A Comparative Biomechanical Analysis during Planned and Unplanned Gait Termination in Individuals with Different Arch Stiffnesses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Experimental Protocol and Procedure
2.2.1. Static Foot Structure Measurements
2.2.2. Dynamic Gait Task Measurements
2.3. Data Acquisition
2.4. Statistical Analysis
3. Results
3.1. Kinematics
3.2. Plantar Pressure
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McKeon, P.O.; Hertel, J.; Bramble, D.; Davis, I. The foot core system: A new paradigm for understanding intrinsic foot mus-cle function. Br. J. Sports Med. 2015, 49, 290. [Google Scholar] [CrossRef] [Green Version]
- Lynn, S.K.; Padilla, R.A.; Tsang, K.K. Differences in static- and dynamic-balance task performance after 4 weeks of intrin-sic-foot-muscle training: The short-foot exercise versus the towel-curl exercise. J. Sport Rehabil. 2012, 21, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Cen, X.; Xu, D.; Baker, J.S.; Gu, Y. Association of Arch Stiffness with Plantar Impulse Distribution during Walking, Running, and Gait Termination. Int. J. Environ. Res. Public Health 2020, 17, 2090. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelly, L.A.; Cresswell, A.G.; Racinais, S.; Whiteley, R.; Lichtwark, G. Intrinsic foot muscles have the capacity to control de-formation of the longitudinal arch. J. R. Soc. Interface 2014, 11, 20131188. [Google Scholar] [CrossRef] [Green Version]
- Kruger, K.M.; Graf, A.; Flanagan, A.; McHenry, B.D.; Altiok, H.; Smith, P.A.; Harris, G.F.; Krzak, J.J. Segmental foot and an-kle kinematic differences between rectus, planus, and cavus foot types. J. Biomech. 2019, 94, 180–186. [Google Scholar] [CrossRef]
- Cen, X.; Xu, D.; Baker, J.S.; Gu, Y. Effect of additional body weight on arch index and dynamic plantar pressure distribution during walking and gait termination. PeerJ 2020, 8, e8998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sparrow, W.A.; Tirosh, O. Gait termination: A review of experimental methods and the effects of ageing and gait patholo-gies. Gait Posture 2005, 22, 362–371. [Google Scholar] [CrossRef] [PubMed]
- Bishop, M.D.; Brunt, D.; Pathare, N.; Patel, B. The interaction between leading and trailing limbs during stopping in hu-mans. Neurosci. Lett. 2002, 323, 1–4. [Google Scholar] [CrossRef]
- Jaeger, R.; Vanitchatchavan, P. Ground reaction forces during termination of human gait. J. Biomech. 1992, 25, 1233–1236. [Google Scholar] [CrossRef]
- Chuckpaiwong, B.; Nunley, J.A.; Mall, N.A.; Queen, R.M. The effect of foot type on in-shoe plantar pressure during walking and running. Gait Posture 2008, 28, 405–411. [Google Scholar] [CrossRef]
- Williams, D.S., III; McClay, I.S.; Hamill, J. Arch structure and injury patterns in runners. Clin. Biomech. 2001, 16, 341–347. [Google Scholar] [CrossRef]
- Zhao, X.; Tsujimoto, T.; Kim, B.; Katayama, Y.; Tanaka, K. Association of Foot Structure with the Strength of Muscles that Move the Ankle and Physical Performance. J. Foot Ankle Surg. 2018, 57, 1143–1147. [Google Scholar] [CrossRef]
- Zifchock, R.A.; Davis, I.; Hillstrom, H.; Song, J. The effect of gender, age, and lateral dominance on arch height and arch stiffness. Foot Ankle Int. 2006, 27, 367–372. [Google Scholar] [CrossRef]
- Zifchock, R.; Parker, R.; Wan, W.; Neary, M.; Song, J.; Hillstrom, H. The relationship between foot arch flexibility and medi-al-lateral ground reaction force distribution. Gait Posture 2019, 69, 46–49. [Google Scholar] [CrossRef] [PubMed]
- Dawe, E.J.C.; Davis, J. (vi) Anatomy and biomechanics of the foot and ankle. Orthop. Trauma 2011, 25, 279–286. [Google Scholar] [CrossRef]
- Sarrafian, S.K. Functional characteristics of the foot and plantar aponeurosis under tibiotalar loading. Foot Ankle 1987, 8, 4–18. [Google Scholar] [CrossRef]
