Agro-Nanotechnology as an Emerging Field: A Novel Sustainable Approach for Improving Plant Growth by Reducing Biotic Stress
Abstract
:1. Introduction
2. Nanomaterials in Improving Plant Growth and Yield
3. Nanomaterials in Various Diseases Management
4. Toxic Effect of Nanoparticles
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- O’Neill, J.R. Irish Potato Famine; BDO: Edina, MN, USA, 2009; p. 1604535148. [Google Scholar]
- Cabral-Pinto, M.M.S.; Inácio, M.; Neves, O.; Almeida, A.A.; Pinto, E.; Oliveiros, B.; Ferreira da Silva, E.A. Human health risk assessment due to agricultural activities and crop consumption in the surroundings of an industrial area. Expo. Health 2020, 12, 629–640. [Google Scholar] [CrossRef]
- F.A.O.; World Health Organization; WHO Expert Committee on Food Additives. Evaluation of Certain Contaminants in Food: Eighty-Third Report of the Joint FAO/WHO Expert Committee on Food Additives; World Health Organization: Geneve, Switzerland, 2017. [Google Scholar]
- Tilman, D.; Knops, J.; Wedin, D.; Reich, P. Plant diversity and composition: Effects on productivity and nutrient dynamics of experimental grasslands. In Biodiversity and Ecosystem Functioning; Loreau, M., Naeem, S., Inchausti, P., Eds.; Oxford University Press: Oxford, UK, 2002; pp. 21–35. [Google Scholar]
- Cohn, B.A.; Wolff, M.S.; Cirillo, P.M.; Sholtz, R.I. DDT and breast cancer in young women: New data on the significance of age at exposure. Environ. Health Perspect. 2007, 115, 1406–1414. [Google Scholar] [CrossRef] [PubMed]
- Cabral-Pinto, M.M.S.; Marinho-Reis, P.; Almeida, A.; Pinto, E.; Neves, O.; Inácio, M.; Gerardo, B.; Freitas, S.; Simões, M.R.; Dinis, P.A.; et al. Links between cognitive status and trace element levels in hair for an environmentally exposed population: A case study in the surroundings of the Estarreja industrial area. Int. J. Environ. Res. Public Health 2019, 16, 4560. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.U.; Khan, M.; Khan, M.M. Antifungal and Antibacterial Assay by Silver Nanoparticles Synthesized from Aqueous Leaf Extract of Trigonella foenum-graecum. BioNanoScience 2019. [Google Scholar] [CrossRef]
- Khan, M.; Khan, A.U.; Alam, M.J.; Park, S.; Alam, M. Biosynthesis of silver nanoparticles and its application against phytopathogenic bacterium and fungus. Int. J. Environ. Anal. Chem. 2019. [CrossRef]
- Cabral-Pinto, M.M.S.; Silva, E.A.F.; Silva, M.M.V.G.; Melo-Gonçalves, P.; Candeias, C. Environmental risk assessment based on high-resolution spatial maps of potentially toxic elements sampled on stream sediments of Santiago, Cape Verde. Geosciences 2014, 4, 297–315. [Google Scholar] [CrossRef] [Green Version]
- Cabral Pinto, M.M.S.; Marinho-Reis, P.; Almeida, A.; Freitas, S.; Simões, M.R.; Diniz, L.; Pinto, E.; Ramos, P.; Ferreira da Silva, E.; Moreira, P.I. Fingernail trace element content in environmentally exposed individuals and its influence on their cognitive status in ageing. Expo. Health 2019, 11, 181–194. [Google Scholar] [CrossRef]
- BBC. BCC Research, Global Markets for Nanocomposites, Nanoparticles, Nanoclays, and Nanotubes. 2014. Available online: https://www.bccresearch.com/market-research/nanotechnology/nanocomposites-market-nan021f.html?vsmaid=203/ (accessed on 19 October 2017).
