J. Sep. Sci. 2005, 28, 2468–2476. [Google Scholar] [CrossRef]
- Chen, F.F.; Wang, G.Y.; Shi, Y.P. Molecularly imprinted polymer microspheres for solid-phase extraction of protocatechuic acid in Rhizoma homalomenae. J. Sep. Sci. 2011, 34, 2602–2610. [Google Scholar] [CrossRef]
- Denderz, N.; Lehotay, J. Using of molecularly imprinted polymers for determination of gallic and protocatechuic acids in red wines by high performance liquid chromatography. J. Chromatogr. A 2014, 1372, 72–80. [Google Scholar] [CrossRef]
- Denderz, N.; Lehotay, J. Application of the van’t Hoff dependences in the characterization of molecularly imprinted polymers for some phenolic acids. J. Chromatogr. A 2012, 1268, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Dmitrienko, S.G.; Irkha, V.V.; Apyari, V.V.; Klokova, E.V.; Zolotov, Y.A. Recognition of hydroxybenzoic acids and their esters by molecularly imprinted polymers. Mendeleev Commun. 2008, 18, 315–317. [Google Scholar] [CrossRef]
- Michailof, C.; Manesiotis, P.; Panayiotou, C. Synthesis of caffeic acid and p-hydroxybenzoic acid molecularly imprinted polymers and their application for the selective extraction of polyphenols from olive mill waste waters. J. Chromatogr. A 2008, 1182, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.W.; Li, Y.Z.; Chang, W.B. Molecularly imprinted polymer using p-hydroxybenzoic acid, p-hydroxyphenylacetic acid and p-hydroxyphenylpropionic acid as templates. J. Mol. Recognit. 2001, 14, 388–392. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Ng, T.B.; Wong, J.H.; Qiao, J.X.; Zhang, Y.N.; Zhou, R.; Chen, R.R.; Liu, F. Separation and purification of the antioxidant compounds, caffeic acid phenethyl ester and caffeic acid from mushrooms by molecularly imprinted polymer. Food Chem. 2013, 139, 1161–1167. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.W.; Wu, L.Q.; Li, Y.Z. Experimental and theoretical study on p-hydroxybenzoic acid imprinted polymers with different functional monomers. Acta Chim. Sin. 2004, 62, 598–602. [Google Scholar]
- Boscari, C.N.; Mazzuia, G.R.; Wisniewski, C.; Borges, K.B.; Figueiredo, E.C. Molecularly imprinted probe for solid-phase extraction of hippuric and 4-methylhippuric acids directly from human urine samples followed by MEKC analysis. Electrophoresis 2017, 38, 1083–1090. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Mosbach, K. Molecularly imprinted microspheres as antibody binding mimics. React. Funct. Polym. 2001, 48, 149–157. [Google Scholar] [CrossRef]
- Cieplak, M.; Kutner, W. Artificial Biosensors: How Can Molecular Imprinting Mimic Biorecognition? Trends Biotechnol. 2016, 34, 922–941. [Google Scholar] [CrossRef]
- De Ferrars, R.M.; Czank, C.; Zhang, Q.; Botting, N.P.; Kroon, P.A.; Cassidy, A.; Kay, C.D. The pharmacokinetics of anthocyanins and their metabolites in humans. Br. J. Pharmacol. 2014, 171, 3268–3282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nash, V.; Ranadheera, C.S.; Georgousopoulou, E.N.; Mellor, D.D.; Panagiotakos, D.B.; McKune, A.J.; Kellett, J.; Naumovski, N. The effects of grape and red wine polyphenols on gut microbiota—A systematic review. Food Res. Int. 2018, 113, 277–287. [Google Scholar] [CrossRef] [PubMed]
- Sasot, G.; Martínez-Huelamo, M.; Vallverdu-Queralt, A.; Mercader-Martí, M.; Estruch, R.; Lamuela-Raventós, R.M. Identification of phenolic metabolites in human urine after the intake of a functional food made from grape extract by a high resolution LTQ-Orbitrap-MS approach. Food Res. Int. 2017, 100, 435–444. [Google Scholar] [CrossRef]