- Sun, P.C.; Shih, S.L.; Chen, Y.L.; Hsu, Y.C.; Yang, R.C.; Chen, C.S. Biomechanical analysis of foot with different foot arch heights: A finite element analysis. Comput. Methods Biomech. Biomed. Eng. 2012, 15, 563–569. [Google Scholar] [CrossRef]
- Fernández-Seguín, L.M.; Diaz Mancha, J.A.; Sánchez Rodríguez, R.; Escamilla Martínez, E.; Gómez Martín, B.; Ramos Ortega, J. Comparison of plantar pressures and contact area between normal and cavus foot. Gait Posture 2014, 39, 789–792. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Cavanagh, P.R. ISB recommendations for standardization in the reporting of kinematic data. J. Biomech. 1995, 28, 1257–1261. [Google Scholar] [CrossRef]
- Zhu, Z.; Fu, W.; Shao, E.; Li, L.; Song, L.; Wang, W.; Liu, Y. Acute Effects of Midsole Bending Stiffness on Lower Extremity Biomechanics during Layup Jumps. Appl. Sci. 2020, 10, 397. [Google Scholar] [CrossRef] [Green Version]
- Roy, J.P.; Stefanyshyn, D.J. Shoe midsole longitudinal bending stiffness and running economy, joint energy, and EMG. Med. Sci. Sports Exerc. 2006, 38, 562–569. [Google Scholar] [CrossRef] [Green Version]
- Bishop, M.; Brunt, D.; Pathare, N.; Patel, B. The effect of velocity on the strategies used during gait termination. Gait Posture 2004, 20, 134–139. [Google Scholar] [CrossRef]
- Ridge, S.T.; Henley, J.; Manal, K.; Miller, F.; Richards, J.G. Biomechanical analysis of gait termination in 11–17year old youth at preferred and fast walking speeds. Hum. Mov. Sci. 2016, 49, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Yu, P.; Gong, Z.; Meng, Y.; Baker, J.S.; István, B.; Gu, Y. The Acute Influence of Running-Induced Fatigue on the Performance and Biomechanics of a Countermovement Jump. Appl. Sci. 2020, 10, 4319. [Google Scholar] [CrossRef]
- Serrao, M.; Conte, C.; Casali, C.; Ranavolo, A.; Mari, S.; Di Fabio, R.; Perrotta, A.; Coppola, G.; Padua, L.; Monamì, S.; et al. Sudden Stopping in Patients with Cerebellar Ataxia. Cerebellum 2013, 12, 607–616. [Google Scholar] [CrossRef] [PubMed]
- Ridge, S.T.; Henley, J.; Manal, K.; Miller, F.; Richards, J.G. Kinematic and kinetic analysis of planned and unplanned gait termination in children. Gait Posture 2013, 37, 178–182. [Google Scholar] [CrossRef] [Green Version]
- Cen, X.; Jiang, X.; Gu, Y. Do different muscle strength levels affect stability during unplanned gait termination? Acta Bioeng. Biomech. 2019, 21, 27–35. [Google Scholar] [CrossRef]
- Zhang, Y.; Baker, J.S.; Ren, X.; Feng, N.; Gu, Y. Metatarsal strapping tightness effect to vertical jump performance. Hum. Mov. Sci. 2015, 41, 255–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mootanah, R.; Song, J.; Lenhoff, M.W.; Hafer, J.F.; Backus, S.I.; Gagnon, D.; Deland, J.T.; Hillstrom, H.J. Foot Type Biome-chanics Part 2: Are structure and anthropometrics related to function? Gait Posture 2013, 37, 452–456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hotfiel, T.; Carl, H.D.; Wendler, F.; Jendrissek, A.; Heiß, R.; Swoboda, B. Plantar pressures increase with raising body weight: A standardised approach with paired sample using neutral shoes. J. Back Musculoskelet. Rehabil. 2017, 30, 583–589. [Google Scholar] [CrossRef]
- Williams, D.S.; McClay, I.S.; Hamill, J.; Buchanan, T.S. Lower extremity kinematic and kinetic differences in runners with high and low arches. J. Appl. Biomech. 2001, 17, 153–163. [Google Scholar] [CrossRef]
- Gravante, G.; Pomara, F.; Russo, G.; Amato, G.; Cappello, F.; Ridola, C. Plantar pressure distribution analysis in normal weight young women and men with normal and claw feet: A cross-sectional study. Clin. Anat. 2005, 18, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Lu, Q. A Current Review of Foot Disorder and Plantar Pressure Alternation in the Elderly. Phys. Act. Health 2020, 4, 95–106. [Google Scholar] [CrossRef]
