Compact Model of a Screen under Fan-Induced Swirl Conditions Using a Porous Media Approach
Abstract
:1. Introduction
2. Geometric and Operational Parameters for the Numerical Runs
3. Numerical Model
3.1. Flow Domain
3.2. Mathematical Modeling
3.2.1. Turbulence Modeling
3.2.2. Porous Media Modeling
3.3. Boundary Conditions
4. Numerical Simulation of the Model
4.1. Geometry Meshing
4.2. Numerical Procedure
4.3. Convergence Criterion and Computational Time
5. Iterative Process to Obtain the Pressure Loss Coefficients per Unit Length
6. Correlations for the Pressure Drop Coefficients per Unit Length and Reliability of the Compact Model
6.1. Different Trends for the Behavior of the Value for
6.2. Correlations for the Coefficients as a Function of the Geometric and Operational Parameters
6.3. Reliability of Compact Modeling
6.4. Application of the Compact Model with a Random Case
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
a | distance between the fan and the EMC screen (mm) |
A | area (m2) |
D | diameter of the fan and size of the channel (mm) |
Dh | hub diameter (mm) |
k | turbulent kinetic energy (m2/s2) |
Lc | characteristic length (m) |
P | pressure (N/m2) |
S | Swirl number (-) |
t | thickness of the screen (mm) |
Ui,j | velocity components (m/s) |
v | velocity(m/s) |
area weighted average of the tangential velocity (m/s) | |
V | mean axial velocity (m/s) |
Va | local axial velocity (m/s) |
Vt | mean tangential velocity (m/s) |
Greek symbols | |
regression coefficient (-) | |
ε | porosity of the screen (%) |
ε | rate of dissipation of the turbulent kinetic energy (m2/s3) |
φ | directional pressure loss coefficient (-) |
μ | dynamic viscosity (N·s/m2) |
μt | turbulent viscosity (N·s/m2) |
ρ | density (kg/m3) |
ξ | ratio of perimeter to area of the pores of the screen (1/mm) |
References
- Sharma, C.S.; Tiwari, M.K.; Zimmermann, S.; Brunschwiler, T.; Schlottig, G.; Michel, B.; Poulikakos, D. Energy efficient hotspot-targeted embedded liquid cooling of electronics. Appl. Energy 2015, 138, 414–422. [Google Scholar] [CrossRef]
- Birbarah, P.; Gebrael, T.; Foulkes, T.; Stillwell, A.; Moore, A.; Pilawa-Podgurski, R.; Miljkovic, N. Water immersion cooling of high power density electronics. Int. J. Heat Mass Transf. 2020, 147, 118918. [Google Scholar] [CrossRef]
- Liu, Y.; Han, X.; Shen, C.; Yao, F.; Zhang, M. Experimental Study on the Evaporation and Condensation Heat Transfer Characteristics of a Vapor Chamber. Energies 2018, 12, 11. [Google Scholar] [CrossRef] [Green Version]
- Estes, K.A.; Mudawar, I. Comparison of Two-Phase Electronic Cooling Using Free Jets and Sprays. J. Electron. Packag. 1995, 117, 323–332. [Google Scholar] [CrossRef]
- Carneiro, M.V.P.; De Oliveira, P.A.; Barbosa, J.R. A compact refrigeration system based on multijet sprays for electronics thermal management. Exp. Therm. Fluid Sci. 2018, 97, 180–191. [Google Scholar] [CrossRef]
- Hill, B.; Hill, C. Effects of Electronic Enclosure Layout on Fan Performance. In Proceedings of the ASME Winter Annual Meeting, Dallas, TX, USA, 25–30 November 1990. 90-WA/EEP-6. [Google Scholar]
- Grimes, R.; Davies, M.; Punch, J.; Dalton, T.; Cole, R. Modeling Electronic Cooling Axial Fan Flows. J. Electron. Packag. 2000, 123, 112–119. [Google Scholar] [CrossRef]
- Lin, S.C.; Chou, C.A. Blockage effect of axial-flow fans applied on heat sink assembly. Appl. Therm. Eng. 2004, 24, 2375–2389. [Google Scholar] [CrossRef]
- Swim, W.B. An Experimental Study of the Effects of Inlet Plenum Walls on Axial Fan Performance. ASHRAE Trans. 2005, 111, 993–999. [Google Scholar]
- Baniasadi, E.; Aydin, M.; Dincer, I.; Naterer, G. Computational Aerodynamic Study of Automotive Cooling Fan in Blocked Conditions. Eng. Appl. Comput. Fluid Mech. 2013, 7, 66–73. [Google Scholar] [CrossRef] [Green Version]
- Antón, R.; Bengoechea, A.; Rivas, A.; Ramos, J.C.; Larraona, G.S. Performance of Axial Fans in Close Proximity to the Electromagnetic Compatibility Screens. J. Electron. Packag. 2012, 134, 011004. [Google Scholar] [CrossRef]
