Application of Lactiplantibacillus plantarum SCH1 for the Bioconservation of Cooked Sausage Made from Mechanically Separated Poultry Meat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacteria Culture and Growth Condition
2.2. Preparing Batters and Producing Sausages with MSPM
2.3. pH Measurement
2.4. Oxidative-Reduction Potential (ORP) Measurement
2.5. Determining the Total Heme Pigments Content and Nitrosylmyoglobin Concentration
2.6. Sodium Nitrite and Nitrate Content
2.7. Determination of Color
2.8. Microbiological Tests
2.9. Biochemical Identification of LAB
2.10. Sensory Assessment
2.11. Statistical Analysis
3. Results and Discussion
3.1. Determination of pH
3.2. Oxidative-Reduction Potential
3.3. Total Heme Pigments Content and Nitrosyl Myoglobin Concentration
3.4. Nitrates and Nitrites Content
3.5. Color
3.6. Microbiological Quality
3.7. Sensory Quality
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Froning, S.M.; McKee, G.F. Mechanical separation of poultry meat and its use in products. In Poultry Meat Processing, 1st ed.; Sams, A.R., Ed.; CRC Press: Boca Raton, FL, USA, 2001; Volume 14, pp. 243–254. [Google Scholar]
- Eurostat. Farm production—Livestock and meat. In Agriculture, Forestry and Fishery Statistics; Cook, E., Ed.; Publications Office of the European Union: Luxembourg, 2019; pp. 52–57. [Google Scholar]
- Stiebing, A. Separatorenfleisch im Kreuzfeuer der Kritik. Fleischwirtsch 2002, 82, 8. [Google Scholar]
- Gill, C.O. Visible contamination on animals and carcasses and the microbiological condition of meat. J. Food Prot. 2004, 67, 413–419. [Google Scholar] [CrossRef]
- Gill, C.O.; Landers, C. Proximate sources of bacteria on boneless loins prepared from routinely processed and detained carcasses at a pork packing plant. Int. J. Food Microbiol. 2004, 97, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Daros, F.G.; Masson, M.L.; Amico, S.C. The influence of the addition of mechanically deboned poultry meat on the rheological properties of sausage. J. Food Process. Eng. 2005, 68, 185–189. [Google Scholar] [CrossRef]
- Michalski, M. Characteristic of basic chemical constitution of poultry meat obtained in mechanical deboning process. Rocz. Inst. Przem. Mięsn. Tł. 2006, 44, 67–72. [Google Scholar]
- Ozkececi, R.B.; Karakaya, M.; Yilmaz, M.T.; Saricoban, C.; Ockerman, H.W. The effect of carcass part and packaging metod on the storage stability of mechanically deboned chicken meat. J. Muscle Foods 2008, 19, 288–301. [Google Scholar] [CrossRef]
- Viuda-Martos, M.; Fernández-López, J.; Pérez-Álvarez, J.A. Mechanical deboning. In Handbook of Meat and Meat Processing, 2nd ed.; Hui, Y., Ed.; CRC Press: Boca Raton, FL, USA, 2012; Volume 5, pp. 457–468. [Google Scholar]
- Yuste, J.; Pla, R.; Capellas, M.; Mor-Mur, M. Application of high-pressure processing and nisin to mechanically recovered poultry meat for microbial decontamination. Food Control 2002, 13, 451–455. [Google Scholar] [CrossRef]
- Pomykała, R.; Michalski, M. Microbiological quality of mechanically separated poultry meat. Acta Sci. Pol. Med. Vet. 2008, 7, 43–49. [Google Scholar]
- Michalski, M. Calcium content in meat mechanically separated using the traditional (pressure) method and a technique that does not damage the bone structure. Rocz. Inst. Przem. Mięs Tł. 2009, 47, 77–81. [Google Scholar]
- On, S.; Wong, T.L.; Hom, B.; Graham, C.; Paulin, S. Bacterial concentrations of poultry offal and in mechanically separated meat products at the processing plant. In New Zaeland: Food Safety Authority; MAF Technical Paper No: 2011/59; Ministry of Agriculture and Forestry: Wellington, New Zealand, 2011. [Google Scholar]
- Regulation (EC) No 853/2004 of the European Parliament and of the Council of 29 April 2004 laying down specific hygiene rules for on the hygiene of foodstuffs. Off. J. Eur. Union 2004, L139, 55.