- Shang, Y.; Hasan, M.; Ahammed, G.J.; Li, M.; Yin, H.; Zhou, J. Applications of nanotechnology in plant growth and crop protection: A review. Molecules 2019, 24, 2558. [Google Scholar] [CrossRef] [Green Version]
- Aslani, F.; Bagheri, S.; Muhd, J.N.; Juraimi, A.S.; Hashemi, F.S.; Baghdadi, A. Effects of engineered nanomaterials on plants growth: An overview. Sci. World J. 2014. [Google Scholar] [CrossRef] [PubMed]
- Srivastav, A.; Yadav, K.K.; Yadav, S.; Gupta, N.; Singh, J.K.; Katiyar, R.; Kumar, V. Nano-Phytoremediation of Pollutants from Contaminated Soil Environment: Current Scenario and Future Prospects; Springer: Berlin/Heidelberg, Germany, 2018; pp. 383–401. [Google Scholar]
- Chichiriccò, G.; Poma, A. Penetration and toxicity of nanomaterials in higher plants. Nanomaterials 2015, 5, 851–873. [Google Scholar] [CrossRef] [PubMed]
- Eichert, T.; Kurtz, A.; Steiner, U.; Goldbach, H.E. Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiol. Plant 2008, 134, 151–160. [Google Scholar] [CrossRef]
- Schreiber, L. Polar paths of diffusion across plant cuticles: New evidence for an old hypothesis. Ann. Bot. 2005, 95, 1069–1073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, L.; Hong, F.; Lu, S.; Liu, C. Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol. Trace Elem. Res. 2005, 104, 83–91. [Google Scholar] [CrossRef]
- Mahmoud, A.W.M.; Abdeldaym, E.A.; Abdelaziz, S.M.; El-Sawy, M.B.I.; Mottaleb, S.A. Synergetic Effects of Zinc, Boron, Silicon, and Zeolite Nanoparticles on Confer Tolerance in Potato Plants Subjected to Salinity. Agronomy 2020, 10, 19. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.; Siddiqui, Z.A. Zinc oxide nanoparticles for the management of Ralstonia solanacearum, Phomopsis vexans and Meloidogyne incognita incited disease complex of eggplant. Indian Phytopathol. 2018, 71, 355–364. [Google Scholar] [CrossRef]
- Awasthi, A.; Bansal, S.; Jangir, L.K.; Awasthi, G.; Awasthi, K.K.; Awasthi, K. Effect of ZnO Nanoparticles on Germination of Triticum aestivum Seeds. Macromol. Symp. 2017, 376, 1700043. [Google Scholar] [CrossRef]
- Rizwan, M.; Ali, S.; Rehman, M.Z. Effect of foliar applications of silicon and titanium dioxide nanoparticles on growth, oxidative stress, and cadmium accumulation by rice (Oryza sativa). Acta Physiol. Plant. 2019, 41, 35–42. [Google Scholar] [CrossRef]
- Sabir, A.; Yazar, K.; Sabir, F.; Kara, Z.; Yazici, M.A.; Goksu, N. Vine growth, yield, berry quality attributes and leaf nutrient content of grapevines as influenced by seaweed extract (Ascophyllum nodosum) and nanosized fertilizer pulverizations. Sci. Hortic. 2014, 175, 1–8. [Google Scholar] [CrossRef]
- Venkatachalam, P.; Jayaraj, M.; Manikandan, R.; Geetha, N.; Rene, E.R.; Sharma, N.C.; Sahi, S.V. Zinc oxide nanoparticles (ZnONPs) alleviate heavy metal-inducedtoxicity in Leucaena leucocephala seedlings: A physiochemicalanalysis. Plant Physiol. Biochem. 2017, 110, 59–69. [Google Scholar] [CrossRef]
- Narendhran, S.; Rajiv, P.; Rajeshwari, S. Influence of zinc oxide nanoparticles on growth of Sesamum Indicum, L. in zinc deficient soil. Int. J. Pharm. Pharm. Sci. 2016, 8, 365–371. [Google Scholar]
- Taheri, M.; Qarache, H.A.; Qarache, A.A.; Yoosefi, M. The effects of zinc-oxide nanoparticles on growth parameters of corn (SC704). STEM Fellowsh. J. 2015, 1, 17–20. [Google Scholar] [CrossRef] [Green Version]
- Tarafdar, J.C.; Raliya, R.; Mahawar, H.; Rathore, I. Development of zinc nanofertilizer to enhance crop production in pearl millet (Pennisetum americanum). Agric.Res. 2014, 3, 257–262. [Google Scholar] [CrossRef]
- Siddiqui, Z.A.; Khan, M.R.; Abdallah, E.F.; Parveen, A. Titanium dioxide and zinc oxide nanoparticles affect some bacterial diseases, and growth and physiological changes of beetroot. Int. J. Veg. Sci. 2019, 25, 409–430. [Google Scholar] [CrossRef]