- Tanner, P.; Gorman, J.; Sparrow, E. Flow–pressure drop characteristics of perforated plates. Int. J. Numer. Methods Heat Fluid Flow 2019, 29, 4310–4333. [Google Scholar] [CrossRef]
- Miguel, A.F. Characterization of Fluid Flow through Perforated Plates. J. Porous Media 2019, 22, 1439–1448. [Google Scholar] [CrossRef]
- Bejan, A.; Kim, S.J.; Morega Al, M.; Lee, S.W. Cooling of stacks of plates shielded by porous screens. Int. J. Heat Fluid Flow 1995, 16, 16–24. [Google Scholar] [CrossRef]
- Brundrett, E. Prediction of Pressure Drop for Incompressible Flow Through Screens. J. Fluids Eng. 1993, 115, 239–242. [Google Scholar] [CrossRef]
- Bengoechea, A.; Antón, R.; Larraona, G.S.; Rivas, A.; Ramos, J.C.; Masip, Y. PIV measurements and a CFD benchmark study of a screen under fan-induced swirl conditions. Int. J. Heat Fluid Flow 2014, 46, 43–60. [Google Scholar] [CrossRef]
- Bengoechea; Anton, R.; Larraona, G.; Ramos, J.C.; Rivas, A. Influence of Geometrical Parameters in The Downstream Flow of A Screen Under Fan-Induced Swirl Conditions. Eng. Appl. Comput. Fluid Mech. 2014, 8, 623–638. [Google Scholar] [CrossRef] [Green Version]
- Preece, D.A.; Montgomery, D.C. Design and Analysis of Experiments. Int. Stat. Rev. 1978, 46, 120. [Google Scholar] [CrossRef] [Green Version]
- Baelmans, M.; Meyers, J.M.; Nevelsteen, K. Flow modeling in air-cooled electronic enclosures. In Proceedings of the Nineteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium, San Jose, CA, USA, 11–13 March 2003. [Google Scholar] [CrossRef]
- Idelchik, I.E. Handbook of Hydraulic Resistance; Jaico Publishing House: Munbai, India, 2003. [Google Scholar]
- Kordyban, T. Fan Swirl and Planar Resistances Don’t mix. In Proceedings of the 9th International Flotherm User Conference, Orlando, FL, USA, 18–19 October 2000. [Google Scholar]
- Anton, R.; Jonsson, H.; Moshfegh, B. Detailed CFD modeling of EMC screen for radio base stations: A benchmark study. IEEE Trans. Compon. Packag. Technol. 2007, 30, 754–763. [Google Scholar] [CrossRef]
- Antón, R.; Jonsson, H.; Moshfegh, B. Compact CFD modelling of EMC screen for radio base stations: A porous media approach and a correlation for the directional loss coefficients. IEEE Trans. Compon. Packag. Technol. 2007, 30, 875–885. [Google Scholar] [CrossRef]
- Antón, R.; Jonsson, H.; Moshfegh, B. Detailed CFD modelling of EMC screen for radio base stations: A conjugate heat trans-fer problem. Int. J. Heat Exch. 2007, 8, 95–116. [Google Scholar]
- Anton, R.; Jonsson, H.; Moshfegh, B. Detailed CFD Modelling of EMC Screens for Radio Base Stations: A Parametric Study. IEEE Trans. Compon. Packag. Technol. 2009, 32, 145–155. [Google Scholar] [CrossRef]
- Nevelsteen, K.; De Troch, K.; Mesbah, M.; Nelemans, W.; Baelmans, M. Screen characterization under fan induced swirl conditions. IEEE Trans. Components Packag. Technol. 2006, 29, 385–394. [Google Scholar] [CrossRef]
- Najam, F.; Yu, Y.S. Compact Model for L-Shaped Tunnel Field-Effect Transistor Including the 2D Region. Appl. Sci. 2019, 9, 3716. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Nezami, M.S.; Rolston, D.; Liboiron-Ladouceur, O. A Compact High-Efficient Equivalent Circuit Model of Mul-ti-Quantum-Well Vertical-Cavity Surface-Emitting Lasers for High-Speed Interconnects. Appl. Sci. 2020, 10, 3865. [Google Scholar] [CrossRef]
- Colangelo, A.; Guelpa, E.; Lanzini, A.; Mancò, G.; Verda, V. Compact Model of Latent Heat Thermal Storage for Its Integra-tion in Multi-Energy Systems. Appl. Sci. 2020, 10, 8970. [Google Scholar] [CrossRef]
- Beér, J.; Chigier, N. Combustion Aerodynamics; Robert, E., Ed.; Krieger Publishing Company Inc.: Malabar, FL, USA, 1983. [Google Scholar]
- Launder, B.E.; Spalding, D.B. Lectures in Mathematical Models of Turbulence; Academic Press: London, UK, 1972. [Google Scholar]
- Launder, B.; Spalding, D. The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng. 1974, 3, 269–289. [Google Scholar] [CrossRef]
- ANSYS FLUENT®13. In Documentation; Ansys, Inc.: Canonsburg, PA, USA, 2013.
