Design and Diagnostics of High-Precision Accelerator Neutrino Beams
Abstract
:1. Introduction
- Neutrino beams with unprecedented precision on for the measurement of the and cross sections. These data are essential for DUNE and HK because long-baseline experiments study the oscillation of into and its CP-conjugate . They thus need an exquisite precision in and .
- Cross sections for the study of the disappearance channel (A disappearance channel is a oscillation, where the number of observed is smaller that the at the source because some of them have changed flavor. An appearance channel is a oscillation where a new flavor appears into the detector.) and in long-baseline experiments. This measurement is essential to determine the mixing parameters and must be combined with the above-mentioned appearance channels (and ) to disentangle effects due to CP violation from effects due to the neutrino mass hierarchy and (if any) deviations from the Standard Model [11]. In this case, a 1% level measurement of and is mandatory.
- The knowledge of the absolute flux is less critical for long-baseline oscillation experiments than for short-baseline cross section experiments because DUNE and HK use ancillary detectors (“Near Detector”, ND) located near the source to estimate the incoming rate of neutrinos. At the same time, the absolute fluxes and must be known with <5% precision because the Near Detector samples a flux that is not exactly the same as the flux reaching the “Far Detector” (FD), which is located far from the source and designed to observe the oscillations. The imperfections in the flux cancellation arising by the ND-versus-FD comparison cannot be neglected any more in modern facilities. Similar considerations hold for the size of the wrong-flavor contamination (e.g., at the source) that can pollute the measurement at the FD.
2. Accelerator Neutrino Beams
2.1. Narrow and Wide-Band Conventional Beams
2.2. Non-Conventional Neutrino Beams
2.3. Neutrino Production and Hadronic Cross-Sections
2.4. Decay Volume
3. Extraction and Monitoring of Primary Protons
- In the fast extraction, a kicker magnet is used to extract all protons stored in the machine in a time shorter than a machine revolution period. Such time is typically in the – range. According to the experimental requirements, the protons can be shared into several macro-pulses. These pulses always have a fine structure that corresponds to the proton bunches produced by the Radio Frequency (RF) cavities of the machine.
- The slow extraction is driven by an unstable resonant motion of the particles in the transverse phase space, which is used to continuously spill the beam out of the machine over a long time (up to several seconds). This instability is controlled by acting on the machine optics (e.g., “tune”) and non-linear elements (e.g., sextupoles and/or octupoles).
- The total proton intensity is typically measured with Beam Current Transformers (BCT), non-destructive inductive devices that provide an absolute measurement of the total beam charge. Many variants are available for different types of beams, as their performance is strongly dependent on the spill length and instantaneous beam current [66,67,68,69].
- Another important class of devices is the Secondary Emission Monitors (SEM). They can be used for different applications and consist of thin, metallic foils that are crossed by the beam to measure the emitted charge. When their signal is time-sampled, they can be used to measure the beam intensity profile during the extraction (Figure 3). SEM that are made up of several ribbons can be used to measure the transverse beam profile. These devices can provide a measurement of the absolute beam intensity, too. However, their absolute calibration is prone to subtle systematic effects like charge emission due to activation [70]. SEM are particularly useful with -long slow extracted spills, which are difficult to measure with a BCT. Many recent developments have shown performance improvements and possible alternatives, as, for instance, the graphite-based profile monitor at J-PARC [71] and the Cherenkov detector for proton Flux Measurments (CpFM) tested at the SPS [72,73,74]. Other commonly used devices for beam profile measurements are the Optical Transition Radiation (OTR) screens. These are particularly convenient for ultra-relativistic beams, where the particles crossing a thin foil emit transition radiation, due to the change of medium, that can be recorded by light detectors.
- Beam Position Monitors (BPM) are a class of devices used to measure the transverse position of the beam inside the vacuum chamber or in air [75]. They are non-destructive devices composed of a set of two or four electrodes, which act through capacitive pick-up. Because of this, they require short pulses or bunched beams: they are often replaced by SEM or OTR screens in slow-extracted beams [70], or paired to them for increased reliability [76].
- Beam Loss Monitors (BLM) are crucial machine-protection elements. They measure beam losses, i.e., showers originated from the beam hitting or scraping a beamline element, and provide feedback to the control system. BLM are available in several types, but the most common in high-energy machines are based on ionization chambers [77] or proportional counters because of radiation hardness constraints. In slow extractions, BLM are the ideal tool to evaluate the effectiveness of loss-reduction techniques.
4. Target
5. Hadron Yields
- General purpose experiments aimed at measuring differential cross sections for pion and kaon production using thin targets of various materials. The materials are chosen among the most common candidates for neutrino targets (see Section 4)
- Replica target experiments, where the yields and differential cross-sections are measured for an exact copy of the target used in the corresponding neutrino experiment.
6. Focusing of Secondary Mesons
6.1. Horns
6.2. Quadrupole Multiplets
7. Hadron Beam Lines
7.1. Acceptance Stage
7.2. Momentum Selection & Final Focusing Stages
7.3. Particle Identification Instrumentation
8. Decay Section
8.1. The Decay Volume of Monitored Neutrino Beams
8.2. Flux Monitoring at the Neutrino Factories
9. Hadron Dump Diagnostics
10. Mitigation Techniques of Beam Systematics at the Neutrino Detectors
10.1. The Near-Far Detector Technique
10.2. Appearance Measurements
10.3. High Precision NDs
10.4. Energy Unfolding
10.5. The PRISM Technique
10.6. The Narrow-Band Off-Axis (NBOA) Technique
10.7. Flux Measurement at the Detector
11. From Monitored to Tagged Neutrino Beams
12. Conclusions: A Step beyond the State-of-the-Art
- the MIPP data on thick Carbon target [167]
- the muon chambers located after the beam dump
- the neutrino-electron elastic scattering at the MINERA detector
- the low- neutrino-nucleus scattering at the MINERA detector
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Giganti, C.; Lavignac, S.; Zito, M. Neutrino oscillations: The rise of the PMNS paradigm. Prog. Part. Nucl. Phys. 2018, 98, 1–54. [Google Scholar] [CrossRef] [Green Version]
- Mezzetto, M.; Terranova, F. Three-flavour oscillations with accelerator neutrino beam. Universe 2020, 6, 32. [Google Scholar] [CrossRef] [Green Version]
- Tanabashi, M.; Hagiwara, K.; Hikasa, K.; Nakamura, K.; Sumino, Y.; Takahashi, F.; Tanaka, J.; Agashe, K.; Aielli, G.; Amsler, C.; et al. Review of Particle Physics. Phys. Rev. D 2018, 98, 030001. [Google Scholar] [CrossRef] [Green Version]
- Esteban, I.; Gonzalez-Garcia, M.; Maltoni, M.; Schwetz, T.; Zhou, A. The fate of hints: Updated global analysis of three-flavor neutrino oscillations. J. High Energy Phys. 2020, 2020, 178. [Google Scholar] [CrossRef]
- Huber, P.; Mezzetto, M.; Schwetz, T. On the impact of systematical uncertainties for the CP violation measurement in superbeam experiments. J. High Energy Phys. 2008, 2008, 021. [Google Scholar] [CrossRef] [Green Version]
- Coloma, P.; Huber, P.; Kopp, J.; Winter, W. Systematic uncertainties in long-baseline neutrino oscillations for large θ13. Phys. Rev. D 2013, 87, 033004. [Google Scholar] [CrossRef] [Green Version]
- Abi, B.; Acciarri, R.; Acero, M.; Adamov, G.; Adams, D.; Adinolfi, M.; Ahmad, Z.; Ahmed, J.; Alion, T.; Monsalve, S.A.; et al. Volume I. Introduction to DUNE. J. Instrum. 2020, 15, T08008. [Google Scholar] [CrossRef]
- Abe, K.; Abe, K.; Aihara, H.; Aimi, A.; Akutsu, R.; Andreopoulos, C.; Anghel, I.; Anthony, L.H.V.; Antonova, M.; Ashida, Y.; et al. Hyper-Kamiokande Design Report. arXiv 2018, arXiv:1805.04163. [Google Scholar]
- Katori, T.; Martini, M. Neutrino–nucleus cross sections for oscillation experiments. J. Phys. G Nucl. Part. Phys. 2017, 45, 013001. [Google Scholar] [CrossRef]
- NBI2019: 11th International Workshop on Neutrino Beams and Instrumentation, Batavia, IL, USA, 22–25 October 2019; See Also the Full NBI Workshop Series; Fermilab: Batavia, IL, USA, 2019.