- Raliya, R.; Biswas, P.; Tarafdar, J. TiO2 nanoparticle biosynthesis and its physiological effect on mung bean (Vigna radiata L.). Biotechnol. Rep. 2015, 5, 22–26. [Google Scholar] [CrossRef] [Green Version]
- Laware, S.L.; Raskar, S. Effect of titanium dioxide nanoparticles on hydrolytic and antioxidant enzymes during seed germination in onion. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 749–760. [Google Scholar]
- Rafique, R.; Arshad, M.; Khokhar, M.; Qazi, I.; Hamza, A.; Virk, N. Growth response of wheat to titania nanoparticles application. NUST J. Eng. Sci. 2014, 7, 42–46. [Google Scholar]
- Mahmoodzadeh, H.; Nabavi, M.; Kashefi, H. Effect of Nanoscale Titanium Dioxide Particles on the Germination and Growth of Canola (Brassica napus). J. Ornam. Hortic. Plant 2013, 3, 25–32. [Google Scholar]
- Qi, M.; Liu, Y.; Li, T. Nano-TiO(2) improve the photosynthesis of tomato leaves under mild heat stress. Biol. Trace Elem. Res. 2013, 156, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Bao, S.L.; Chun, H.L.; Li, J.F.; Shu, C.Q.; Min, Y. Effect of TMS (nanostructured silicon dioxide) on growth of Changbai larch seedlings. J. For. Res. 2004, 15, 138–140. [Google Scholar]
- Azimi, R.; Borzelabad, M.J.; Feizi, H.; Azimi, A. Interaction of SiO2 nanoparticles with seed prechilling on germination and early seedling growth of tall wheatgrass (Agropyron elongatum L.). Pol. J. Chem. Technol. 2014, 16, 25–29. [Google Scholar] [CrossRef] [Green Version]
- Nair, R.; Varghese, S.H.; Nair, B.G.; Maekawa, T.; Yoshida, Y.; Kumar, D.S. Nanoparticulate material delivery to plants. Plant Sci. 2010, 179, 154–163. [Google Scholar] [CrossRef]
- Siddiqui, M.H.; Al-Whaibi, M.H.; Faisal, M.; Al Sahli, A.A. Nano-silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L. Environ. Toxicol. Chem. 2014, 33, 2429–2437. [Google Scholar] [CrossRef]
- Haghighi, M.; Afifipour, Z.; Mozafarian, M. The Effect of N-Si on Tomato Seed Germination under Salinity Levels. J. Biol. Environ. Sci. 2012, 6, 87–90. [Google Scholar]
- Kasana, R.C.; Panwar, N.R.; Kaul, R.K.; Kumar, P. Biosynthesis and effects of copper nanoparticles on plants. Environ. Chem. Lett. 2017, 15, 233–240. [Google Scholar] [CrossRef]
- Wang, Y.; Lin, Y.; Xu, Y.; Yin, Y.; Guo, H.; Du, W. Divergence in response of lettuce (var. ramosa Hort.) to copper oxide nanoparticles/microparticles as potential agricultural fertilizer. Environ. Pollut. Bioavailab. 2019, 31, 80–84. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.J.; Peralta-Videa, J.R.; Rico, C.M.; Hernandez-Viezcas, J.A.; Sun, Y.; Niu, G.; Servin, A.; Nunez, J.E.; Duarte-Gardea, M.; Gardea-Torresdey, J.L. CeO2 and ZnO nanoparticles change the nutritional quality of cucumber (Cucumis sativus). J. Agric. Food Chem. 2014, 62, 2752–2759. [Google Scholar] [CrossRef]
- Shinde, S.; Paralikar, P.; Ingle, A.P.; Rai, M. Promotion of seed germination and seedling growth of Zea mays by magnesium hydroxide nanoparticles synthesized by the filtrate from Aspergillus niger. Arab. J. Chem. 2020, 13, 3172–3182. [Google Scholar] [CrossRef]
- Hussain, F.; Hadi, F.; Akbar, F. Magnesium oxide nanoparticles and thidiazuron enhance lead phyto accumulation and antioxidative response in Raphanus sativus L. Environ. Sci. Pollut. Res. 2019, 26, 30333–30347. [Google Scholar] [CrossRef]