- Thielke, S.; Lhaft, S.K.; Kühne, M. Effects of aging prior to freezing on poultry meat tenderness. Poult. Sci. 2005, 84, 607–612. [Google Scholar] [CrossRef]
- Pegg, R.B.; Shahidi, F. The color of meat. In Nitrite Curing of Meat: The N-Nitrosamine Problem and Nitrite Alternatives, 1st ed.; Pegg, R.B., Shahidi, F., Eds.; Food & Nutrition Press Inc.: Trumbull, CT, USA, 2000; Volume 3, pp. 23–66. [Google Scholar]
- Drabik-Markiewicz, G.; Van den Maagdenberg, K.; De Mey, E.; Kowalska, T.; Paelinck, H. Influence of putrescine, cadaverine, spermidine or spermine on the formation of N-nitrosamine in heated cured pork meat. Food Chem. 2011, 126, 1539–1545. [Google Scholar] [CrossRef]
- Herrmann, S.S.; Granby, K.; Duedahl-Olesen, L. Formation and mitigation of N-nitrosamines in nitrite preserved cooked sausages. Food Chem. 2015, 174, 516–526. [Google Scholar] [CrossRef] [Green Version]
- European Commission Decision (EU) 2018/702 of 8 May 2018 concerning national provisions notified by Denmark on the addition of nitrite to certain meat products (notified under document C (2018) 2721). Off. J. Eur. Union 2018, L118, 7–15.
- Hugas, M. Bacteriocinogenic lactic acid bacteria for the biopreservation of meat and meat products. Meat Sci. 1998, 49, 39–150. [Google Scholar] [CrossRef]
- Metaxopoulos, J.; Mataragas, M.; Drosinos, E.H. Microbial interaction in cooked cured meat products under vacuum or modified atmosphere at 4 °C. J. Appl. Microbiol. 2002, 93, 363–373. [Google Scholar] [CrossRef]
- Ammor, M.S.; Mayo, B. Selection criteria for lactic acid bacteria to be used as functional starter cultures in dry sausage production: An update. Meat Sci. 2007, 76, 138–146. [Google Scholar] [CrossRef]
- Rzepkowska, A.; Zielińska, D.; Ołdak, A.; Kołożyn-Krajewska, D. Organic whey as a source of Lactobacillus strains with selected technological and antimicrobial properties. Int. J. Food Sci. Technol. 2017, 52, 1983–1994. [Google Scholar] [CrossRef]
- Łaszkiewicz, B.; Szymański, P.; Kołożyn-Krajewska, D. Impact of selected lactic acid bacteria strains on technological usability and microbiological quality of mechanically separated poultry meat. Żywn Nauk Technol. 2019, 26, 122–134. [Google Scholar]
- Łaszkiewicz, B.; Szymański, P.; Kołożyn-Krajewska, D. The effect of selected lactic acid bacterial strains on the technological and microbiological quality of mechanically separated poultry meat cured with a reduced amount of sodium nitrite. Poult. Sci. 2020, in press. [Google Scholar]
- Victoria-León, T.; Totosaus, A.; Guerrero, I.; Pérez-Chabela, M.L. Efecto de bacterias ácido lácticas termoresistentes en salchichas cocidas. Cienc. Tecnol. Aliment. 2006, 5, 135–141. [Google Scholar] [CrossRef]
- Perez-Chabela, M.L.; Totosaus, A.; Guerrero, I. Evaluation of thermotolerant capacity of lactic acid bacteria isolated from commercial sausages and the effects of their addition on the quality of cooked sausages. Ciênc. Tecnol. Aliment. Campinas 2008, 28, 132–138. [Google Scholar] [CrossRef] [Green Version]
- Rzepkowska, A.; Zielińska, D.; Ołdak, A.; Kołożyn-Krajewska, D. Safety assessment and antimicrobial properties of the lactic acid bacteria strains isolated from polish raw fermented meat products. Int. J. Food Prop. 2017, 20, 2736–2747. [Google Scholar] [CrossRef] [Green Version]