- Escrihuela, F.J.; Forero, D.V.; Miranda, O.G.; Tórtola, M.; Valle, J. Probing CP violation with non-unitary mixing in long-baseline neutrino oscillation experiments: DUNE as a case study. New J. Phys. 2017, 19, 093005. [Google Scholar] [CrossRef] [Green Version]
- Longhin, A.; Ludovici, L.; Terranova, F. A novel technique for the measurement of the electron neutrino cross section. Eur. Phys. J. C 2015, 75, 155. [Google Scholar] [CrossRef] [Green Version]
- Franzinetti, C. Informal Conference on Experimental Neutrino Physics; CERN Yellow Report 65-32; CERN: Geneva, Switzerland, 1965. [Google Scholar]
- Kopp, S. Accelerator neutrino beams. Phys. Rep. 2007, 439, 101–159. [Google Scholar] [CrossRef] [Green Version]
- Dore, U.; Loverre, P.; Ludovici, L. History of accelerator neutrino beams. Eur. Phys. J. H 2019, 44, 271–305. [Google Scholar] [CrossRef] [Green Version]
- Feynman, R. The behavior of hadron collisions at extreme energies. In Proceedings of the 3rd International Conference on High Energy Collisions, Stony Brook, NY, USA, 5–6 September 1969; Volume 690905, pp. 237–258. [Google Scholar]
- Abrams, R.J.; Agarwalla, S.K.; Alekou, A.; Andreopoulos, C.; Ankenbrandt, C.M.; Antusch, S.; Apollonio, M.; Aslaninejad, M.; Back, J.; Ballett, P.; et al. International Design Study for the Neutrino Factory, Interim Design Report. arXiv 2011, arXiv:hep-ex/1112.2853. [Google Scholar]
- Geer, S. Neutrino beams from muon storage rings: Characteristics and physics potential. Phys. Rev. D 1998, 57, 6989–6997. [Google Scholar] [CrossRef] [Green Version]
- De Rujula, A.; Gavela, M.; Hernandez, P. Neutrino oscillation physics with a neutrino factory. Nucl. Phys. B 1999, 547, 21–38. [Google Scholar] [CrossRef] [Green Version]
- Parsa, Z. Muon storage rings—Neutrino factories. AIP Conf. Proc. 2000, 533, 181–195. [Google Scholar] [CrossRef] [Green Version]
- Bogomilov, M.; Tsenov, R.; Vankova-Kirilova, G.; Song, Y.P.; Tang, J.Y.; Li, Z.H.; Bertoni, R.; Bonesini, M.; Chignoli, F.; Mazza, R.; et al. Demonstration of cooling by the Muon Ionization Cooling Experiment. Nature 2020, 578, 53–59. [Google Scholar] [CrossRef] [Green Version]
- Zucchelli, P. A novel concept for a anti-νe/νe neutrino factory: The beta beam. Phys. Lett. B 2002, 532, 166–172. [Google Scholar] [CrossRef]
- Lindroos, M.; Mezzetto, M. Beta Beams: Neutrino Beams; Imperial College Press: London, UK, 2009. [Google Scholar]
- Kodama, K.; Ushida, N.; Andreopoulos, C.; Saoulidou, M.; Tzanakos, G.; Yager, P.; Baller, B.; Boehnlein, D.; Freeman, W.; Lundberg, B.; et al. Observation of tau neutrino interactions. Phys. Lett. B 2001, 504, 218–224. [Google Scholar] [CrossRef] [Green Version]
- Franzinetti, C. Informal Conference on Experimental Neutrino Physics; CERN Yellow Report 63-37; CERN: Geneva, Switzerland, 1963. [Google Scholar]
- Abe, K.; Abgrall, N.; Aihara, H.; Ajima, Y.; Albert, J.B.; Allan, D.; Amaudruz, P.-A.; Andreopoulos, C.; Andrieu, B.; Anerella, M.D.; et al. The T2K experiment. Nucl. Instrum. Methods A 2011, 659, 106–135. [Google Scholar] [CrossRef]
- Astier, P.; Autiero, D.; Baldisseri, A.; Baldo-Ceolin, M.; Banner, M.; Bassompierre, G.; Benslama, K.; Besson, N.; Bird, I.; Blumenfeld, B.; et al. Search for νμ → νe oscillations in the NOMAD experiment. Phys. Lett. B 2003, 570, 19–31. [Google Scholar] [CrossRef]
- Acquafredda, R.; Adam, T.; Agafonova, N.; Alvarez Sanchez, P.; Ambrosio, M.; Anokhina, A.; Aoki, S.; Ariga, A.; Ariga, T.; Arrabito, L.; et al. The OPERA experiment in the CERN to Gran Sasso neutrino beam. J. Instrum. 2009, 4, P04018. [Google Scholar] [CrossRef]
- Adamson, P.; Anderson, K.; Andrews, M.; Andrews, R.; Anghel, I.; Augustine, D.; Aurisano, A.; Avvakumov, S.; Ayres, D.S.; Baller, B.; et al. The NuMI neutrino beam. Nucl. Instrum. Methods A 2016, 806, 279–306. [Google Scholar] [CrossRef] [Green Version]
- Aguilar-Arevalo, A.A.; Anderson, C.E.; Bazarko, A.O.; Brice, S.J.; Brown, B.C.; Bugel, L.; Cao, J.; Coney, L.; Conrad, J.M.; Cox, D.C.; et al. Neutrino flux prediction at MiniBooNE. Phys. Rev. D 2009, 79, 072002. [Google Scholar] [CrossRef] [Green Version]
- Baussan, E.; Blennow, M.; Bogomilov, M.; Bouquerel, E.; Caretta, O.; Cederkall, J.; Christiansen, P.; Coloma, P.; Cupial, P.; Danared, H.; et al. A very intense neutrino super beam experiment for leptonic CP violation discovery based on the European spallation source linac. Nucl. Phys. B 2014, 885, 127–149. [Google Scholar] [CrossRef]
- Olvegård, M.; Benedetto, E.; Cieslak-Kowalska, M.; Ekelöf, T.; Martini, M.; Schönauer, H.; Wildner, E. Overview of the ESSnuSB accumulator ring. In Proceedings of the 57th ICFA Advanced Beam Dynamics Workshop on High-Intensity and High-Brightness Hadron Beams, Malmö, Sweden, 3–8 July 2016; p. MOPR021. [Google Scholar] [CrossRef]
- Goddard, B.; Knaus, P.; Schröder, G.; Weterings, W.; Uythoven, J. The New SPS Extraction Channel for LHC and CNGS; Technical Report CERN-SL-2000-036-BT; CERN: Geneva, Switzerland, 2000. [Google Scholar]
- Goddard, B.; Gschwendtner, E.; Gourber-Pace, M.; Meddahi, M.; Vincke, H.; Vincke, H.; Wenninger, J. High intensity commissioning of SPS LSS4 extraction for CNGS. In Proceedings of the 2007 IEEE Particle Accelerator Conference (PAC), Albuquerque, NM, USA, 25–29 June 2007; pp. 1604–1606. [Google Scholar] [CrossRef] [Green Version]
- Gschwendtner, E. CERN Neutrinos to Gran Sasso (CNGS): First Beam. In Proceedings of the 2006 IEEE Nuclear Science Symposium Conference Record, San Diego, CA, USA, 29 October–1 November 2006; Volume 3, pp. 1489–1492. [Google Scholar] [CrossRef] [Green Version]
- Koseki, T.; Arakaki, Y.; Chin, Y.O.; Hara, K.; Hasegawa, K.; Hashimoto, Y.; Hori, Y.; Igarashi, S.; Ishii, K.; Kamikubota, N.; et al. Beam commissioning and operation of the J-PARC main ring synchrotron. Prog. Theor. Exp. Phys. 2012, 2012, 02B004. [Google Scholar] [CrossRef]
- Kain, V. CERN-SPS Slow Extraction Overview; Slow Extraction Workshop 2017; CERN: Geneva, Switzerland, 2017. [Google Scholar]
