The Efficiency of Large Hole Boring (MSP) Method in the Reduction of Blast-Induced Vibration
Abstract
:1. Introduction
2. Project Description
2.1. Introduction to MSP Method
2.2. Characteristics of the MSP Method
3. Comparison of Blasting Efficiency by Size of Empty Hole
4. Real-Scale Test Blasting
4.1. Overview of Test Blasting
4.2. Results of Test Blasting
4.3. Results of PPV Histories
5. Discussion
5.1. Analysis of Vibration-Increasing Factors
5.2. Analysis of Propagation Characteristics of Blast-Induced Vibration
5.3. Effects of MSP Method on Vibration Reduction
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- New, B.M. Ground vibration caused by construction works. Tunn. Undergr. Space Technol. 1990, 5, 179–190. [Google Scholar] [CrossRef]
- Berta, G. Blasting-induced vibration in tunnelling. Tunn. Undergr. Space Technol. 1994, 9, 175–187. [Google Scholar] [CrossRef]
- Kuzu, C.; Guclu, E. The problem of human response to blast induced vibrations in tunnel construction and mitigation of vibration effects using cautious blasting in half-face blasting rounds. Tunn. Undergr. Space Technol. 2009, 24, 53–61. [Google Scholar] [CrossRef]
- Ferreira, C.; Freire, F.; Ribeiro, J.M.B. Life-cycle assessment of a civil explosive. J. Clean. Prod. 2015, 89, 159–164. [Google Scholar] [CrossRef]
- Lee, C.W.; Kim, J.S.; Kang, G.C. Full-scale tests for assessing blasting-induced vibration and noise. Shock Vib. 2018, 16, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Tian, X.; Song, Z.; Wang, J. Study on the propagation law of tunnel blasting vibration in stratum and blasting vibration reduction technology. Soil Dyn. Earthq. Eng. 2019, 126, 105813. [Google Scholar] [CrossRef]
- Lee, H.; Lim, H.U. The effect of the number of free faces on the level of blasting vibration. J. Ind. Technol. 2001, 21, 267–276. [Google Scholar]
- Zare, S.; Bruland, A. Comparison of tunnel blast design models. Tunn. Undergr. Space Technol. 2006, 21, 533–541. [Google Scholar] [CrossRef]
- Xie, L.; Lu, W.; Zhang, Q.; Jiang, Q.; Chen, M.; Zhao, J. Analysis of damage mechanisms and optimization of cut blasting design under high in-situ stresses. Tunn. Undergr. Space Technol. 2017, 66, 19–33. [Google Scholar] [CrossRef]
- Oh, E.H.; Won, Y.H.; Lim, H.U. A study on the improvement of a charging and initiating method in a tunnel excavation. J. Korean Soc. Explos. Blast Eng. 2006, 24, 1–8. [Google Scholar]
- Kim, D.H.; Lee, S.P.; Lee, H.Y.; Lee, T.R.; Jeon, S.W. A case study of the new center-cut method in tunnel: SAV-Cut (Stage Advance V-Cut). J. Korean Soc. Explos. Blast Eng. 2007, 25, 31–43. [Google Scholar]
- Oh, T.-M.; Cho, G.-C.; Ji, I.-T. Effects of free surface using waterjet cutting for rock blasting excavation. J. Korean Tunn. Undergr. Space Assoc. 2013, 15, 49–57. [Google Scholar] [CrossRef]
- Park, H.; Suk, C.G.; Noh, Y.S. A comparison of ground vibration in center cut blasting using artificial joints. J. Korean Soc. Explos. Blast Eng. 2018, 36, 16–25. [Google Scholar]
- Kang, C.W. Blasting Engineering A to Z, 3rd ed.; Goomibook: Seoul, Korea, 2014; pp. 131–402. [Google Scholar]
- Beak, J.H.; Beak, S.H.; Han, D.H.; Won, A.R.; Kim, C.S. A study on the design of PLHBM. Explos. Blasting 2012, 30, 66–76. [Google Scholar]
- Choi, H.B.; Han, D.H.; Ki, K.C. A study on the decay effect of ground vibration based on the number of PLHBM holes in Gneiss area. J. Korean Soc. Explos. Blast Eng. 2016, 34, 1–9. [Google Scholar]