- Hornsey, M. The colour of cooked cured pork. J. Agric. Sci. 1956, 9, 534. [Google Scholar] [CrossRef]
- Siu, D.; Henshall, A. Ion chromatographic determination of nitrate and nitrite in meat products. J. Chromatogr. A 1998, 804, 156–160. [Google Scholar] [CrossRef]
- Hunt, M.; King, A. Guidelines, instrumental meat color measurement. In AMSA Meat Color. Measurement Guidelines; American Meat Science Association: Champaign, IL, USA, 2012; Section VIII; pp. 45–52. [Google Scholar]
- Kumar, D.; Tanwar, V.K. Effects of incorporation of ground mustard on quality attributes of chicken nuggets. J. Food Sci. Technol. 2011, 48, 759–762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ha, M.Y.; Kim, S.W.; Lee, Y.W.; Kim, M.J.; Kim, S.J. Kinetics analysis of growth and lactic acid production in pH-controlled batch cultures of Lactobacillus casei KH-1 using yeast extract/corn steep liquor/glucose medium. J. Biosci. Bioeng. 2003, 96, 134–140. [Google Scholar] [CrossRef]
- Vermeiren, L.; Devlieghere, F.; Debevere, J. Evaluation of meat born lactic acid bacteria as protective cultures for the biopreservation of cooked meat products. Int. J. Food Microbiol. 2004, 96, 149–164. [Google Scholar] [CrossRef]
- Bolotin, A.; Mauger, S.; Malarme, K.; Ehrlich, S.D.; Sorokin, A. Low-redundancy sequencing of the entire Lactococcus lactis IL1403 genome. Lact. Acid Bact. Genet. Metab. Appl. 1999, 76, 27–76. [Google Scholar]
- Bolotin, A.; Wincker, P.; Mauger, S.; Jaillon, O.; Malarme, K.; Weissen-Bach, J.; Ehrlich, S.D.; Sorokin, A. The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res. 2001, 11, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Sanders, J.W.; Leenhouts, K.J.; Haandrikman, A.J.; Venema, G.; Kok, J. Stress response in Lactococcus lactis: Cloning, expression analysis, and mutation of the lactococcal superoxide dismutase gene. J. Bacteriol. 1995, 177, 5254–5260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Igarashi, T.; Kono, Y.; Tanaka, K. Molecular cloning of manganese catalase from Lactobacillus plantarum. J. Biol. Chem. 1996, 271, 29521–29524. [Google Scholar] [CrossRef] [Green Version]
- Kulikowska-Karpińska, E.; Moniuszko-Jakoniuk, J. The antioxidative barrier in the organism. Pol. J. Environ. Stud. 2004, 13, 5–13. [Google Scholar]
- Abriouel, H.; Herrmann, A.; Stärke, J.; Yousif, N.M.; Wijaya, A.; Tauscher, B.; Holzapfel, W.; Franz, C.M.A.P. Cloning and heterologous expression of hematin-dependent catalase produced by Lactobacillus plantarum CNRZ 1228. Appl. Environ. Microbiol. 2004, 70, 603–606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lechardeur, D.; Cesselin, B.; Fernandez, A.; Lamberet, G.; Garrigues, C.; Pedersen, M.; Gaudu, P.; Gruss, A. Using heme as an energy boost for lactic acid bacteria. Curr. Opin. Biotechnol. 2011, 22, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Honikel, K.O. The use and control of nitrate and nitrite for the processing of meat products. Meat Sci. 2008, 78, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, N.; Collins, J. Nitrite. In Food Preservatives, 2nd ed.; Russell, N.J., Gould, G.W., Eds.; Kluwer Academic/Plenum Publishers: New York, NY, USA, 2003; Volume 6, pp. 102–118. [Google Scholar]