- Kain, V.; Velotti, F.M.; Fraser, M.A.; Goddard, B.; Prieto, J.; Stoel, L.S.; Pari, M. Resonant slow extraction with constant optics for improved separatrix control at the extraction septum. Phys. Rev. Accel. Beams 2019, 22, 101001. [Google Scholar] [CrossRef] [Green Version]
- Charitonidis, N.; Efthymiopoulos, I. Low energy tertiary beam line design for the CERN neutrino platform project. Phys. Rev. Accel. Beams 2017, 20, 111001. [Google Scholar] [CrossRef] [Green Version]
- Booth, A.; Charitonidis, N.; Chatzidaki, P.; Karyotakis, Y.; Nowak, E.; Ortega Ruiz, I.; Rosenthal, M.; Sala, P. Commissioning Results of the Tertiary Beam Lines for the CERN Neutrino Platform Project. J. Phys. Conf. Ser. 2019, 1350, 012094. [Google Scholar] [CrossRef]
- Abi, B.; Acciarri, R.; Acero, M.A.; Adamowski, M.; Adams, C.; Adams, D.L.; Adamson, P.; Adinolfi, M.; Ahmad, Z.; Albright, C.H.; et al. The Single-Phase ProtoDUNE Technical Design Report; Technical Report FERMILAB-DESIGN-2017-02; CERN: Geneva, Switzerland, 2017. [Google Scholar]
- Abi, B.; Abed Abud, A.; Acciarri, R.; Acero, M.A.; Adamov, G.; Adamowski, M.; Adams, D.; Adrien, P.; Adinolfi, M.; Ahmad, Z.; et al. First results on ProtoDUNE-SP liquid argon time projection chamber performance from a beam test at the CERN Neutrino Platform. J. Instrum. 2020, 15, P12004. [Google Scholar] [CrossRef]
- Grant, A.; Maugain, J.M. High Intensity Version of the Narrowband Beam N3; Technical Report CERN-EF-BEAM-83-2; CERN: Geneva, Switzerland, 1983. [Google Scholar]
- Berge, P.; Blondel, A.; Bockmann, P.; Burkhardt, H.; Dydak, F.; De Groot, J.G.H.; Grant, A.L.; Hagelberg, R.; Hughes, E.W.; Krasny, M.; et al. Total neutrino and antineutrino charged current cross section measurements in 100, 160, and 200 GeV narrow band beams. Z. Phys. C Part. Fields 1987, 35, 443–452. [Google Scholar] [CrossRef] [Green Version]
- Blondel, A.; Bockmann, P.; Burkhardt, H.; Dydak, F.; Grant, A.L.; Hagelberg, R.; Hughes, E.W.; Krasny, W.; Para, A.; Taureg, H.; et al. Electroweak parameters from a high statistics neutrino nucleon scattering experiment. Z. Phys. C Part. Fields 1990, 45, 361–379. [Google Scholar] [CrossRef] [Green Version]
- Acquistapace, G.; Falaleev, V.P.; Maugain, J.M.; Olesen, G.; Rangod, S.; Zaslavsky, J. The West Area Neutrino Facility for CHORUS and NOMAD Experiments (94–97 Operation); Technical Report CERN-ECP-95-014; CERN: Geneva, Switzerland, 1995. [Google Scholar]
- Kissler, K.H.; Riche, J.; Scandale, W.; Schroder, G. Fast Resonant Extraction from the CERN SPS. IEEE Trans. Nucl. Sci. 1979, 26, 3228–3230. [Google Scholar] [CrossRef] [Green Version]
- Acerbi, F.; Ballerini, G.; Bonesini, M.; Brizzolari, C.; Brunetti, G.; Calviani, M.; Carturan, S.; Catanesi, M.G.; Cecchini, S.; Cindolo, F.; et al. The ENUBET Project; Technical Report CERN-SPSC-2018-034; SPSC-I-248; CERN: Geneva, Switzerland, 2018. [Google Scholar]
- Pari, M. Study and Development of SPS Slow Extraction Schemes and Focusing of Secondary Particles for the ENUBET Monitored Neutrino Beam. Ph.D. Thesis, Universitá degli Studi Di Padova, Dipartimento di Fisica e Astronomia G. Galilei, Padova, Italy, 2021. in press. [Google Scholar]
- Fraser, M.; Balhan, B.; Bartosik, H.; Bertone, C.; Bjorkman, D.; Borburgh, J.C.C.M.; Conan, N.; Cornelis, K.; Garcia Alia, R.; Gatignon, L.; et al. SPS Slow Extraction Losses and Activation: Challenges and Possibilities for Improvement. In Proceedings of the International Particle Accelerator Conference (IPAC’17), Copenhagen, Denmark, 14–19 May 2017; pp. 611–614. [Google Scholar] [CrossRef]
- Fraser, M.; Balhan, B.; Bartosik, H.; Bernhard, J.; Bertone, C.; Bjorkman, D.; Borburgh, J.C.C.M.; Brugger, M.; Charitonidis, N.; Conan, N.; et al. SPS Slow Extraction Losses and Activation: Update on Recent Improvements. In Proceedings of the 10th International Particle Accelerator Conference (IPAC’19), Melbourne, Australia, 19–24 May 2019; pp. 2391–2394. [Google Scholar] [CrossRef]
- Fraser, M.A. Overview of Slow Extraction at CERN: 2019. In Proceedings of the Contribution at the ICFA Mini-Workshop on Slow Extraction, Fermilab, IL, USA, 22–24 July 2019. [Google Scholar]
- Goddard, B.; Balhan, B.; Borburgh, J.; Esposito, L.; Fraser, M.A.; Jorat, L.; Kain, V.; Lolliot, C.; Stoel, L.S.; van Trappen, P.; et al. Reduction of 400 GeV/c slow extraction beam loss with a wire diffuser at the CERN Super Proton Synchrotron. Phys. Rev. Accel. Beams 2020, 23, 023501. [Google Scholar] [CrossRef] [Green Version]
- Velotti, F.M.; Esposito, L.S.; Fraser, M.A.; Kain, V.; Gilardoni, S.; Goddard, B.; Pari, M.; Prieto, J.; Rossi, R.; Scandale, W.; et al. Septum shadowing by means of a bent crystal to reduce slow extraction beam loss. Phys. Rev. Accel. Beams 2019, 22, 093502. [Google Scholar] [CrossRef] [Green Version]
- Esposito, L.S.; Bestman, P.; Butcher, M.; Calviani, M.; Di Castro, M.; Donze, M.; Fraser, M.A.; Gilardoni, S.; Goddard, B.; Kein, V.; et al. Crystal for Slow Extraction Loss-Reduction of the SPS Electrostatic Septum. In Proceedings of the 10th International Particle Accelerator Conference (IPAC’19), Melbourne, Australia, 19–24 May 2019; pp. 2379–2382. [Google Scholar] [CrossRef]
- Fraser, M.A.; Goddard, B.; Kain, V.; Pari, M.; Velotti, F.M.; Stoel, L.S.; Benedikt, M. Demonstration of slow extraction loss reduction with the application of octupoles at the CERN Super Proton Synchrotron. Phys. Rev. Accel. Beams 2019, 22, 123501. [Google Scholar] [CrossRef] [Green Version]
- Tomizawa, M.; Arakaki, Y.; Kimura, T.; Muto, R.; Murasugi, S.; Okamura, K.; Sato, H.; Shirakabe, Y.; Yanaoka, E. Slow extraction from the J-PARC main ring using a dynamic bump. Nucl. Instrum. Methods A 2018, 902, 51–61. [Google Scholar] [CrossRef]
- Nagaslaev, V.; Brown, K.A.; Tomizawa, M. Third integer resonance extraction with presence of higher multipoles. Phys. Rev. Accel. Beams 2019, 22, 043501. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Forck, P.; Sorge, S. Reducing Fluctuations in Slow-Extraction Beam Spill Using Transit Time Dependent Tune Modulation. Phys. Rev. Appl. 2020, 13, 044076. [Google Scholar] [CrossRef]