- Cai, L.; Liu, M.; Liu, Z.; Yang, H.; Sun, X.; Chen, J.; Ding, W. MgONPs can boost plant growth: Evidence from increased seedling growth, morpho-physiological activities, and Mg uptake in tobacco (Nicotiana tabacum L.). Molecules 2018, 23, 3375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imada, K.; Sakai, S.; Kajihara, H.; Tanaka, S.; Ito, S. Magnesium oxide nanoparticles induce systemic resistance in tomato against bacterial wilt disease. Plant Pathol. 2016, 65, 551–560. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, M.; Raja, N.I.; Wattoo, F.H.; Hussain, M.; Ejaz, M.; Saira, H. Assessment of AgNPs exposure on physiological and biochemical changes and antioxidative defence system in wheat (Triticum aestivum L) under heat stress. IET NanobioTechnol. 2018, 16, 230–236. [Google Scholar] [CrossRef]
- Mehta, C.M.; Srivastava, R.; Arora, S.; Sharma, A.K. Impact assessment of silver nanoparticles on plant growth and soil bacterial diversity. 3 Biotech 2016, 6, 254. [Google Scholar]
- Pilon, L.; Spricigo, P.C.; Miranda, M.; Moura, M.R.; Assis, O.B.G.; Mattoso, L.H.C.; Ferreira, M.D. Chitosan nanoparticle coatings reduce microbial growth on fresh-cut apples while not afecting quality attributes. Int. J. Food Sci. Technol. 2015, 50, 440–448. [Google Scholar] [CrossRef]
- Van, S.N.; Minh, H.D.; Anh, D.N. Study on chitosan nanoparticles on biophysical characteristics and growth of robusta cofee in green house. Biocatal. Agric. Biotechnol. 2013, 2, 289–294. [Google Scholar]
- Das, C.K.; Srivastava, G.; Dubey, A.; Roy, M.; Jain, S.; Sethy, N.K.; Saxena, M.; Harke, S.; Sarkar, S.; Misra, K. Nano-iron pyrite seed dressing: A sustainable intervention to reduce fertilizer consumption in vegetable (beetroot, carrot), spice (fenugreek), fodder (alfalfa), and oilseed (mustard, sesamum) crops. Nanotechnol. Environ. Eng. 2016, 1, 2. [Google Scholar] [CrossRef] [Green Version]
- Manikandan, A.; Sathiyabama, M. Preparation of chitosan nanoparticles and its effect on detached rice leaves infected with Pyricularia grisea. Int. J. Biol. Macromol. 2016, 1, 58–61. [Google Scholar] [CrossRef]
- Hajirasouliha, M.; Jannesari, M.; Najafabadi, F.S.; Hashemi, M. Effect of novel chitosan nanoparticle coating on postharvest qualities of strawberry. In Proceedings of the 4th International Conference of Nanostructures, Kish Island, Iran, 12–14 March 2012. [Google Scholar]
- Janmohammadi, M.; Sabaghnia, N. Effect of pre-sowing seed treatments with silicon nanoparticles on germinability of sunflower (Helianthus annuus). Botanica 2015, 21, 13–21. [Google Scholar] [CrossRef] [Green Version]
- Roohizadeh, G.; Majd, A.; Arbabian, S. The effect of sodium silicate and silica nanoparticles on seed germination and growth in the Vicia faba L. Trop. Plant. Res. 2015, 2, 85–89. [Google Scholar]
- Kashyap, D.; Siddiqui, Z.A. Effect of silicon dioxide nanoparticles and Rhizobium leguminosarum alone and in combination on the growth and bacterial blight disease complex of pea caused by Meloidogyne incognita and Pseudomonas syringae pv. pisi. Arch. Phytopathol. Plant Prot. 2020, 3, 1–7. [Google Scholar] [CrossRef]
- Adhikari, S.; Kundu, S.; Rao, S.A. Impact of SiO2 and Mo nanoparticles on seed germination of rice (Oryza sativa L.). Int. J. Agric. Food Sci. Tech. 2013, 4, 809–816. [Google Scholar]
- Yinfeng, X.; Bo, L.; Gongsheng, T.A.O.; Qianqian, Z.; Chunxia, Z. Effects of nano-silicon dioxide on photosynthetic fluorescence characteristics of Indocalamus barbatus McClure. J. Nanjing For. Univer. 2012, 36, 59–63. [Google Scholar]
- Suriyaprabha, R.; Karunakaran, G.; Yuvakkumar, R.; Rajendran, V.; Kannan, N. Silica nanoparticles for increased silica availability in maize (Zea mays. L) seeds under hydroponic conditions. Curr. Nanosci. 2012, 8, 902–908. [Google Scholar] [CrossRef]
- Yuvakkumar, R.; Elango, V.; Rajendran, V.; Kannan, N.S.; Prabu, P. Influence of nanosilica powder on the growth of maize crop (Zea mays L.). Int. J. Green Nanotechnol. 2011, 3, 180–190. [Google Scholar] [CrossRef]
- Lu, C.M.; Zhang, C.Y.; Wen, J.Q.; Wu, G.R.; Tao, M.X. Research on the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Sci. 2002, 21, 68–172. [Google Scholar]