- Kim, M.S.; Lee, J.K.; Choi, Y.H.; Kim, S.H.; Jeong, K.W.; Kim, K.L.; Lee, S.S. A study on the optimal setting of latge uncharged hole boring machine for reducing blast-induced vibration using deep learning. J. Korean Soc. Explos. Blast Eng. 2020, 39, 16–25. [Google Scholar]
- Kolsky, H. An Investigation of the Mechanical Properties of Materials at very High Rates of Loading. In Proceedings of the Physical Society, Section B; IOP Publishing: Bristol, UK, 1949; Volume 62, pp. 676–700. [Google Scholar]
- Field, J.; Ladegaard-Pedersen, A. The importance of the reflected stress wave in rock blasting. Int. J. Rock Mech. Min. Sci. Géoméch. Abstr. 1971, 8, 213–226. [Google Scholar] [CrossRef]
- Cho, S.H.; Kaneko, K. Influence of the applied pressure waveform on the dynamic fracture processes in rock. Int. J. Rock Mech. Min. Sci. 2004, 41, 771–784. [Google Scholar] [CrossRef]
- Wang, Z.-L.; Li, Y.-C.; Shen, R. Numerical simulation of tensile damage and blast crater in brittle rock due to underground explosion. Int. J. Rock Mech. Min. Sci. 2007, 44, 730–738. [Google Scholar] [CrossRef]
- Ma, G.; An, X. Numerical simulation of blasting-induced rock fractures. Int. J. Rock Mech. Min. Sci. 2008, 45, 966–975. [Google Scholar] [CrossRef]
- Ryu, C.H.; Choi, B.H. Theory and practice of explosive blasting. J. Korean Soc. Explos. Blast Eng. 2016, 34, 10–18. [Google Scholar]
- Blair, D. The free surface influence on blast vibration. Int. J. Rock Mech. Min. Sci. 2015, 77, 182–191. [Google Scholar] [CrossRef]
- Choi, B.H.; Ryu, C.H. Consideration on the relation between vibration level and peak particle velocity in regulation of ground vibration. J. Korean Soc. Explos. Blast Eng. 2012, 30, 1–8. [Google Scholar]
- Murmu, S.; Maheshwari, P.; Verma, H.K. Empirical and probabilistic analysis of blast-induced ground vibrations. Int. J. Rock Mech. Min. Sci. 2018, 103, 267–274. [Google Scholar] [CrossRef]
- Yan, Y.; Hou, X.; Fei, H. Review of predicting the blast-induced ground vibrations to reduce impacts on ambient urban communities. J. Clean. Prod. 2020, 260, 121135. [Google Scholar] [CrossRef]
- Olofsson, S. Applied Explosives Technology for Construction and Mining, 2nd ed.; Applex: Arla, Sweden, 1988; pp. 200–237. [Google Scholar]
- Nateghi, R.; Kiany, M.; Gholipouri, O. Control negative effects of blasting waves on concrete of the structures by analyzing of parameters of ground vibration. Tunn. Undergr. Space Technol. 2009, 24, 608–616. [Google Scholar] [CrossRef]
- Xu, S.; King, M.S. Attenuation of elastic waves in a cracked solid. Geophys. J. Int. 1990, 101, 169–180. [Google Scholar] [CrossRef] [Green Version]
- Ahn, J.K.; Park, D.H.; Park, K.C.; Yoon, J.N. Propagation characteristics of blast-induced vibration to fractured zone. J. Korean Tunn. Undergr. Space Assoc. 2017, 19, 959–972. [Google Scholar]
- Devine, J.F.; Beck, R.H.; Meyer, A.V.C.; Duvall, W.I. Effect of Charge Weight on Vibration Levels from Quarry Blasting; U.S. Department of the Interior, Bureau of Mines: Washington, WA, USA, 1966; pp. 1–37. [Google Scholar]
- Nicholls, H.R.; Johnson, C.F.; Duvall, W.I. Blasting Vibrations and Their Effects on Structures; U.S. Department of Interior, Bureau of Mines: Denver, CO, USA, 1971; pp. 1–105. [Google Scholar]
- Lee, S.C. The influence of the detonation velocity of explosive in blasting. J. Korean Soc. Explos. Blast Eng. 2005, 23, 43–56. [Google Scholar]