- Naito, D.; Kurimoto, Y.; Muto, R.; Kimura, T.; Okamura, K.; Shimogawa, T.; Tomizawa, M. Real-time correction of betatron tune ripples on a slowly extracted beam. Phys. Rev. Accel. Beams 2019, 22, 072802. [Google Scholar] [CrossRef] [Green Version]
- Abe, K.; Abgrall, N.; Aihara, H.; Akiri, T.; Albert, J.B.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Ariga, T.; Assylbekov, S.; et al. T2K neutrino flux prediction. Phys. Rev. D 2013, 87, 012001. [Google Scholar] [CrossRef] [Green Version]
- Aliaga, L.; Kordosky, M.; Golan, T.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bravar, A.; Budd, H.; Carneiro, M.F.; et al. Neutrino flux predictions for the NuMI beam. Phys. Rev. D 2016, 94, 092005. [Google Scholar] [CrossRef] [Green Version]
- Forck, P. Measurement Techniques for Transfer Lines and Beam Instrumentation. CERN Yellow Rep. School Proc. 2018, 5, 395. [Google Scholar]
- Brandt, D. (Ed.) Organisation Européenne Pour la Recherche Nucléaire CERN European Organization for Nuclear Research. In Proceedings of the CAS—CERN Accelerator School: Course on Beam Diagnostics, Dourdan, France, 28 May–6 June 2008; CERN: Geneva, Switzerland, 2009. [Google Scholar] [CrossRef]
- Strehl, P. Beam Instrumentation and Diagnostics; Springer: Berlin/Heidelberg, Germany, 2006; p. 428. [Google Scholar] [CrossRef]
- Webber, R.C. Charged particle beam current monitoring tutorial. AIP Conf. Proc. 1995, 333, 3–23. [Google Scholar] [CrossRef] [Green Version]
- Sharp, J.B. The Induction Type Beam Monitor for the PS: Hereward Transformer; Technical Report MPS-Int-CO-62-15; CERN-MPS-Int-CO-62-15; CERN: Geneva, Switzerland, 1962. [Google Scholar]
- Unser, K. A Toroidal DC Beam Current Transformer with High Resolution. IEEE Trans. Nucl. Sci. 1981, 28, 2344–2346. [Google Scholar] [CrossRef] [Green Version]
- Belohrad, D.; Jensen, L.; Jones, O.; Ludwig, M.; Savioz, J.J. The LHC Fast BCT System: A Comparison of Design Parameters with Initial Performance; Technical Report CERN-BE-2010-010; CERN: Geneva, Switzerland, 2010. [Google Scholar]
- Bernier, K.; Ferioli, G.; Hatziangeli, E.; Marchionni, A.; Palladino, V.; Stevenson, G.R.; Tabarelli de Fatis, T.; Tsesmelis, E.; de Rijk, G. Calibration of Secondary Emission Monitors of Absolute Proton Beam Intensity in the CERN SPS North Area; CERN Yellow Reports: Monographs; CERN: Geneva, Switzerland, 1997. [Google Scholar] [CrossRef]
- Hashimoto, Y.; Endo, M.; Hori, Y.; Murakami, M.; Murashima, K.; Muto, R.; Sakai, H.; Tachibana, M.; Tatami, A.; Tomizawa, M.; et al. Beam Profile Monitor for Slow Extracted Beam Using Multi-Layered Graphene at J-PARC. In Proceedings of the 10th International Particle Accelerator Conference (IPAC’19), Melbourne, Australia, 19–24 May 2019; pp. 2532–2535. [Google Scholar] [CrossRef]
- Puill, V.; Addesa, F.; Burmistrov, L.; Breton, D.; Chaumat, V.; Cavoto, G.; Conforti di Lorenzo, S.; Dubos, S.; Gavrikov, Y.A.; Iacoangeli, F.; et al. The CpFM, an in-vacuum Cherenkov beam monitor for UA9 at SPS. J. Instrum. 2017, 12, P04029. [Google Scholar] [CrossRef]
- Addesa, F.; Burmistrov, L.; Cavoto, G.; Dubos, S.; Garattini, M.; Iacoangeli, F.; Montesano, S.; Puill, V.; Scandale, W.; Stocchi, A. The SE-CpFM Detector for the Crystal-Assisted Extraction at CERN-SPS. In Proceedings of the International Beam Instrumentation Conference (IBIC’17), Grand Rapids, MI, USA, 20–24 August 2017; JACoW: Geneva, Switzerland, 2018; pp. 419–422. [Google Scholar] [CrossRef]
- Addesa, F.M. In-Vacuum Cherenkov Light Detectors for Crystal-Assisted Beam Manipulations. Ph.D. Thesis, Rome University, Rome, Italy, 2018. [Google Scholar]
- Bogey, T.; Jones, R. The Beam Position System of the CERN Neutrino to Gran Sasso Proton Beam Line; CERN-AB-2007-024; CERN: Geneve, Switzerland, 2007. [Google Scholar]
- Meddahi, M.; Cornelis, K.; Elsener, K.; Gschwendtner, E.; Herr, W.; Kain, V.; Lamont, M.; Wenninger, J. Cern Neutrinos to Gran Sasso (CNGS): Results from commissioning. In Proceedings of the 2007 IEEE Particle Accelerator Conference (PAC), Albuquerque, NM, USA, 25–29 June 2007; pp. 692–694. [Google Scholar] [CrossRef] [Green Version]
- Holzer, E.B.; Dehning, B.; Effinger, E.; Emery, J.; Ferioli, G.; Gonzalez, J.L.; Gschwendtner, E.; Guaglio, G.; Hodgson, M.; Kramer, D.; et al. Beam loss monitoring system for the LHC. In Proceedings of the IEEE Nuclear Science Symposium Conference Record, Fajardo, PR, USA, 23–29 October 2005; Volume 2, pp. 1052–1056. [Google Scholar] [CrossRef] [Green Version]
- Heijne, E.H.M. Muon Flux Measurement with Silicon Detectors in the CERN Neutrino Beams. Ph.D. Thesis, University of Amsterdam, Amsterdam, The Netherlands, 1983. [Google Scholar] [CrossRef]
- Casagrande, L.; Catanesi, M.G.; Falaleev, V.P.; Guglielmi, A.; Palladino, V.; Plothow-Besch, H.; Péraire, S.; Quesnel, J.P.; Tovey, S.N.; Tsesmelis, E.; et al. The Alignment of the CERN West Area Neutrino Facility; CERN Yellow Reports: Monographs; CERN: Geneva, Switzerland, 1996. [Google Scholar] [CrossRef]
- Jensen, L. Beam Instrumentation for the CNGS Facility; Technical Report CERN-AB-Note-2006-022; CERN: Geneva, Switzerland, 2006. [Google Scholar]
- Gasior, M.; Jones, R.; Lefevre, T.; Schmickler, H.; Wittenburg, K. Introduction to Beam Instrumentation and Diagnostics. CERN Accel. Sch. Adv. Accel. Phys. Course 2014, 23–60. [Google Scholar] [CrossRef]
- Simos, N.; Bishai, M.; Mokhov, N. Low-Z High Power Targets for Neutrino Beams: Performance under Intense Proton Flux. Nucl. Phys. B Proc. Suppl. 2012, 229–232, 506. [Google Scholar] [CrossRef]
- Simos, N.; Kotsina, Z.; Dooryhee, E.; Zhong, Z.; Zhong, H.; Camino, F.; Quaranta, E.; Charitonidis, N.; Bertarelli, A.; Redaelli, S.; et al. 200 MeV proton irradiation of the oxide dispersion strengthened copper alloy (GlidCop-Al15). J. Nucl. Mater. 2019, 516, 360–372. [Google Scholar] [CrossRef]