- Zhao, L.; Ortiz, C.; Adeleye, A.S.; Hu, Q.; Zhou, H.; Huang, Y.; Keller, A.A. Metabolomics to detect response of lettuce (Lactuca sativa) to Cu(OH)2 nanopesticides: Oxidative stress response and detoxification mechanisms. Environ. Sci. Technol. 2016, 50, 9697–9707. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Huang, Y.; Adeleye, A.S.; Keller, A.A. Metabolomics reveals Cu(OH)2 nanopesticide-activated anti-oxidative pathways and decreased beneficial antioxidants in spinach leaves. Environ. Sci. Technol. 2017, 51, 10184–10194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yusefi-Tanha, E.; Fallah, S.; Rostamnejadi, A.; Pokhrel, L.R. Zinc oxide nanoparticles (ZnO NPs) as a novel nanofertilizer: Influence on seed yield and antioxidant defense system in soil grown soybean (Glycine max cv. Kowsar). Sci. Total Environ. 2020, 738, 140240. [Google Scholar] [CrossRef]
- Singh, N.B.; Amist, N.; Yadav, K.; Singh, D.; Pandey, J.K.; Singh, S.C. Zinc oxide nanoparticles as fertilizer for the germination, growth and metabolism of vegetable crops. J. Nano Eng. Nano Manuf. 2013, 3, 1–12. [Google Scholar] [CrossRef]
- Prasad, T.N.V.K.V.; Sudhakar, P.; Sreenivasulu, Y.; Latha, P.; Munaswamy, V.; Reddy, R.K.; Sreeprasad, T.S.; Sajanlal, P.R.; Pradeep, T. Effect of nanoscale zinc oxide particles on the germination, growth and yield of Peanut. J. Plant Nutr. 2012, 35, 905–927. [Google Scholar] [CrossRef]
- Srivastava, G.; Das, C.K.; Das, A.; Singh, S.K.; Roy, M.; Kim, H.; Sethy, N.; Kumar, A.; Sharma, R.K.; Singh, S.K.; et al. Seed treatment with iron pyrite (FeS2) nanoparticles increases the production of spinach. RSC Adv. 2014, 4, 58495–58504. [Google Scholar] [CrossRef]
- Rezaei, F.; Moaveni, P.; Mozafari, H. Effect of different concentrations and time of nano TiO2 spraying on quantitative and qualitative yield of soybean (Glycine max L.) at Shahr-e-Qods. Iran. Biol. Forum. 2015, 7, 957–964. [Google Scholar]
- Samadi, N.; Yahyaabadi, S.; Rezayatmand, Z. Effect of TiO2 and TiO2 Nanoparticle on Germination, Root and Shoot Length and Photosynthetic Pigments ofMentha Piperita. Int. J. Plant. Soil Sci. 2014, 3, 408–418. [Google Scholar] [CrossRef]
- Reyhaneh, A.; Hassan, F.; Hosseini, M.K. Can Bulk and Nanosized Titanium Dioxide Particles Improve Seed Germination Features of Wheatgrass (Agropyron desertorum). Not. Sci. Biol. 2013, 5, 325–331. [Google Scholar]
- Kim, S.W.; Jung, J.H.; Lamsal, K.; Kim, Y.S.; Min, J.S.; Lee, Y.S. Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology 2012, 4, 53–58. [Google Scholar] [CrossRef] [Green Version]
- Gautam, N.; Salaria, N.; Thakur, K.; Kukreja, S.; Yadav, N.; Yadav, R.; Goutam, U. Green silver nanoparticles for phytopathogen control. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2020, 90, 439–446. [Google Scholar] [CrossRef]
- Rodríguez-Serrano, C.; Guzmán-Moreno, J.; Ángeles-Chávez, C.; Rodríguez-González, V.; Ortega-Sigala, J.J.; Ramírez-Santoyo, R.M.; Vidales-Rodríguez, L.E. Biosynthesis of silver nanoparticles by Fusarium scirpi and its potential as antimicrobial agent against uropathogenic Escherichia coli biofilms. PLoS ONE 2020, 15, e0230275. [Google Scholar] [CrossRef] [Green Version]
- Hussein, E.A.M.; Al-Hajry, A.M.; Harraz, F.A.; Ahsan, M.F. Biologically synthesized silver nanoparticles for enhancing tetracycline activity against Staphylococcus aureus and Klebsiella pneumonia. Braz. Arch. Biol. Technol. 2019, 62, 25. [Google Scholar] [CrossRef]
- Shehzad, A.; Qureshi, M.; Jabeen, S.; Ahmad, R.; Alabdalall, A.H.; Aljafary, M.A.; Al-Suhaimi, E. Synthesis, Characterization and antibacterial activity of silver nanoparticles using Rhazya stricta. Peer J. 2018, 6, e6086. [Google Scholar] [CrossRef] [Green Version]