- Sindelar, J.J.; Milkowski, A.L. Sodium nitrite in processed meat and poultry meats: A review of curing and examining the risk/benefit of its use. Am. Meat Sci. Assoc. AMSA White Pap. Ser. 2011, 3, 1–14. [Google Scholar]
- Terns, M.J.; Milkowski, A.L.; Claus, J.R.; Sindelar, J.J. Investigating the effect of incubation time and starter culture addition level on quality attributes of indirectly cured, emulsified cooked sausages. Meat Sci. 2011, 88, 454–461. [Google Scholar] [CrossRef]
- Shin, D.M.; Hwang, K.E.; Lee, C.W.; Kim, T.K.; Park, Y.S.; Han, S.G. Effect of Swiss Chard (Beta vulgaris Var. cicla) as nitrite replacement on color stability and shelf-life of cooked pork patties during refrigerated storage. Korean J. Food Sci. 2017, 37, 418–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbieri, G.; Bergamaschi, M.; Barbieri, G.; Franceschini, M. Kinetics of nitrite evaluated in a meat product. Meat Sci. 2013, 93, 282–286. [Google Scholar] [CrossRef]
- Slima, S.B.; Ktari, N.; Trabelsi, I.; Triki, M.; Feki-Tounsi, M.; Moussa, H.; Makni, I.; Herrero, A.; Jiménez-Colmenero, F.; Ruiz-Capillas Perez, C.; et al. Effect of partial replacement of nitrite with a novel probiotic Lactobacillus plantarum TN8 on color, physico-chemical, texture and microbiological properties of beef sausages. LWT Food Sci. Technol. 2017, 86, 219–226. [Google Scholar] [CrossRef]
- Heaton, K.M.; Cornforth, D.P.; Moiseev, I.V.; Egbert, W.R.; Carpenter, C.E. Minimum sodium nitrite levels for 536 pinking of various cooked meats as related to use of direct or indirect-dried soy isolates in 537 poultry rolls. Meat Sci. 2000, 55, 321–329. [Google Scholar] [CrossRef]
- Zeleňáková, L.; Kunová, S.; Lopašovský, L. Evaluation of microbiological quality of cooked meat products during their shelf life. Maso Int. Brno 2011, 1, 15–20. [Google Scholar]
- Eskandari, M.H.; Hosseinpour, S.; Mesbahi, G.R.; Shekarforoush, S. New composite nitrite-free and low-nitrite meat-curing systems using natural colorants. Food Sci. Nutr. 2013, 1, 392–401. [Google Scholar] [CrossRef]
- Patsias, A.; Chouliara, I.; Badeka, A.; Savvaidis, I.N.; Kontominas, M.G. Shelf-life of a chilled precooked chicken product stored in air and under modified atmospheres: Microbiological, chemical, sensory attributes. Food Microbiol. 2006, 23, 423–429. [Google Scholar] [CrossRef]
- Comi, G.; Andyanto, D.; Manzano, M.; Iacumin, L. Lactococcus lactis and Lactobacillus sakei as bio-protective culture to eliminate Leuconostoc mesenteroides spoilage and improve the shelf life and sensorial characteristics of commercial cooked bacon. Food Microbiol. 2016, 58, 16–22. [Google Scholar] [CrossRef]
- Feng, C.H.; Drummond, L.; Sun, D.W. Modelling the growth parameters of lactic acid bacteria and total viable count in vacuum-packaged Irish cooked sausages cooled by different methods. Int. J. Food Sci. Technol. 2014, 49, 2659–2667. [Google Scholar] [CrossRef]
- Roszak, D.B.; Grimes, D.J.; Colwell, R.R. Viable but non-recoverable stage of Salmonella enteritidis in aquatic system. Can. J. Microbiol. 1984, 30, 334–338. [Google Scholar] [CrossRef]
- Fakruddin, M.D.; Mannan, K.S.B.; Andrews, S. Viable but nonculturable bacteria: Food safety and public health perspective. ISRN Microbiol. 2013, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Mendis, N.; Trigui, H.; Oliver, J.D.; Faucher, S.P. The importance of the viable but non-culturable state in human bacterial pathogens. Front. Microbiol. 2014, 5, 258. [Google Scholar] [CrossRef] [Green Version]