- Caretta, O.; Davenne, T.; Densham, C.; Fitton, M.; Loveridge, P.; O’Dell, J.; Charitonidis, N.; Efthymiopoulos, I.; Fabich, A.; Rivkin, L. Response of a tungsten powder target to an incident high energy proton beam. Phys. Rev. ST Accel. Beams 2014, 17, 101005. [Google Scholar] [CrossRef] [Green Version]
- Caretta, O.; Loveridge, P.; O’Dell, J.; Davenne, T.; Fitton, M.; Atherton, A.; Densham, C.; Charitonidis, N.; Efthymiopoulos, I.; Fabich, A.; et al. Proton beam induced dynamics of tungsten granules. Phys. Rev. Accel. Beams 2018, 21, 033401. [Google Scholar] [CrossRef] [Green Version]
- Bonesini, M.; Marchionni, A.; Pietropaolo, F.; Tabarelli de Fatis, T. On particle production for high energy neutrino beams. Eur. Phys. J. C 2001, 20, 13–27. [Google Scholar] [CrossRef] [Green Version]
- Chemakin, I.; Cianciolo, V.; Cole, B.; Fernow, R.C.; Frawley, A.D.; Gilkes, M.; Gushue, S.; Hartouni, E.P.; Hiejima, H.; Justice, M.; et al. Pion production by protons on a thin beryllium target at 6.4, 12.3, and 17.5 GeV/c incident proton momenta. Phys. Rev. C 2008, 77, 015209. [Google Scholar] [CrossRef] [Green Version]
- Abgrall, N.; Aduszkiewicz, A.; Ali, Y.; Andronov, E.; Antićić, T.; Antoniou, N.; Baatar, B.; Bay, F.; Blondel, A.; Blümer, J.; et al. Measurements of π±, K±, KS0, Λ and proton production in proton–carbon interactions at 31 GeV/c with the NA61/SHINE spectrometer at the CERN SPS. Eur. Phys. J. C 2016, 76, 84. [Google Scholar] [CrossRef]
- Catanesi, M.G.; Radicioni, E.; Edgecock, R.; Ellis, M.; Soler, P.; Gößling, C.; Bunyatov, S.; Krasnoperov, A.; Popov, B.; Serdiouk, V.; et al. Large-angle production of charged pions by 3 GeV/c–12 GeV/c protons on carbon, copper and tin targets. Eur. Phys. J. C 2008, 53, 177–204. [Google Scholar] [CrossRef] [Green Version]
- Feynman, R.P. Very high-energy collisions of hadrons. Phys. Rev. Lett. 1969, 23, 1415–1417. [Google Scholar] [CrossRef] [Green Version]
- JPARC-MR Website. Available online: http://j-parc.jp/c/en/facilities/accelerators/mr.html (accessed on 9 February 2021).
- Bruno, L.; Efthymiopoulos, I. The CNGS Target Explained; Technical Report, OPERA Public Note n.138; CERN: Geneve, Switzerland, 2011. [Google Scholar]
- Hurh, P.; Caretta, O.; Davenne, T.; Densham, C.; Loveridge, P.; Simos, N. High-Power Targets: Experience and R& D for 2 MW. Conf. Proc. C 2011, 110328, 1496–1500. [Google Scholar]
- Popescu, L.; Houngbo, D.; Dierckx, M. High-power target development for the next-generation ISOL facilities. Nucl. Instrum. Methods B 2020, 463, 262–268. [Google Scholar] [CrossRef]
- Battistoni, G.; Boehlen, T.; Cerutti, F.; Chin, P.W.; Esposito, L.S.; Fassò, A.; Ferrari, A.; Lechner, A.; Empl, A.; Mairani, A.; et al. Overview of the FLUKA code. Ann. Nucl. Energy 2015, 82, 10–18. [Google Scholar] [CrossRef] [Green Version]
- Böhlen, T.; Cerutti, F.; Chin, M.; Fassò, A.; Ferrari, A.; Ortega, P.G.; Mairani, A.; Sala, P.R.; Smirnov, G.; Vlachoudis, V. The FLUKA code: Developments and challenges for high energy and medical applications. Nucl. Data Sheets 2014, 120, 211–214. [Google Scholar]
- Roberts, T.J.; Beard, K.; Ahmed, S.; Huang, D.; Kaplan, D.M. G4Beamline particle tracking in matter dominated beam lines. Proc. PAC 2011, 2013, 373–375. [Google Scholar]
- Adey, D.; Agarwalla, S.; Ankenbrandt, C.; Asfandiyarov, R.; Back, J.J.; Barker, G.; Baussan, E.; Bayes, R.; Bhadra, S.; Blackmore, V.; et al. nuSTORM-Neutrinos from STORed Muons: Proposal to the Fermilab PAC. arXiv 2013, arXiv:physics.acc-ph/1308.6822. [Google Scholar]
- Ayres, D.S.; Dawson, J.W.; Drake, G.; Goodman, M.C.; Grudzinski, J.J.; Guarino, V.J.; Joffe-Minor, T.; Reyna, D.E.; Talaga, L.R.; Thron, J.L.; et al. NOvA: Proposal to Build a 30 Kiloton Off-Axis Detector to Study νμ → νe Oscillations in the NuMI Beamline. arXiv 2004, arXiv:hep-ex/0503053. [Google Scholar]
- Jyoti, T. Study of a New Target Design with an Additional Horn for NuMI Beam. In Proceedings of the Meeting of the APS Division of Particles and Fields (DPF 2017), Fermilab, Batavia, IL, USA, 31 July–4 August 2017. [Google Scholar]
- Ambrosini, G.; Arsenescu, R.; Bernier, K.; Biino, C.; Bonesini, M.; Bonivento, W.; Borer, K.; Brooijmans, G.; Catanesi, M.G.; Collazuol, G.; et al. Measurement of charged particle production from 450 GeV/c protons on beryllium. Eur. Phys. J. C 1999, 10, 605–627. [Google Scholar] [CrossRef]
- Catanesi, M.; Muciaccia, M.; Radicioni, E.; Simone, S.; Edgecock, R.; Ellis, M.; Robbins, R.; Soler, P.; Gößling, C.; Mass, M.; et al. The HARP detector at the CERN PS. Nucl. Instrum. Methods A 2007, 571, 527–561. [Google Scholar] [CrossRef]
- Acciarri, R.; Adams, C.; An, R.; Andreopoulos, C.; Ankowski, A.M.; Antonello, M.; Asaadi, J.; Badgett, W.; Bagby, L.; Baibussinov, B.; et al. A Proposal for a Three Detector Short-Baseline Neutrino Oscillation Program in the Fermilab Booster Neutrino Beam. arXiv 2015, arXiv:physics.ins-det/1503.01520. [Google Scholar]
- Raja, R. The main injector particle production experiment (MIPP) at Fermilab. Nucl. Instrum. Methods A 2005, 553, 225–230. [Google Scholar] [CrossRef] [Green Version]
- Abgrall, N.; Andreeva, O.; Aduszkiewicz, A.; Ali, Y.; Anticic, T.; Antoniou, N.; Baatar, B.; Bay, F.; Blondel, A.; Blumer, J.; et al. NA61/SHINE facility at the CERN SPS: Beams and detector system. J. Instrum. 2014, 9, P06005. [Google Scholar] [CrossRef]
- Aduszkiewicz, A.; Andronov, E.V.; Antićić, T.; Babkin, V.; Baszczyk, M.; Bhosale, S.; Blondel, A.; Bogomilov, M.; Brandin, A.; Bravar, A.; et al. Measurements of production and inelastic cross sections for p + C, p + Be, and p + Al at 60 GeV/c and p + C and p+Be at 120 GeV/c. Phys. Rev. D 2019, 100, 112001. [Google Scholar] [CrossRef] [Green Version]
- van der Meer, S. A Directive Device for Charged Particles and Its Use in an Enhanced Neutrino Beam; CERN Report 61-7; CERN: Geneva, Switzerland, 1961. [Google Scholar]