- Mohanta, Y.K.; Panda, S.K.; Bastia, A.K.; Mohanta, T.K. Biosynthesis of silver nanoparticles from protium serratum and Potential Impacts on food safety and control. Front. Microbiol. 2017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdelmalek, G.A.M.; Salaheldin, T.A. Silver nanoparticles as a potent fungicide for citrus phytopathogenic fungi. J. Nanomed. Res. 2016, 3, 1–8. [Google Scholar]
- Krishnaraj, C.; Ramachandran, R.; Mohan, K.; Kalaichelvan, P. Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochim. Acta A 2012, 93, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Jo, Y.-K.; Kim, B.H.; Jung, G. Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant. Dis. 2009, 93, 1037–1043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahryari, F.; Rabiei, Z.; Sadighian, S. Antibacterial activity of synthesized silver nanoparticles by sumac aqueous extract and silver-chitosan nanocomposite against Pseudomonas syringae pv. syringae. J. Plant. Pathol. 2020, 102, 469–475. [Google Scholar] [CrossRef]
- Divya, K.; Vijayan, S.; George, T.K.; Jisha, M. Antimicrobial properties of chitosan nanoparticles: Mode of action and factors affecting activity. Fibers Polym. 2017, 18, 221–230. [Google Scholar] [CrossRef]
- Xing, K.; Shen, X.; Zhu, X.; Ju, X.; Miao, X.; Tian, J.; Feng, Z.; Peng, X.; Jiang, J.; Qin, S. Synthesis and in vitro antifungal efcacy of oleoyl-chitosan nanoparticles against plant pathogenic fungi. Int. J. Biol. Macromol. 2016, 82, 830–836. [Google Scholar] [CrossRef]
- Dang, H.; Fawcett, D.G.; Poinern, J. Green synthesis of gold nanoparticles from waste macadamia nuts shells and their antimicrobial activity against Escherichia coli and Staphylococcus epidermis. Int. J. Res. Med. Sci. 2019. [Google Scholar] [CrossRef]
- Attar, A.; Yapaoz, M.A. Biomimetic synthesis, characterization and antibacterial efficacy of ZnO and Au nanoparticles using Echinacea flower extract precursor. Mater. Res. Express. 2018, 5, 5. [Google Scholar] [CrossRef]
- Jayaseelan, C.; Ramkumar, R.; Rahuman, A.A.; Perumal, P. Green synthesis of gold nanoparticles using seed aqueous extract of Abelmoschus esculentus and its antifungal activity. Ind. Crops Prod. 2013, 45, 423–429. [Google Scholar] [CrossRef]
- Fan, Q.; Liao, Y.Y.; Kunwar, S.; Da Silva, S.; Young, M.; Santra, S.; Paret, M.L. Antibacterial effect of copper composites against Xanthomonas euvesicatoria. Crop Prot. 2020, 139, 105366. [Google Scholar] [CrossRef]
- Huang, S.; Wang, L.; Liu, L.; Hou, Y.; Li, L. Nanotechnology in agriculture, livestock, and aquaculture in China. A review. Agron. Sustain. Dev. 2015, 35, 369–400. [Google Scholar] [CrossRef] [Green Version]
- Giannousi, K.; Avramidis, I.; Dendrinou-Samara, C. Synthesis, characterization and evaluation of copper based nanoparticles as agrochemicals against Phytophthora infestans. RSC Adv. 2013, 3, 21743–21752. [Google Scholar] [CrossRef]
- Sharma, N.; Jandaik, S.; Kumar, S.; Chitkara, M.; Sandhu, I.S. Synthesis, characterisation and antimicrobial activity of manganese- and iron-doped zinc oxide nanoparticles. J. Exp. Nanosci. 2015, 11, 54–71. [Google Scholar] [CrossRef]
- Derbalah, A.; Shenashen, M.; Hamza, A.; Mohamed, A.; El Safty, S. Antifungal activity of fabricated mesoporous silica nanoparticles against early blight of tomato. Egypt. J. Basic Appl. Sci. 2018, 5, 145–150. [Google Scholar] [CrossRef] [Green Version]
- Akpinar, I.; Sar, T.; Unal, M. Antifungal effects of silicon dioxide nanoparticles (SiO2 NPs) against various plant pathogenic fungi. In International Workshop: Plant Health: Challenges and Solutions; Tar, M., Baştaş, K.K., Eds.; Frontiers Media SA: Antalya, Turkey, 2017; ISBN 978-2-88945-218-7. [Google Scholar]
