Modification of PLA Scaffold Surface for Medical Applications
Abstract
:1. Introduction
2. Experimental
2.1. Plasma Source
2.2. Analytical Equipment
2.3. Preparation of Scaffolds
3. Results and Discussion
3.1. Effect of the Discharge Power on the Surface Free Energy and Its Polar and Dispersion Components
3.2. Effect of the Used Gas on the Surface Free Energy and Its Polar and Dispersion Components
3.3. Test of the Durability of Modification of the Surface
3.4. Analysis of the External Surface of the Membrane
3.4.1. Scanning Electron Microscope
3.4.2. FTIR-ATR Spectroscopy
4. Conclusions
- The plasma of the dielectric barrier discharge influenced the surface of the polymer membranes and allowed the increase of its hydrophilicity;
- The highest values of the SFE and polar component were obtained for a 20 W DBD discharge power. Exceeding this value caused the deterioration of important mechanical properties;
- The modification was conducted in argon, carbon dioxide, and 50%vol. Ar + 50%vol. air and 50%vol. Ar + 50%vol. mixtures. CO2 caused an increase of the SFE and polar component of the membranes;
- The obtained results indicate the high application potential of plasma polymer surface modification techniques.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Balakrishnan, P.; Geethamma, V.G.; Sreekala, M.S.; Thomas, S. Fundamental Biomaterials: Polymers; Woodhead Publishing: Cambridge, UK, 2018. [Google Scholar]
- Żenkiewicz, M.; Rytlewski, P.; Malinowski, R. Methods and devices used in modifying polymer materials with low-temperature plasma. Polimery 2011, 3, 185–195. [Google Scholar] [CrossRef]
- Siperko, L.M.; Thomas, R. R: Chemical and physical modification of fluoropolymer surfaces for adhesion enhancement: A review. J. Adhes. Sci. Technol. 1989, 3, 157–173. [Google Scholar] [CrossRef]
- Fabbri, P.; Messori, M. 5-Surface Modification of Polymers: Chemical, Physical, and Biological Routes. In Modification of Polymer Properties; Jasso-Gastinel, C.F., Kenny, J.M., Eds.; Elsevier Inc.: Norwich, UK, 2017; pp. 109–130. [Google Scholar]
- Dhandayuthapani, B.; Yoshida, Y.; Maekawa, T.; Kumar, D.S. Polymeric Scaffolds in Tissue Engineering Application: A Review. Int. J. Polym. Sci. 2011, 2011, 290602. [Google Scholar] [CrossRef]
- Amass, W.; Amass, A.; Tighe, B. A review of biodegradable polymers: Uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies. Polym. Int. 1998, 47, 89–144. [Google Scholar] [CrossRef]
- Lendlein, A.; Sisson, A. Book Review: Handbook of Biodegradable Polymers; Wiley-VCH: Weinheim, Germany, 2014. [Google Scholar]
- Denis, P.; Wrzecionek, M.; Gadomska-Gajadhur, A.; Sajkiewicz, P. Poly(Glycerol Sebacate)–Poly(l-Lactide) Nonwovens. Towards Attractive Electrospun Material for Tissue Engineering. Polymers 2019, 11, 2113. [Google Scholar] [CrossRef] [Green Version]
- Lunt, J. Large-scale production, properties and commercial applications of polylactic acid polymers. Polym. Degrad. Stab. 1998, 59, 145–152. [Google Scholar] [CrossRef]
- Hergelová, B. Polylactic acid surface activation by atmospheric pressure dielectric barrier discharge plasma. Open. Chem. 2015, 213, 564–569. [Google Scholar] [CrossRef] [Green Version]
- Jiao, Y.P.; Cui, F.Z. Surface modification of polyester biomaterials for tissue engineering. Biomed. Mater. 2007, 2, R24–R37. [Google Scholar] [CrossRef]
- Kwiatkowski, M.; Terebun, P.; Mazurek, P.; Pawłat, J. Wettability of Polymeric Materials after Dielectric Barrier Discharge Atmospheric-pressure Plasma Jet Treatment. Sens. Mater. 2018, 30, 1207–1212. [Google Scholar]
- Krupa, A.; Sobczyk, A.T.; Jaworek, A. Surface Properties of Plasma-Modified Poly(vinylidene fluoride) and Poly(vinyl chloride) Nanofibres. Fibres. Text. East. Eur. 2014, 2, 35–39. [Google Scholar]
- Kluska, S.; Pamuła, E.; Jonas, S.; Grzesik, Z. Surface Modification of Polyetheretherketon by Helium/nitrogen and Nitrous Oxide Plasma Enhanced Chemical Vapour Deposition. High Temp. Mater. Proc. 2014, 33, 147–153. [Google Scholar] [CrossRef]