- Asner, M.; Iselin, C. A New Focusing System Considerably Increasing the Actual PS-Neutrino Beam Flux Density; CERN Report 65-17; CERN: Geneva, Switzerland, 1965. [Google Scholar]
- Asner, M.; Iselin, C. Layout of the New CERN Neutrino Beam; CERN Report 66-24; CERN: Geneva, Switzerland, 1966. [Google Scholar]
- Kahn, S.A.; Carroll, A.; Diwan, M.V.; Gallardo, J.C.; Kirk, H.; Scarlett, C.; Simos, N.; Viren, B.; Zhang, W. Focusing Horn System for the BNL Very Long Baseline Neutrino Oscillation Experiment. Conf. Proc. C 2003, 030512, 3255. [Google Scholar]
- Sekiguchi, T.; Bessho, K.; Fujii, Y.; Hagiwara, M.; Hasegawa, T.; Hayashi, K.; Ishida, T.; Ishii, T.; Kobayashi, H.; Kobayashi, T.; et al. Development and operational experience of magnetic horn system for T2K experiment. Nucl. Instrum. Methods A 2015, 789, 57–80. [Google Scholar] [CrossRef] [Green Version]
- Pardons, A. Horn operational experience in K2K, MiniBooNE, NuMI and CNGS. PoS 2009. [Google Scholar] [CrossRef] [Green Version]
- Elsener, K.; Acquistapace, G.; Baldy, J.L.; Ball, A.; Bonnal, P.; Buhler-Broglin, M.; Carminati, F.; Cennini, E.; Ereditato, A.; Falaleev, V.; et al. The CERN Neutrino Beam to Gran Sasso (NGS): Conceptual Technical Design; CERN Yellow Reports: Monographs; CERN: Geneva, Switzerland, 1998. [Google Scholar] [CrossRef]
- Gilardoni, S.S. Study of Particle Production and Capture for a Neutrino Factory. Ph.D. Thesis, Université de Genéve, Geneva, Switzerland, 2004. [Google Scholar]
- Zimmermann, E.D. Horns: New and Improved; Contribution at the Artificial Neutrino Sources Snowmass Workshop (NF09): Chicago, IL, USA, 2020. Available online: https://indico.fnal.gov/event/46020/ (accessed on 9 February 2021).
- Baussan, E.; Bielski, J.; Bobeth, C.; Bouquerel, E.; Caretta, O.; Cupial, P.; Davenne, T.; Densham, C.; Dracos, M.; Fitton, M.; et al. Neutrino super beam based on a superconducting proton linac. Phys. Rev. ST Accel. Beams 2014, 17, 031001. [Google Scholar] [CrossRef]
- Baussan, E.; Bouquerel, E.; Dracos, M.; Gaudiot, G.; Osswald, F.; Poussot, P.; Vassilopoulos, N.; Wurtz, J.; Zeter, V. Study of the pulse power supply unit for the four-horn system of the CERN to Fréjus neutrino super beam. J. Instrum. 2013, 8, T07006. [Google Scholar] [CrossRef]
- Dracos, M.; Baussan, E.; Bouquerel, E.; Ekelof, T.; Kayis Topaksu, A. The ESSνSB Project. In Proceedings of the 21st International Workshop on Neutrinos from Accelerators—PoS (NuFact2019), Daegu, Korea, 26–31 August 2019; Volume 369. [Google Scholar] [CrossRef]
- Zou, Y. The accumulator ring for the ESSnuSB project—A progress report. In Proceedings of the 21st International Workshop on Neutrinos from Accelerators—PoS (NuFact2019), Daegu, Korea, 26–31 August 2019; Volume 369. [Google Scholar] [CrossRef]
- Mokhov, N.V.; James, C.C. The MARS Code System User’s Guide Version 15 (2016); FERMILAB-FN-1058-APC; Fermilab: Batavia, IL, USA, 2017. [Google Scholar] [CrossRef] [Green Version]
- Longhin, A. A new design for the CERN-Fréjus neutrino super-beam. Eur. Phys. J. C 2011, 71, 1745. [Google Scholar] [CrossRef] [Green Version]
- Ichikawa, A.K. Design concept of the magnetic horn system for the T2K neutrino beam. Nucl. Instrum. Methods A 2012, 690, 27–33. [Google Scholar] [CrossRef] [Green Version]
- Liu, A.; Bross, A.; Neuffer, D. Optimization of the magnetic horn for the nuSTORM non-conventional neutrino beam using the genetic algorithm. Nucl. Instrum. Methods A 2015, 794, 200–205. [Google Scholar] [CrossRef] [Green Version]
- Conrad, J.M.; Shaevitz, M.H.; Bolton, T. Precision measurements with high-energy neutrino beams. Rev. Mod. Phys. 1998, 70, 1341–1392. [Google Scholar] [CrossRef] [Green Version]
- Carey, D.; Kang, Y.W.; Nezrick, F.A.; Stefanski, J.; Stevenson, M.L. Quadrupole Long-Spill Neutrino Beams; TM-220/2251 Fermilab Report; Fermilab: Batavia, IL, USA, 1970. [Google Scholar]
- Ortega Ruiz, I.; Fosse, L.; Franchi, J.; Frassier, A.; Fullerton, J.; Kral, J.; Lauener, J.; Schneider, T.; Tranquille, G. The XBPF, a new multipurpose scintillating fibre monitor for the measurement of secondary beams at CERN. Nucl. Instrum. Methods A 2020, 951, 162996. [Google Scholar] [CrossRef]
- Booth, A.C.; Charitonidis, N.; Chatzidaki, P.; Nowak, E.; Ortega-Ruiz, I.; Rosenthal, M.; Sala, P. Particle production, transport, and identification in the regime of 1–7 GeV/c. Phys. Rev. Accel. Beams 2019, 22, 061003. [Google Scholar] [CrossRef] [Green Version]
- Aharrouche, M.; Adam-Bourdarios, C.; Aleksa, M.; Banfi, D.; Benchekroun, K.; Benslama, K.; Boonekamp, M.; Carli, T.; Carminati, L.; Chen, H. et al. Measurement of the response of the ATLAS liquid argon barrel calorimeter to electrons at the 2004 combined test-beam. Nucl. Instrum. Methods A 2010, 614, 400–432. [Google Scholar] [CrossRef]
- Charitonidis, N.; Chatzidaki, P.; Karyotakis, Y.; Rosenthal, M. Particle identification in the low-GeV/c regime using Octafluoropropane (R-218) as Cherenkov radiator. Nucl. Instrum. Methods B 2019, 457, 20–23. [Google Scholar] [CrossRef]
- Charitonidis, N.; Karyotakis, Y.; Gatignon, L. Estimation of the R134a gas refractive index for use as a Cherenkov radiator, using a high energy charged particle beam. Nucl. Instrum. Methods B 2017, 410, 134–138. [Google Scholar] [CrossRef]
- Charitonidis, N.; Karyotakis, Y.; Efthymiopoulos, I. Beam Performance and Instrumentation Studies for the ProtoDUNE-DP Experiment of CENF; CERN-ACC-NOTE-2016-0052; CERN: Geneva, Switzerland, 2016. [Google Scholar]
- Ahn, M.H.; Aliu, E.; Andringa, S.; Aoki, S.; Aoyama, Y.; Argyriades, J.; Asakura, K.; Ashie, R.; Berghaus, F.; Berns, H.G.; et al. Measurement of Neutrino Oscillation by the K2K Experiment. Phys. Rev. D 2006, 74, 072003. [Google Scholar] [CrossRef] [Green Version]
- Ammosov, V.; Belkov, A.; Bugorskij, A. Neutrino Investigations at the UNK Using Tagged Neutrino Beam Facility; JINR-R-1-90-458. JINR: Serpukov, Russia, 1990. Available online: https://inis.iaea.org/search/search.aspx?orig_q=RN:22070648 (accessed on 9 February 2021). (In Russian).