- De Middeleer, G.; Dubruel, P.; De Saeger, S. Characterization of MIP and MIP functionalized surfaces: Current state-of-the-art. Trac-Trends Anal. Chem. 2016, 76, 71–85. [Google Scholar] [CrossRef]
- Shi, S.Y.; Guo, J.F.; You, Q.P.; Chen, X.Q.; Zhang, Y.P. Selective and simultaneous extraction and determination of hydroxybenzoic acids in aqueous solution by magnetic molecularly imprinted polymers. Chem. Eng. J. 2014, 243, 485–493. [Google Scholar] [CrossRef]
- Baggiani, C.; Giraudi, G.; Giovannoli, C.; Tozzi, C.; Anfossi, L. Adsorption isotherms of a molecular imprinted polymer prepared in the presence of a polymerisable template—Indirect evidence of the formation of template clusters in the binding site. Anal. Chim. Acta 2004, 504, 43–52. [Google Scholar] [CrossRef]
- Schwarz, L.J.; Danylec, B.; Harris, S.J.; Boysen, R.I.; Hearn, M.T.W. Preparation of molecularly imprinted polymers for the selective recognition of the bioactive polyphenol, (E)-resveratrol. J. Chromatogr. A 2011, 1218, 2189–2195. [Google Scholar] [CrossRef] [PubMed]
Model | Parameters | 4-HPA | 3-HPA | 4-HBA | PCA | SyA | HA | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Value | S.D. | Value | S.D. | Value | S.D. | Value | S.D. | Value | S.D. | Value | S.D. | ||
Langmuir | A = 1/Qmax | 0.0076 | 0.013 | 0.009 | 0.008 | 0.024 | 0.010 | 0.025 | 0.005 | 0.017 | 0.004 | 0.009 | 0.026 |
B = 1/(KLQmax) | 10.173 | 0.179 | 11.644 | 0.101 | 12.186 | 0.136 | 10.025 | 0.068 | 9.810 | 0.053 | 17.492 | 0.351 | |
R | 0.998 | - | 0.999 | - | 0.999 | - | 0.999 | - | 0.999 | - | 0.997 | - | |
Freundlich | A = log KF | −0.875 | 0.094 | −0.914 | 0.058 | −0.908 | 0.045 | −0.809 | 0.065 | −0.822 | 0.056 | −1.096 | 0.081 |
b = 1/n | 0.898 | 0.042 | 0.872 | 0.026 | 0.827 | 0.020 | 0.8139 | 0.029 | 0.845 | 0.030 | 0.891 | 0.038 | |
R | 0.992 | - | 0.993 | - | 0.995 | - | 0.989 | - | 0.991 | - | 0.986 | - |
Method | r2 | LOD mg/L | LOQ mg/L | Reproducibility (RSD) | |||||
---|---|---|---|---|---|---|---|---|---|
Inter-Day Precision | Intra-Day Precision | ||||||||
2 mg/L | 20 mg/L | 40 mg/L | 2 mg/L | 20 mg/L | 40 mg/L | ||||
MISPE-LC-DAD-MS | 0.990 | 1.22 | 3.69 | 1.6% | 2.8% | 2.8% | 6.7% | 3.2% | 3.1% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mora-Granados, M.; González-Gómez, D.; Jeong, J.S.; Gallego-Picó, A. A Molecularly Imprinted Polymer for Selective Extraction of Phenolic Acids from Human Urine. Appl. Sci. 2021, 11, 1577. https://doi.org/10.3390/app11041577
Mora-Granados M, González-Gómez D, Jeong JS, Gallego-Picó A. A Molecularly Imprinted Polymer for Selective Extraction of Phenolic Acids from Human Urine. Applied Sciences. 2021; 11(4):1577. https://doi.org/10.3390/app11041577
Chicago/Turabian StyleMora-Granados, Marco, David González-Gómez, Jin Su Jeong, and Alejandrina Gallego-Picó. 2021. "A Molecularly Imprinted Polymer for Selective Extraction of Phenolic Acids from Human Urine" Applied Sciences 11, no. 4: 1577. https://doi.org/10.3390/app11041577
APA StyleMora-Granados, M., González-Gómez, D., Jeong, J. S., & Gallego-Picó, A. (2021). A Molecularly Imprinted Polymer for Selective Extraction of Phenolic Acids from Human Urine. Applied Sciences, 11(4), 1577. https://doi.org/10.3390/app11041577