- Park, Y.S.; Jeong, M.S. The development and application of low vibration explosives (NewFINECKER). J. Korean Soc. Explos. Blast Eng. 2010, 28, 11–18. [Google Scholar]
- Hwang, N.S.; Lee, D.H.; Lee, S.J. A case study of blasting with electronic detonator. J. Korean Soc. Explos. Blast Eng. 2016, 34, 40–45. [Google Scholar]
- Kim, Y.P.; Kim, G.S.; Son, Y.B.; Kim, J.H.; Kim, H.D.; Lee, J.W. Characteristics of Near-field Ground Vibration in Tunnel Blasting using Electronic Detonators. J. Korean Soc. Explos. Blast Eng. 2013, 31, 76–86. [Google Scholar]
- Iwano, K.; Hashiba, K.; Nagae, J.; Fukui, K. Reduction of tunnel blasting induced ground vibrations using advanced electronic detonators. Tunn. Undergr. Space Technol. 2020, 105, 103556. [Google Scholar] [CrossRef]
- Wang, P.; Ma, Y.-J.; Zhu, Y.; Zhu, J. Experimental Study of Blast-Induced Vibration Characteristics Based on the Delay-Time Errors of Detonator. Adv. Civ. Eng. 2020, 2020, 1–9. [Google Scholar] [CrossRef]
- Cho, S.H.; Yang, H.S.; Kaneko, K. Influence of the initiation error of the delay detonator on the rock fracture process in smooth blasting. Tunn. Undergr. Space Technol. 2004, 14, 121–132. [Google Scholar]
- Winzer, S.R.; Furth, W.; Ritter, A. Initiator firing times and their relationship to blasting performance. In Proceedings of the 20th U.S Symposium on Rock Mechanics (USRMS), Austin, TX, USA, 4–6 June 1979; pp. 461–470. [Google Scholar]
- Yoon, J.S.; Lim, S.H.; Lee, J.M.; Bae, S.H. Study on comparison with electronic detonation blasting and non-electric detonation blasting. J. Korean Soc. Explos. Blast Eng. 2007, 10, 185–191. [Google Scholar]
- Singh, S.P.; Xavier, P. Causes, impact and control of overbreak in underground excavations. Tunn. Undergr. Space Technol. 2005, 20, 63–71. [Google Scholar] [CrossRef]
- Min, H.D.; Jeong, M.S.; Jin, Y.H.; Park, Y.S. Dead pressure and its measures of emulsion explosives at small sectional tunnel. J. Korean Soc. Explos. Blast. Eng. 2008, 26, 29–37. [Google Scholar]
- Kim, Y.; Moon, H.-K. Application of the guideline for overbreak control in granitic rock masses in Korean tunnels. Tunn. Undergr. Space Technol. 2013, 35, 67–77. [Google Scholar] [CrossRef]
- Sharafat, A.; Tanoli, W.A.; Raptis, G.; Seo, J.W. Controlled blasting in underground construction: A case study of a tunnel plug demolition in the Neelum Jhelum hydroelectric project. Tunn. Undergr. Space Technol. 2019, 93, 1–18. [Google Scholar] [CrossRef]
- Jung, H.S.; Jung, K.S.; Mun, H.N.; Chun, B.S.; Park, D.H. A study on the vibration propagation characteristics of controlled blasting methods and explosives in tunnelling. J. Korea GEO-Environ. Soc. 2011, 12, 5–14. [Google Scholar]
- Worsey, P.N.; Farmer, I.W.; Matheson, G.D. The mechanics of pre-splitting in discontinuous rock. In Proceedings of the 22nd U.S. Symposium on Rock Mechanics (USRMS), Cambridge, MA, USA, 29 June–2 July 1981; pp. 205–210. [Google Scholar]
- Choi, S.O.; Park, E.S.; Sunwoo, C.; Chung, S.K. A study on the blasting dynamic analysis using the measurement vibration waveform. J. Korean Soc. Rock Mech. 2004, 14, 108–120. [Google Scholar]
General Blasting (B) | Single-MSP | Multi-MSP | |
---|---|---|---|
Site image | |||
Number of initial free faces | 0 or 1–3 (Small scale) | 1 (Large scale) | 2–3 (Extremely large scale) |
Characteristics |
|
|
|
Application target areas |