- Bernstein, R.H.; Borcherding, F.; Jovanovic, D.; Lamm, M.J.; Vannucci, F. A Proposal for a Neutrino Oscillation Experiment in a Tagged Neutrino Line; Technical Report FERMILAB-PROPOSAL-0788; Fermilab: Batavia, IL, USA, 1988. [Google Scholar]
- Ludovici, L.; Zucchelli, P. Conceptual Study of an ’Antitagged’ Experiment Searching for Muon-Neutrino → Electron-Neutrino Oscillation; CERN: Geneve, Switzerland, 1996. [Google Scholar]
- Ludovici, L.; Terranova, F. Electron neutrino tagging through tertiary lepton detection. Eur. Phys. J. C 2010, 69, 331–339. [Google Scholar] [CrossRef] [Green Version]
- Acerbi, F.; Bonesini, M.; Bramati, F.; Branca, A.; Brizzolari, C.; Brunetti, G.; Capelli, S.; Carturan, S.; Catanesi, M.G.; Cecchini, S.; et al. The ENUBET positron tagger prototype: Construction and testbeam performance. J. Instrum. 2020, 15, P08001. [Google Scholar] [CrossRef]
- Berra, A.; Brizzolari, C.; Cecchini, S.; Chignoli, F.; Cindolo, F.; Collazuol, G.; Delogu, C.; Gola, A.; Jollet, C.; Longhin, A.; et al. Shashlik calorimeters with embedded SiPMs for longitudinal segmentation. IEEE Trans. Nucl. Sci. 2017, 64, 1056–1061. [Google Scholar] [CrossRef]
- Ballerini, G.; Berra, A.; Boanta, R.; Brizzolari, C.; Brunetti, G.; Catanesi, M.G.; Cecchini, S.; Cindolo, F.; Coffani, A.; Collazuol, G.; et al. Testbeam performance of a shashlik calorimeter with fine-grained longitudinal segmentation. J. Instrum. 2018, 13, P01028. [Google Scholar] [CrossRef] [Green Version]
- Acerbi, F.; Ballerini, G.; Berra, A.; Brizzolari, C.; Brunetti, G.; Catanesi, M.G.; Cecchini, S.; Cindolo, F.; Coffani, A.; Collazuol, G.; et al. Irradiation and performance of RGB-HD Silicon Photomultipliers for calorimetric applications. J. Instrum. 2019, 14, P02029. [Google Scholar] [CrossRef] [Green Version]
- Acerbi, F.; Branca, A.; Brizzolari, C.; Brunetti, G.; Carturan, S.; Catanesi, M.G.; Cecchini, S.; Cindolo, F.; Collazuol, G.; Dal Corso, F.; et al. Polysiloxane-based scintillators for shashlik calorimeters. Nucl. Instrum. Methods A 2020, 956, 163379. [Google Scholar] [CrossRef]
- Søby, L. NuSTORM Beam Instrumentation. Technical Report EDMS 1284677. 2013. Available online: https://edms.cern.ch/document/1284677 (accessed on 9 February 2021).
- Ashida, Y.; Friend, M.; Ichikawa, A.K.; Ishida, T.; Kubo, H.; Nakamura, K.G.; Sakashita, K.; Uno, W. A new electron-multiplier-tube-based beam monitor for muon monitoring at the T2K experiment. Prog. Theor. Exp. Phys. 2018. [Google Scholar] [CrossRef]
- Matsuoka, K.; Ichikawa, A.; Kubo, H.; Maeda, K.; Maruyama, T.; Matsumura, C.; Murakami, A.; Nakaya, T.; Nishikawa, K.; Ozaki, T.; et al. Design and performance of the muon monitor for the T2K neutrino oscillation experiment. Nucl. Instrum. Methods A 2010, 624, 591–600. [Google Scholar] [CrossRef] [Green Version]
- Kopp, S.; Bishai, M.; Dierckxsens, M.; Diwan, M.; Erwin, A.R.; Harris, D.; Indurthy, D.; Keisler, R.; Kostin, M.; Lang, M.; et al. Secondary beam monitors for the NuMI facility at FNAL. Nucl. Instrum. Methods A 2006, 568, 503–519. [Google Scholar] [CrossRef] [Green Version]
- Longhin, A. Novel neutrino beams. In Proceedings of the XXIX International Conference on Neutrino Physics and Astrophysics, Chicago, IL, USA, 22 June–2 July 2020. [Google Scholar]
- Terranova, F. NP06/ENUBET. In Proceedings of the Artificial Neutrino Sources Snowmass Workshop (NF09); Chicago, IL, USA, 2–4 December 2020. Available online: https://indico.fnal.gov/event/46020/ (accessed on 9 February 2021).
- Michael, D.G.; Adamson, P.; Alexopoulos, T.; Allison, W.W.M.; Alner, G.J.; Anderson, K.; Andreopoulos, C.; Andrews, M.; Andrews, R.; Arms, K.E.; et al. Observation of muon neutrino disappearance with the MINOS detectors and the NuMI neutrino beam. Phys. Rev. Lett. 2006, 97, 191801. [Google Scholar] [CrossRef] [PubMed]
- Abe, K.; Akutsu, R.; Ali, A.; Alt, C.; Andreopoulos, C.; Anthony, L.; Antonova, M.; Aoki, S.; Ariga, A.; Arihara, T.; et al. Constraint on the matter–antimatter symmetry-violating phase in neutrino oscillations. Nature 2020, 580, 339–344, Erratum in 2020, 583, E16. [Google Scholar] [CrossRef] [Green Version]
- Abe, K.; Aihara, H.; Ajmi, A.; Andreopoulos, C.; Antonova, M.; Aoki, S.; Asada, Y.; Ashida, Y.; Atherton, A.; Atkin, E.; et al. T2K ND280 Upgrade-Technical Design Report; CERN-SPSC-2019-001; CERN: Geneva, Switzerland, 2019. [Google Scholar]
- Fukuda, S.; Fukuda, Y.; Hayakawa, T.; Ichihara, E.; Ishitsuka, M.; Itow, Y.; Kajita, T.; Kameda, J.; Kaneyuki, K.; Kasuga, S.; et al. The Super-Kamiokande detector. Nucl. Instrum. Methods A 2003, 501, 418–462. [Google Scholar] [CrossRef]
- Benhar, O.; Huber, P.; Mariani, C.; Meloni, D. Neutrino–nucleus interactions and the determination of oscillation parameters. Phys. Rept. 2017, 700, 1–47. [Google Scholar] [CrossRef] [Green Version]
- Formaggio, J.; Zeller, G. From eV to EeV: Neutrino Cross Sections Across Energy Scales. Rev. Mod. Phys. 2012, 84, 1307–1341. [Google Scholar] [CrossRef] [Green Version]
- Atar, M.S.; Singh, S.K. The Physics of Neutrino Interactions; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar]
- Bhadra, S.; Blondel, A.; Bordoni, S.; Bravar, A.; Bronner, C.; Caravaca-Rodriguez, J.; Dziewiecki, D.; Feusels, T.; Fiorentini-Aguirre, G.A.; Friend, M.; et al. Letter of Intent to Construct a nuPRISM Detector in the J-PARC Neutrino Beamline. arXiv 2014, arXiv:1412.3086. [Google Scholar]
- Nieves, J.; Sánchez, F.; Simo, I.R.; Vacas, M.J. Neutrino energy reconstruction and the shape of the charged current quasielastic-like total cross section. Phys. Rev. D 2012, 85, 113008. [Google Scholar] [CrossRef] [Green Version]
- Valencia, E.; Jena, D.; Nuruzzaman; Akbar, F.; Aliaga, L.; Andrade, D.A.; Ascencio, M.V.; Bashyal, A.; Bellantoni, L.; Bercellie, A.; et al. Constraint of the MINERνA medium energy neutrino flux using neutrino-electron elastic scattering. Phys. Rev. D 2019, 100, 092001. [Google Scholar] [CrossRef] [Green Version]
- Marshall, C.M.; McFarland, K.S.; Wilkinson, C. Neutrino-electron elastic scattering for flux determination at the DUNE oscillation experiment. Phys. Rev. D 2020, 101, 032002. [Google Scholar] [CrossRef] [Green Version]
- Bodek, A.; Sarica, U.; Naples, D.; Ren, L. Methods to determine neutrino flux at low energies. Eur. Phys. J. C 2012, 72. [Google Scholar] [CrossRef] [Green Version]
- Zeller, G.; McFarland, K.; Adams, T.; Alton, A.; Avvakumov, S.; de Barbaro, L.; de Barbaro, P.; Bernstein, R.H.; Bodek, A.; Bolton, T.; et al. A Precise Determination of Electroweak Parameters in Neutrino Nucleon Scattering. Phys. Rev. Lett. 2002, 88, 091802, Erratum in 2003, 90, 239902. [Google Scholar] [CrossRef] [PubMed]
- Angelico, E.; Eisch, J.; Elagin, A.; Frisch, H.J.; Nagaitsev, S.; Wetstein, M. Energy and flavor discrimination using precision time structure in on-axis neutrino beams. Phys. Rev. D 2019, 100, 032008. [Google Scholar] [CrossRef] [Green Version]
- Hand, L. A study of 40–90 GeV neutrino interactions using a tagged neutrino beam. In Proceedings of the Second NAL Summer Study, Aspen, CO, USA, 9 June–3 August 1969. [Google Scholar]
- Pontecorvo, B. Tagging direct neutrinos. A first step to neutrino tagging. Lett. Nuovo Cim. 1979, 25, 257–259. [Google Scholar] [CrossRef]
- NUTECH (NeUtrino Time-Tagged bEams with CHerenkov Detectors). Grant MIUR–Bando FARE (2017–2022). Available online: https://fare.miur.it/ (accessed on 9 February 2021).