- Vergne, C.; Buchheit, O.; Eddoumy, F.; Sorrenti, E.; Di Martino, J.; Ruch, D. Modifications of the Polylactic Acid Surface Properties by DBD Plasma Treatment at Atmospheric Pressure. J. Eng. Mater. Technol. 2011, 133, 030903. [Google Scholar] [CrossRef]
- Jordá-Vilaplana, A.; Sánchez-Nácher, L.; García-Sanoguera, D.; Carbonell, A.; Ferri, J.M. Effects of aging on adhesive properties of poly(lactic acid) (PLA) by air atmospheric plasma treatment. Appl. Polim. Sci. 2016, 133, 43040. [Google Scholar]
- Morent, R.; De Geyter, N.; Desmet, T.; Dubruel, P.; Leys, C. Plasma surface modification of biodegradable polymers: A review. Plasma Process. Polym. 2011, 8, 171–190. [Google Scholar] [CrossRef]
- De Geyter, N.; Morent, R. Non-Thermal Plasma Surface Modification of Biodegradable Polymers. In Biomedical Science Engineering and Technology; Ghista, D.N., Ed.; Gent University: Ghent, Belgium, 2011; pp. 225–246. [Google Scholar]
- Fan, Y.; Li, X.; Yang, R. The Surface Modification Methods for Constructing Polymer-Coated Stents. Int. J. Polym. Sci. 2018, 3891686. [Google Scholar] [CrossRef]
- Młotek, M.; Błaszczyk, A.; Krawczyk, K. Modification of polyethylene tube surface in dielectric barrierdischarge. J. Mater. Res. 2018, 33, 2396–2403. [Google Scholar] [CrossRef]
- Tajima, S.; Komvopoulos, K. Effect of reactive species on surface crosslinking of plasma-treated polymers investigated by surface force microscopy. Appl. Phys. Lett. 2006, 89, 124102. [Google Scholar] [CrossRef]
- Dryakhlov, V.O.; Shaikhiev, I.G.; Galikhanov, M.F.; Sverguzova, S.V. Modification of Polymeric Membranes by Corona Discharge. Membr. Membr. Technol. 2020, 2, 195–202. [Google Scholar] [CrossRef]
- Popelka, A.; Khanam PN, M.; AlMaadeed, A. Surface modification of polyethylene/graphene composite using corona discharge. J. Phys. D Appl. Phys. 2018, 51, 105302. [Google Scholar] [CrossRef]
- Młotek, M.; Zalewska, M.; Szafran, M.; Krawczyk, K. Reactor for Modification of Porous Polymers. Polish Patent 234557, 2020. [Google Scholar]
- Kruk, A.; Gadomska-Gajadhur, A.; Rykaczewska, I.; Ruśkowski, P.; Dulnik, J.; Synoradzki, L. Influence of liquid pore precursors on morphology and mechanical properties of cells scaffolds obtained by dry inversion phase method. J. Biomed. Mater. Res. B 2019, 107, 1079–1087. [Google Scholar] [CrossRef] [PubMed]
- Kruk, A.; Gadomska-Gajadhur, A.; Dulnik, J.; Ruśkowski, P. The influence of the molecular weight of polymer on the morphology, functional properties and L929 fibroblasts growth on polylactide membranes for tissue engineering. Int. J. Polym. Mater. Polym. Biomater. 2020. [Google Scholar] [CrossRef]
- Żenkiewicz, M. Adhesion and Modification of the Surface Layer of Macromolecular Materials; WNT: Warsaw, Poland, 2000. [Google Scholar]
- Jordá-Vilaplana, A.; Fombuena, V.; García-García, D.; Samper, M.D.; Sánchez-Nácher, L. Surface modification of polylactic acid (PLA) by air atmospheric plasma treatment. Eur. Polym. J. 2014, 58, 23–33. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Młotek, M.; Gadomska-Gajadhur, A.; Sobczak, A.; Kruk, A.; Perron, M.; Krawczyk, K. Modification of PLA Scaffold Surface for Medical Applications. Appl. Sci. 2021, 11, 1815. https://doi.org/10.3390/app11041815
Młotek M, Gadomska-Gajadhur A, Sobczak A, Kruk A, Perron M, Krawczyk K. Modification of PLA Scaffold Surface for Medical Applications. Applied Sciences. 2021; 11(4):1815. https://doi.org/10.3390/app11041815
Chicago/Turabian StyleMłotek, Michał, Agnieszka Gadomska-Gajadhur, Aleksandra Sobczak, Aleksandra Kruk, Michalina Perron, and Krzysztof Krawczyk. 2021. "Modification of PLA Scaffold Surface for Medical Applications" Applied Sciences 11, no. 4: 1815. https://doi.org/10.3390/app11041815
APA StyleMłotek, M., Gadomska-Gajadhur, A., Sobczak, A., Kruk, A., Perron, M., & Krawczyk, K. (2021). Modification of PLA Scaffold Surface for Medical Applications. Applied Sciences, 11(4), 1815. https://doi.org/10.3390/app11041815