- Zhao, X.; Gu, Y.; Yu, J.; Ma, Y.; Zhou, Z. The Influence of Gender, Age, and Body Mass Index on Arch Height and Arch Stiff-ness. J. Foot Ankle Surg. 2020, 59, 298–302. [Google Scholar] [CrossRef] [PubMed]
- Tirosh, O.; Sparrow, W.A. Age and walking speed effects on muscle recruitment in gait termination. Gait Posture 2005, 21, 279–288. [Google Scholar] [CrossRef]
- Gu, Y.; Zhang, Y.; Shen, W. Lower extremities kinematics variety of young women jogging with different heel height. IJBET 2013, 12, 240–251. [Google Scholar] [CrossRef]
Variables | ANOVA | ||||||
---|---|---|---|---|---|---|---|
Joint | Plane | Pattern | SA | FA | Pattern | Stiffness | Interaction |
Mean (SD) | Mean (SD) | ||||||
Hip | Sagittal | UGT | 26.01 (6.17) | 23.60 (4.13) | F = 10.774 | F = 3.578 | F = 0.557 |
PGT | 23.47 (3.55) | 22.00 (2.67) | p = 0.001* | p = 0.060 | p = 0.457 | ||
Frontal | UGT | 6.77 (2.06) | 7.87 (2.31) | F = 14.400 | F = 2.925 | F = 1.515 | |
PGT | 8.31 (2.25) | 8.65 (1.69) | p < 0.001* | p = 0.089 | p = 0.220 | ||
Transverse | UGT | 12.77 (3.02) | 13.06 (3.26) | F = 0.530 | F = 2.545 | F = 0.834 | |
PGT | 12.05 (2.30) | 13.14 (3.42) | p = 0.467 | p = 0.112 | p = 0.362 | ||
Knee | Sagittal | UGT | 37.12 (7.96) | 34.61 (8.71) | F = 2.678 | F = 1.038 | F = 0.616 |
PGT | 38.31 (10.79) | 37.99 (10.63) | p = 0.103 | p = 0.310 | p = 0.433 | ||
Frontal | UGT | 4.94 (1.66) | 7.10 (2.41) | F = 3.578 | F = 78.560 | F = 1.774 | |
PGT | 4.02 (1.22) | 6.94 (2.30) | p = 0.060 | p < 0.001# | p = 0.185 | ||
Transverse | UGT | 9.35 (1.98) | 9.30 (2.08) | F = 20.754 | F = 3.863 | F = 3.262 | |
PGT | 8.48 (2.55) | 7.27 (2.18) | p < 0.001* | p = 0.051 | p = 0.072 | ||
Ankle | Sagittal | UGT | 25.87 (4.44) | 23.26 (2.76) | F = 8.198 | F = 17.428 | F = 2.116 |
PGT | 23.94 (2.85) | 22.60 (2.37) | p = 0.005* | p < 0.001# | p = 0.147 | ||
Frontal | UGT | 10.87 (3.16) | 11.00 (3.25) | F = 8.118 | F = 4.096 | F = 2.868 | |
PGT | 9.07 (2.50) | 10.55 (1.72) | p = 0.005* | p = 0.044# | p = 0.092 | ||
Transverse | UGT | 8.53 (2.07) | 7.72 (2.49) | F = 1.621 | F = 0.890 | F = 2.325 | |
PGT | 7.61 (2.20) | 7.80 (2.34) | p = 0.204 | p = 0.347 | p = 0.129 | ||
MTP | Sagittal | UGT | 18.81 (8.38) | 19.28 (6.74) | F = 0.001 | F = 0.494 | F = 0.064 |
PGT | 18.58 (7.35) | 19.58 (6.13) | p = 0.973 | p = 0.483 | p = 0.801 | ||
Frontal | UGT | 10.78 (3.60) | 8.81 (3.55) | F = 0.282 | F = 13.232 | F = 0.027 | |
PGT | 10.42 (3.99) | 8.62 (2.69) | p = 0.596 | p < 0.001# | p = 0.870 | ||
Transverse | UGT | 3.20 (1.51) | 2.89 (1.08) | F = 0.025 | F = 2.197 | F = 0.001 | |
PGT | 3.16 (1.28) | 2.87 (0.94) | p = 0.876 | p = 0.140 | p = 0.973 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cen, X.; Lu, Z.; Baker, J.S.; István, B.; Gu, Y. A Comparative Biomechanical Analysis during Planned and Unplanned Gait Termination in Individuals with Different Arch Stiffnesses. Appl. Sci. 2021, 11, 1871. https://doi.org/10.3390/app11041871
Cen X, Lu Z, Baker JS, István B, Gu Y. A Comparative Biomechanical Analysis during Planned and Unplanned Gait Termination in Individuals with Different Arch Stiffnesses. Applied Sciences. 2021; 11(4):1871. https://doi.org/10.3390/app11041871
Chicago/Turabian StyleCen, Xuanzhen, Zhenghui Lu, Julien S. Baker, Bíró István, and Yaodong Gu. 2021. "A Comparative Biomechanical Analysis during Planned and Unplanned Gait Termination in Individuals with Different Arch Stiffnesses" Applied Sciences 11, no. 4: 1871. https://doi.org/10.3390/app11041871
APA StyleCen, X., Lu, Z., Baker, J. S., István, B., & Gu, Y. (2021). A Comparative Biomechanical Analysis during Planned and Unplanned Gait Termination in Individuals with Different Arch Stiffnesses. Applied Sciences, 11(4), 1871. https://doi.org/10.3390/app11041871