- Kordas, K.; Bortfeldt, J.; Brunbauer, F.; David, C.; Desforge, D.; Fanourakis, G.; Franchi, J.; Gallinaro, M.; Garcia, F.; Giomataris, I.; et al. Progress on the PICOSEC-Micromegas Detector Development: Towards a precise timing, radiation hard, large-scale particle detector with segmented readout. Nucl. Instrum. Methods A 2020, 958, 162877. [Google Scholar] [CrossRef]
- Lyashenko, A.; Adams, B.; Aviles, M.; Cremer, T.; Ertley, C.D.; Foley, M.R.; Minot, M.J.; Popecki, M.A.; Stochaj, M.E.; Worstell, W.A.; et al. Performance of Large Area Picosecond Photo-Detectors (LAPPDTM). Nucl. Instrum. Methods A 2020, 958, 162834. [Google Scholar] [CrossRef] [Green Version]
- Paley, J.M.; Messier, M.D.; Raja, R.; Akgun, U.; Asner, D.M.; Aydin, G.; Baker, W.; Barnes, P.D.; Bergfeld, T.; Beverly, L.; et al. Measurement of charged pion production yields off the NuMI target. Phys. Rev. D 2014, 90, 032001. [Google Scholar] [CrossRef] [Green Version]
- Alt, C.; Baatar, B.; Barna, D.; Barr, G.; Bartke, J.; Betev, L.; Białkowska, H.; Blume, C.; Boimska, B.; Bracinik, J.; et al. Inclusive production of charged pions in p + C collisions at 158-GeV/c beam momentum. Eur. Phys. J. C 2007, 49, 897–917. [Google Scholar] [CrossRef]
- Baatar, B.; Barr, G.; Bartke, J.; Betev, L.; Chvala, O.; Dolejsi, J.; Eckardt, V.; Fischer, H.G.; Fodor, Z.; Karev, A.; et al. Inclusive production of protons, anti-protons, neutrons, deuterons and tritons in p+C collisions at 158 GeV/c beam momentum. Eur. Phys. J. C 2013, 73, 2364. [Google Scholar] [CrossRef] [Green Version]
- Abgrall, N.; Aduszkiewicz, A.; Andrieu, B.; Anticic, T.; Antoniou, N.; Argyriades, J.; Asryan, A.G.; Baatar, B.; Blondel, A.; Blumer, J.; et al. Measurements of cross sections and charged pion spectra in proton-carbon interactions at 31 GeV/c. Phys. Rev. C 2011, 84, 034604. [Google Scholar] [CrossRef] [Green Version]
- Pavlovic, Z. Observation of Disappearance of Muon Neutrinos in the NuMI Beam. Ph.D. Thesis, Texas University, Austin, TX, USA, 2008. [Google Scholar] [CrossRef] [Green Version]
- Zwaska, R.; Bishai, M.; Childress, S.; Drake, G.; Escobar, C.; Gouffon, P.; Harris, D.A.; Hylen, J.; Indurthy, D.; Koizumi, G.; et al. Beam-based alignment of the NuMI target station components at FNAL. Nucl. Instrum. Methods A 2006, 568, 548–560. [Google Scholar] [CrossRef] [Green Version]
- Bravar, A. Prospects for Reducing Beam Flux Uncertainties with Hadron Production Experiments Over the Next 10 Years. In Proceedings of the XVII International Workshop on Neutrino Factories and Future Neutrino Facilities (Nufact2015); Rio de Janeiro, Brazil, 10–15 August 2015. Available online: https://indico.fnal.gov/event/8903/ (accessed on 9 February 2021).
Beamline | Current (kA) | Pulse Length (ms) | Repetition (Hz) | Intensity (protons) | Momentum (GeV/c) | Extraction |
---|---|---|---|---|---|---|
CNGS [112,113,114] | 150 | 2 by 50 ms, Hz | 400 | Fast | ||
MiniBooNE [30] | 170 | 5 | Fast | |||
NuMI [29] | 205 | 120 | Fast | |||
T2K [26,111] | 320 | 30 | Fast | |||
WANF [46,78] | 100 | ≳7 | 2 by s, Hz | 330–450 | Slow (6 ms) |
Source | LB | SB-MNB | NF |
---|---|---|---|
POT | OK | irrelevant | irrelevant |
secondary yield | critical | ancillary | ancillary |
transport | ≃irrelevant | ≃irrelevant | |
muon monitoring | marginal | critical | ancillary |
detector | critical | ancillary | ancillary |
lepton monitoring (MNB) | not used | critical | ancillary |
BCT in TL | not used | ancillary | critical |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Charitonidis, N.; Longhin, A.; Pari, M.; Parozzi, E.G.; Terranova, F. Design and Diagnostics of High-Precision Accelerator Neutrino Beams. Appl. Sci. 2021, 11, 1644. https://doi.org/10.3390/app11041644
Charitonidis N, Longhin A, Pari M, Parozzi EG, Terranova F. Design and Diagnostics of High-Precision Accelerator Neutrino Beams. Applied Sciences. 2021; 11(4):1644. https://doi.org/10.3390/app11041644
Chicago/Turabian StyleCharitonidis, Nikolaos, Andrea Longhin, Michelangelo Pari, Elisabetta Giulia Parozzi, and Francesco Terranova. 2021. "Design and Diagnostics of High-Precision Accelerator Neutrino Beams" Applied Sciences 11, no. 4: 1644. https://doi.org/10.3390/app11041644
APA StyleCharitonidis, N., Longhin, A., Pari, M., Parozzi, E. G., & Terranova, F. (2021). Design and Diagnostics of High-Precision Accelerator Neutrino Beams. Applied Sciences, 11(4), 1644. https://doi.org/10.3390/app11041644