- Zielińska, D.; Ołdak, A.; Rzepkowska, A.; Zieliński, K. Enumeration and identification of probiotic bacteria in food matrices. In Advances in Biotechnology for Food Industry; Holban, A.M., Grumezescu, A.M., Eds.; Academic Press: New York, NY, USA, 2018; Chapter 6; pp. 167–196. [Google Scholar]
- Majou, D.; Christieans, S. Mechanisms of the bactericidal effects of nitrate and nitrite in cured meats. Meat Sci. 2018, 145, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Sebranek, G.J.; Bacus, J.N. Cured meat products without direct addition of nitrate or nitrite: What are the issues? Meat Sci. 2007, 77, 136–147. [Google Scholar] [CrossRef] [PubMed]
- Sebranek, G.J. Basic Curing Ingredients. In Ingredients in Meat Products: Properties, Functionality, and Applications; Tarte, R., Ed.; Springer Science Business Media: New York, NY, USA, 2009; pp. 1–23. [Google Scholar]
- Lövenklev, M.; Artin, I.; Hagberg, O.; Borch, E.; Holst, E.; Radström, P. Quantitative interaction effects of carbon dioxide, sodium chloride, and sodium nitrite on neurotoxin gene expression in nonproteolytic Clostridium botulinum Type, B. Appl. Environ. Microbiol. 2004, 70, 2928–2934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lövenklev, M.; Artin, I.; Hagberg, O.; Borch, E.; Holst, E.; Radström, P. Relative neurotoxin gene expression in Clostridium botulinum type B, determined using quantitative reverse transcription-PCR. Appl. Environ. Microbiol. 2004, 70, 2919–2927. [Google Scholar] [CrossRef] [Green Version]
Formula Ingredient [kg]/Experimental Treatment | C | L |
---|---|---|
MSPM | 100.00 | 100.00 |
Bacterial biomass Lactiplantibacillus plantarum SCH1 suspended in NaCl 0.9% solution | - | 1.25 * |
NaCl 0.9% solution | 1.25 * | - |
Water/ice | 30.00 | 30.00 |
Sodium nitrite | 0.0070 | 0.0070 |
Sodium triphosphate (Tari P-31: 57% P2O5) | 0.33 | 0.33 |
Sodium ascorbate | 0.05 | 0.05 |
Sodium chloride | 2.30 | 2.30 |
SUPRO 595 protein | 2.00 | 2.00 |
Potato starch | 2.50 | 2.50 |
Carrageenan | 0.40 | 0.40 |
Black pepper | 0.25 | 0.25 |
Marjoram | 0.07 | 0.07 |
Fresh garlic | 0.05 | 0.05 |
Total | 137.96 | 137.96 |
Parameter | Treatment | Storage Time (Weeks) | ||
---|---|---|---|---|
0 | 1 | 3 | ||
pH | C | 6.72 ± 0.01 aA | 6.76 ± 0.02 aB | 6.80 ± 0.01 aC |
L | 6.74 ± 0.02 aAB | 6.72 ± 0.02 aA | 6.78 ± 0.02 aB | |
ORP (mV) | C | 284.3 ± 3.0 bA | 332.2 ± 4.0 bB | 331.7 ± 2.5 bB |
L | 271.5 ± 2.9 aA | 322.4 ± 2.3 aC | 311.6 ± 2.8 aB |
Parameter | Treatment | Storage Time (Weeks) | ||
---|---|---|---|---|
0 | 1 | 3 | ||
Nitrite (mg/kg) | C | 16.5 ± 0.2 aC | 15.4 ± 0.1 aB | 14.4 ± 0.1 aA |
L | 16.8 ± 0.2 aC | 15.7 ± 0.1 aB | 14.4 ± 0.3 aA | |
Nitrate (mg/kg) | C | 62.2 ± 4.9 aB | 49.1 ± 0.8 aA | 65.4 ± 2.4 aB |
L | 66.4 ± 3.0 aB | 49.3 ± 1.1 aA | 67.1 ± 0.6 aB | |
Total heme pigments content (ppm) | C | 113.56 ± 0.68 aB | 110.84 ± 1.18 aA | 114.01 ± 0.39 aB |
L | 116.51 ± 1.96 aB | 109.48 ± 0.68 aA | 112.20 ± 1.80 aA | |
NOMb content (g/100 g) | C | 75.93 ± 1.52 bB | 78.84 ± 1.04 aB | 58.93 ± 2.73 aA |
L | 70.86 ± 0.76 aA | 76.29 ± 3.30 aA | 64.96 ± 1.07 bA |
Parameter | Treatment | Storage Time (Weeks) | ||
---|---|---|---|---|
0 | 1 | 3 | ||
L* | C | 58.43 ± 0.75 aB | 57.74 ± 0.63 aA | 58.30 ± 0.31 aAB |