- Park, H.J.; Kim, S.H.; Kim, H.J.; Choi, S.H. A new composition of nano sized silica-silver for control of various plant diseases. Plant Pathol. 2006, 22, 295–302. [Google Scholar] [CrossRef]
- Jamdagni, P.; Khatri, P.; Rana, J.S. Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthesarbor-tristis and their antifungal activity. J. King Saud Uni. Sci. 2016. [Google Scholar] [CrossRef] [Green Version]
- Navale, G.R.; Thripuranthaka, M.; Late, D.J.; Shinde, S.S. Antimicrobial Activity of ZnO Nanoparticles against Pathogenic Bacteria and Fungi. JSM Nanotechnol. Nanomed. 2015, 3, 10–33. [Google Scholar]
- Rajiv, P.; Rajeshwari, S.; Venckatesh, R. Bio-Fabrication of zinc oxide nanoparticles using leaf extract of Parthenium hysterophorus L. and its size-dependent antifungal activity against plant fungal pathogens. Spectrochim. Acta A 2013, 112, 384–387. [Google Scholar] [CrossRef] [PubMed]
- Gunalan, S.; Sivaraj, R.; Rajendran, V. Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Prog. Nat. Sci. Mater. 2012, 22, 693–700. [Google Scholar] [CrossRef] [Green Version]
- Dimkpa, C.O.; McLean, J.E.; Britt, D.W.; Anderson, A.J. Antifungal activity of ZnO nanoparticles and their interactive effect with a biocontrol bacterium on growth antagonism of the plant pathogen Fusarium graminearum. Biometals 2013, 26, 913–924. [Google Scholar] [CrossRef] [PubMed]
- Jayaseelan, C.; Rahuman, A.A.; Kirthi, A.V.; Marimuthu, S.; Santhoshkumar, T.; Bagavan, A.; Rao, K.V.B. Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012, 90, 78–84. [Google Scholar] [CrossRef]
- Sar, T.; Akpinar, I.; Unal, M. Inhibitory effect of antifungal activity of Titanium Dioxide (TiO2) nanoparticles on some pathogenic Fusarium isolates. In Proceedings of the International Workshop Plant Health: Challenges and Solutions, Antalya, Turkey, 23–28 April 2017. 78p. [Google Scholar]
- Hamza, A.; El-Mogazy, S.; Derbalah, A. Fenton reagent and titanium dioxide nanoparticles as antifungal agents to control leaf spot of sugar beet under field conditions. J. Plant Prot. Res. 2016, 56, 270–278. [Google Scholar] [CrossRef]
- Ardakani, A.S. Toxicity of silver, titanium and silicon nanoparticles on the root-knot nematode, Meloidogyne incognita, and growth parameters of tomato. Nematology 2013, 1–7. [Google Scholar] [CrossRef]
- Kasemets, K.; Ivask, A.; Dubourgier, H.C.; Kahru, A. Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicol. Vitr. 2009, 23, 1116–1122. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Zhang, P.; Gu, W.; Jiang, J. Application of anatasa TiO2 sol derived from peroxotitannic acid in crop diseases control and growth regulation. NSTI Nanotech. 2009, 2, 286–289. [Google Scholar]
- Slavin, Y.N.; Asnis, J.; Häfeli, U.O.; Bach, H. Metal nanoparticles: Understanding the mechanisms behind antibacterial activity. J. NanobioTechnol. 2017, 15, 65. [Google Scholar] [CrossRef]
- Singh, J.; Vishwakarma, K.; Ramawat, N.; Rai, P.; Singh, V.K.; Mishra, R.K.; Kumar, V.; Tripathi, D.K.; Sharma, S. Nanomaterials and microbes’ interactions: A contemporary overview. 3 Biotech 2019, 9, 1–4. [Google Scholar] [CrossRef]
- Kasprowicz, M.J.; Kozioł, M.; Gorczyca, A. The effect of silver nanoparticles on phytopathogenic spores of Fusarium culmorum. Can. J. Microbiol. 2010, 56, 247–253. [Google Scholar] [CrossRef] [PubMed]
- De Paz, L.E.; Resin, A.; Howard, K.A.; Sutherland, D.S.; Wejse, P.L. Antimicrobial effect of chitosan nanoparticles on Streptococcus mutans biofilms. Appl. Environ. Microbiol. 2011, 77, 3892–3895. [Google Scholar] [CrossRef] [Green Version]
- Aljabali, A.A.; Akkam, Y.; Al Zoubi, M.S.; Al-Batayneh, K.M.; Al-Trad, B.; Abo Alrob, O.; Alkilany, A.M.; Benamara, M.; Evans, D.J. Synthesis of gold nanoparticles using leaf extract of Ziziphus zizyphus and their antimicrobial activity. Nanomaterials 2018, 3, 174. [Google Scholar] [CrossRef] [Green Version]