- Best Practice Guidelines. European Research Community on Flow, Turbulence and Combustion, Version 1.0; Best Practice Guidelines: Bushey, UK, 2000. [Google Scholar]
Parameters | D (mm) | Dh/D (-) | S (-) | a (mm) | ε (%) | ξ (1/mm) | t (mm) | V (m/s) |
---|---|---|---|---|---|---|---|---|
Minimum value (-) | 40 | 0.25 | 0.4 | 5 | 30 | 0.25 | 0.5 | 1 |
Middle value (0) | 70 | 0.4 | 0.7 | 15 | 52.5 | 0.31 | 1.5 | 1.75 |
Maximum value (+) | 100 | 0.55 | 1 | 25 | 75 | 0.37 | 2.5 | 2.5 |
Exp. | D | Dh/D | S | V | a | t | ε | ξ | Exp. | D | Dh/D | S | V | a | t | ε | ξ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | + | - | - | + | + | - | - | 42 | - | + | + | - | + | - | + | + |
2 | - | - | + | + | - | - | + | + | 43 | + | + | - | + | - | - | - | + |
3 | 0 | 0 | + | 0 | 0 | 0 | 0 | 0 | 44 | - | - | - | - | - | + | + | - |
4 | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 45 | - | + | + | + | + | + | - | - |
5 | + | + | + | + | + | - | + | - | 46 | + | + | - | - | - | - | + | + |
6 | + | + | - | + | - | + | - | - | 47 | - | - | - | + | - | + | - | - |
7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 48 | + | - | + | + | - | + | - | + | |
8 | + | - | + | + | - | - | - | - | 49 | - | + | + | - | + | + | + | - |
9 | 0 | 0 | 0 | 0 | 0 | - | 0 | 0 | 50 | - | + | + | + | - | + | - | + |
10 | + | + | + | - | + | + | - | + | 51 | 0 | + | 0 | 0 | 0 | 0 | 0 | 0 |
11 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 52 | - | + | - | + | + | - | + | + |
12 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 53 | - | - | - | - | + | + | + | + |
13 | - | + | + | + | + | - | - | + | 54 | + | - | - | + | + | + | + | - |
14 | + | - | + | - | - | + | + | + | 55 | 0 | 0 | 0 | 0 | + | 0 | 0 | 0 |
15 | + | - | - | - | + | + | - | - | 56 | + | + | - | - | + | + | + | + |
16 | - | - | - | - | + | - | + | - | 57 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
17 | 0 | 0 | 0 | 0 | 0 | 0 | - | 0 | 58 | - | + | + | - | - | + | + | + |
18 | + | - | - | - | + | - | - | + | 59 | - | + | - | + | - | + | + | + |
19 | - | + | + | - | - | - | + | - | 60 | + | + | + | + | + | + | + | + |
20 | 0 | 0 | 0 | 0 | 0 | 0 | + | 0 | 61 | - | - | + | - | - | + | - | - |
21 | - | + | - | - | - | + | - | + | 62 | + | + | + | - | - | + | - | - |
22 | + | + | - | - | - | + | + | - | 63 | - | - | + | + | - | + | + | - |
23 | + | - | - | + | + | - | + | + | 64 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | + |
24 | + | - | - | - | - | - | - | - | 65 | - | - | + | - | - | - | - | + |
25 | + | - | - | - | - | + | - | + | 66 | + | - | - | + | - | + | + | + |
26 | - | + | - | - | - | - | - | - | 67 | + | + | + | + | - | + | + | - |
27 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | 68 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 |
28 | + | + | - | + | + | - | - | - | 69 | + | + | - | + | + | + | - | + |
29 | + | - | + | + | + | + | - | - | 70 | + | - | + | + | + | - | - | + |