|
|
|
Specification | Description |
---|---|
Name | Minimate Plus (Instantel Inc.) |
Range | Up to 254 mm/s |
Resolution | 0.127 or 0.0159 mm/s with built-in preamp |
Accuracy | 5% or 0.5 mm/s |
Frequency range | 2 to 250 Hz |
Sampling rate | 1024 to 16,000 S/s per channel |
Pattern B | Pattern CB-1 | Pattern CB-2 | Pattern CB-3 | Pattern CB-4 | |
---|---|---|---|---|---|
Cut method | Cylinder-cut (2 holes) | Cylinder-cut (2 holes) | Single-MSP (1 hole) | Single-MSP (1 hole) | Multi-MSP (3 holes) |
Controlled blasting method | Smooth blasting | Combined CB | Combined CB | Combined CB | Combined CB |
Explosives | Emulsion | Emulsion | Emulsion | Emulsion | Low-vibration explosive |
Detonator | Non-electric | Non-electric | Non-electric | Non-electric | Non-electric |
Advance (m) | 2.0 | 2.0 | 2.0 | 1.0 | 0.8 |
Blast hole depth (m) | 2.2 | 2.2 | 2.2 | 1.1 | 1.0 |
Charge per delay (kg/hole) | 1.20 | 1.20 | 1.20 | 0.375 | 0.24 |
Number of LD holes | - | 32 | 37 | 37 | 37 |
Spacing of contour holes (m) | 0.55 | 0.4 | 0.4 | 0.4 | 0.4 |
Number of blast holes | 158 | 210 | 211 | 235 | 323 |
Total charge (kg) | 159.70 | 178.10 | 176.60 | 68.325 | 69.880 |
Name | Manufacturer | Diameter (mm) | Velocity of Detonation (m/s) | Density (g/cc) | Heat of Explosion (kcal/kg) | Gas Quantity (ℓ/kg) |
---|---|---|---|---|---|---|
NewMite Plus | Hanhwa corp. | 32 | 5700 | 1.1–1.2 | 880 | 950 |
Finex | 17 | 4400 | 1.0 | 800 | 850 |
No. | Cut Method | Peak Particle Velocity (PPV, ) | Vibration Reduction Rate (%) Compared with B | |||||
---|---|---|---|---|---|---|---|---|
No. 1 | No. 2 | No. 3 | Min. | Max. | Ave. | |||
1 | B | 0.468 | 1.260 | 0.624 | 0.468 | 1.260 | 0.784 | - |
2 | CB-1 | 0.495 | 0.838 | 0.637 | 0.495 | 0.838 | 0.657 | ▼ 16.20 |
3 | CB-2 | 0.868 | 1.080 | 1.480 | 0.868 | 1.480 | 1.143 | ▲ 45.79 |
4 | CB-3 | 0.327 | 0.592 | 0.505 | 0.327 | 0.592 | 0.475 | ▼ 39.41 |
5 | CB-4 | 0.241 | 0.160 | 0.252 | 0.160 | 0.252 | 0.218 | ▼ 72.19 |
Group | Type | Parameter | Degree of Effect | ||
---|---|---|---|---|---|
Severe | Moderate | Mild | |||
Geological conditions | Uncontrollable variables | Distance between blasting point and structures | ○ | ||
Overburden | ○ | ||||
Topography and stratum | ○ | ||||
Rock condition | ○ | ||||
Atmospheric condition | ○ | ||||
Blasting conditions | Controllable variables | Type of explosive | ○ | ||
Charge per delay | ○ | ||||
Delay time of detonation | ○ | ||||
Drilling angle | ○ | ||||
Burden and hole spacing | ○ | ||||
Stemming conditions | ○ | ||||
Primer position | ○ | ||||
Charge weight | ○ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.S.; Lee, S.S. The Efficiency of Large Hole Boring (MSP) Method in the Reduction of Blast-Induced Vibration. Appl. Sci. 2021, 11, 1814. https://doi.org/10.3390/app11041814
Kim MS, Lee SS. The Efficiency of Large Hole Boring (MSP) Method in the Reduction of Blast-Induced Vibration. Applied Sciences. 2021; 11(4):1814. https://doi.org/10.3390/app11041814
Chicago/Turabian StyleKim, Min Seong, and Sean Seungwon Lee. 2021. "The Efficiency of Large Hole Boring (MSP) Method in the Reduction of Blast-Induced Vibration" Applied Sciences 11, no. 4: 1814. https://doi.org/10.3390/app11041814
APA StyleKim, M. S., & Lee, S. S. (2021). The Efficiency of Large Hole Boring (MSP) Method in the Reduction of Blast-Induced Vibration. Applied Sciences, 11(4), 1814. https://doi.org/10.3390/app11041814