L | 58.82 ± 0.48 aB | 58.15 ± 0.35 aA | 58.41 ± 0.39 aAB | |
a* | C | 17.33 ± 0.52 aA | 16.93 ± 0.38 aA | 17.15 ± 0.36 aA |
L | 17.22 ± 0.83 aA | 17.09 ± 0.29 aA | 17.12 ± 0.33 aA | |
b* | C | 5.26 ± 0.22 aA | 5.49 ± 0.22 aB | 5.43 ± 0.18 aAB |
L | 5.36 ± 0.25 aA | 5.39 ± 0.15 aA | 5.48 ± 0.09 aA | |
a*/b* | C | 3.30 ± 0.17 aB | 3.09 ± 0.13 aA | 3.16 ± 0.11 aA |
L | 3.22 ± 0.23 aA | 3.17 ± 0.09 aA | 3.13 ± 0.08 aA |
Parameter | Treatment | Storage Time (Weeks) | ||
---|---|---|---|---|
0 | 1 | 3 | ||
Total viable counts (log cfu/g) | C | 2.16 ± 1.06 aA | 2.19 ± 0.76 aA | 8.24 ± 7.06 bB |
L | 2.51 ± 1.48 bA | 2.54 ± 1.06 bA | 7.31 ± 5.76 aB | |
Lactic acid bacteria counts (log cfu/g) | C | <1.00 | <1.00 | 5.23 ± 4.00 a |
L | <1.00 | <1.00 | 5.92 ± 4.64 b | |
Escherichia coli counts (log cfu/g) | C | <1.00 | <1.00 | na |
L | <1.00 | <1.00 | na | |
Enterobacteriaceae counts (log cfu/g) | C | <1.00 | <1.00 | <1.00 |
L | <1.00 | <1.00 | <1.00 | |
Coagulase-positive Staphylococcus count (log cfu/g) | C | <1.00 | <1.00 | na |
L | <1.00 | <1.00 | na | |
Salmonella sp. content in 25 g | C | nd | na | na |
L | nd | na | na | |
Campylobacter spp. content in 25 g | C | nd | na | na |
L | nd | na | na |
Treatment | Isolate | Bacteria Type | Number of True Tests of Isolate Biochemical Activity with SCH1 Strain | Bacteria Species |
---|---|---|---|---|
C | 1 | Lactobacillus | 40/49 | paracasei |
2 | nb | na | na | |
3 | nb | na | na | |
4 | Lactobacillus | 41/49 | pentosus | |
5 | Lactobacillus | 48/49 | plantarum | |
6 | nb | na | na | |
7 | Lactobacillus | 45/49 | brevis | |
8 | nb | na | na | |
9 | Lactobacillus | 45/49 | brevis | |
10 | Lactobacillus | 41/49 | pentosus | |
L | 1 | Lactobacillus | 45/49 | plantarum |
2 | Lactobacillus | 42/49 | rhamnosus | |
3 | Lactobacillus | 49/49 | plantarum | |
4 | nb | na | na | |
5 | Lactobacillus | 29/49 | buchneri | |
6 | Lactobacillus | 48/49 | plantarum | |
7 | Lactobacillus | 49/49 | plantarum | |
8 | Lactobacillus | 49/49 | plantarum | |
9 | Lactobacillus | 48/49 | plantarum | |
10 | Lactobacillus | 42/49 | rhamnosus |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łaszkiewicz, B.; Szymański, P.; Zielińska, D.; Kołożyn-Krajewska, D. Application of Lactiplantibacillus plantarum SCH1 for the Bioconservation of Cooked Sausage Made from Mechanically Separated Poultry Meat. Appl. Sci. 2021, 11, 1576. https://doi.org/10.3390/app11041576
Łaszkiewicz B, Szymański P, Zielińska D, Kołożyn-Krajewska D. Application of Lactiplantibacillus plantarum SCH1 for the Bioconservation of Cooked Sausage Made from Mechanically Separated Poultry Meat. Applied Sciences. 2021; 11(4):1576. https://doi.org/10.3390/app11041576
Chicago/Turabian StyleŁaszkiewicz, Beata, Piotr Szymański, Dorota Zielińska, and Danuta Kołożyn-Krajewska. 2021. "Application of Lactiplantibacillus plantarum SCH1 for the Bioconservation of Cooked Sausage Made from Mechanically Separated Poultry Meat" Applied Sciences 11, no. 4: 1576. https://doi.org/10.3390/app11041576
APA StyleŁaszkiewicz, B., Szymański, P., Zielińska, D., & Kołożyn-Krajewska, D. (2021). Application of Lactiplantibacillus plantarum SCH1 for the Bioconservation of Cooked Sausage Made from Mechanically Separated Poultry Meat. Applied Sciences, 11(4), 1576. https://doi.org/10.3390/app11041576