30 | + | - | + | - | + | - | + | + | 71 | - | - | + | - | + | + | - | + |
31 | - | + | - | + | + | + | + | - | 72 | + | + | + | - | - | - | - | + |
32 | + | + | + | - | + | - | - | - | 73 | - | - | - | + | - | - | - | + |
33 | 0 | 0 | 0 | + | 0 | 0 | 0 | 0 | 74 | - | + | - | - | + | - | - | + |
34 | - | - | + | - | + | - | - | - | 75 | - | - | + | + | + | + | + | + |
35 | + | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 76 | + | + | - | - | + | - | + | - |
36 | - | - | - | + | + | - | - | - | 77 | - | - | - | - | - | - | + | + |
37 | + | - | + | - | + | + | + | - | 78 | - | + | + | + | - | - | - | - |
38 | - | + | - | + | - | - | + | - | 79 | + | - | - | + | - | - | + | - |
39 | - | - | + | + | + | - | + | - | 80 | + | - | + | - | - | - | + | - |
40 | - | - | - | + | + | + | - | + | 81 | 0 | 0 | 0 | 0 | 0 | + | 0 | 0 |
41 | + | + | + | + | - | - | + | + |
Standard k-ε | |
---|---|
; | |
Coeff. | |
Factor | β0 | D | Dh/D | S | V | a | t |
Value | 445.48 | −159.30 | −52.03 | 22.94 | −122.42 | −22.02 | 257.08 |
Factor | ε | ξ | D-V | D-t | D-ε | D-ξ | S-Dh/D |
Value | −307.91 | 230.03 | 84.87 | 155.50 | 61.81 | 53.03 | −56.22 |
Factor | V-t | a-t | ε-t | ξ-t | ε-ξ | ||
Value | 107.62 | −60.56 | −175.56 | 127.28 | −127.16 |
Factor | β0 | D | Dh/D | S | V | a | t |
Value | −771.53 | 519.09 | 142.53 | −26.18 | 26.55 | 284.48 | 557.85 |
Factor | ε | ξ | D-Dh/D | D-t | D-ξ | a-Dh/D | t-Dh/D |
Value | −74.12 | 175.85 | 75.16 | −425.94 | 86.75 | −116.31 | −125.81 |
Factor | S-ε | V-ε | V-ξ | a-t | a-ε | t-ξ | t-t |
Value | 88.50 | 55.91 | −53.75 | −108.91 | −57.81 | −108.34 | −193.59 |
Parameter | D(mm) | Dh/D | S | a(mm) | ε (%) | ξ(1/mm) | t (mm) | V(m/s) |
---|---|---|---|---|---|---|---|---|
Real value | 67 | 0.42 | 0.7 | 16 | 0.75 | 0.26 | 1.4 | 1.68 |
Coded value | −0.10 | 0.13 | 0.00 | 0.10 | 1 | −0.66 | −0.11 | −0.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bengoechea, A.; Antón, R.; Rivas, A.; Larraona, G.S.; Ramos, J.C. Compact Model of a Screen under Fan-Induced Swirl Conditions Using a Porous Media Approach. Appl. Sci. 2021, 11, 1999. https://doi.org/10.3390/app11051999
Bengoechea A, Antón R, Rivas A, Larraona GS, Ramos JC. Compact Model of a Screen under Fan-Induced Swirl Conditions Using a Porous Media Approach. Applied Sciences. 2021; 11(5):1999. https://doi.org/10.3390/app11051999
Chicago/Turabian StyleBengoechea, Asier, Raúl Antón, Alejandro Rivas, Gorka S. Larraona, and Juan Carlos Ramos. 2021. "Compact Model of a Screen under Fan-Induced Swirl Conditions Using a Porous Media Approach" Applied Sciences 11, no. 5: 1999. https://doi.org/10.3390/app11051999
APA StyleBengoechea, A., Antón, R., Rivas, A., Larraona, G. S., & Ramos, J. C. (2021). Compact Model of a Screen under Fan-Induced Swirl Conditions Using a Porous Media Approach. Applied Sciences, 11(5), 1999. https://doi.org/10.3390/app11051999