- Yuan, C.G.; Huo, C.; Gui, B.; Cao, W.P. Green synthesis of gold nanoparticles using Citrus maxima peel extract and their catalytic/antibacterial activities. IET NanobioTechnol. 2016, 11, 523–530. [Google Scholar] [CrossRef]
- Khan, R.A.; Tang, Y.; Naz, I.; Alam, S.S.; Wang, W.; Ahmad, M.; Najeeb, S.; Ali, A.; Rao, C.; Li, Y.; et al. Management of Ralstonia solanacearum in tomato using ZnO nanoparticles synthesized through Matricaria chamomilla. Plant Disease. 2021, 28. [Google Scholar] [CrossRef]
- Kairyte, K.; Kadys, A.; Luksiene, Z. Antibacterial and antifungal activity of photoactivated ZnO nanoparticles in suspension. J. Photochem. Photobiol. 2013, 128, 78–84. [Google Scholar] [CrossRef]
- Patra, P.; Mitra, S.; Debnath, N.; Goswami, N. Biochemical-Biophysical-and microarray-based antifungal evaluation of the buffer-mediated synthesized nano zinc oxide: An in vivo and in vitro toxicity study. Langmuir 2012, 28, 16966–16978. [Google Scholar] [CrossRef] [PubMed]
- Wani, A.H.; Shah, M.A. unique and profound effect of MgO and ZnO nanoparticles on some plant pathogenic fungi. J. Appl. Pharm. Sci. 2012, 2, 40–44. [Google Scholar]
- He, L.; Liu, Y.; Mustapha, A.; Lin, M. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol. Res. 2011, 166, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.; Rajput, J.; Kaith, B.S.; Kaur, M.; Sharma, S. Synthesis of ZnO nanoparticles and study of their antibacterial and antifungal properties. Thin Solid Films 2010, 519, 1224–1229. [Google Scholar] [CrossRef]
- Norman, D.J.; Chen, J. Effect of foliar application of titanium dioxide on bacterial blight of geranium and Xanthomonas leaf spot of poinsettia. Hortic. Sci. 2011, 46, 426–428. [Google Scholar] [CrossRef] [Green Version]
- Sanzari, I.; Leone, A.; Ambrosone, A. Nanotechnology in Plant Science: To Make a Long Story Short. Front. Bioeng. Biotechnol. 2019, 7, 120. [Google Scholar] [CrossRef] [Green Version]
- Naushad, M. Surfactant assisted nano-composite cation exchanger: Development, characterization and applications for the removal of toxic Pb2+ from aqueous medium. Chem. Eng. J. 2014, 235, 100–108. [Google Scholar] [CrossRef]
- Albadarin, A.B.; Collins, M.N.; Naushad, M.; Shirazian, S.; Walker, G.; Mangwandi, C. Activated lignin-chitosan extruded blends for efficient adsorption of methylene blue. Chem. Eng. J. 2017, 307, 264–272. [Google Scholar] [CrossRef] [Green Version]
- Kushwah, K.S.; Patel, S. Effect of Titanium Dioxide Nanoparticles (TiO2 NPs) on Faba bean (Vicia faba L.) and Induced Asynaptic Mutation: A Meiotic Study. J. Plant. Growth Regul. 2020, 39, 1107–1118. [Google Scholar] [CrossRef]
- Gohari, G.; Mohammadi, A.; Akbari, A.; Panahirad, S.; Dadpour, M.R.; Fotopoulos, V.; Kimura, S. Titanium dioxide nanoparticles (TiO2 NPs) promote growth and ameliorate salinity stress effects on essential oil profile and biochemical attributes of Dracocephalum moldavica. Sci. Rep. 2020, 10, 912. [Google Scholar] [CrossRef]
- Patlolla, A.K.; Berry, A.; May, L.; Tchounwou, P.B. Genotoxicity of Ag NPs in Vicia faba: A pilot study on the environmental monitoring of NPs. Int. J.Environ.Res. Public Health 2012, 9, 1649–1662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez-Moreno, M.L.; de la Rosa, G.; Hernández-Viezcas, J.; Castillo-Michel, H.; Botez, C.E.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Evidence of the Differential Biotransformation and Geno-toxicity of ZnO and CeO2 NPs on Soybean (Glycine max) Plants. Environ. Sci. Technol. 2010, 44, 7315–7320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manjunatha, S.B.; Biradar, D.P.; Aladakatti, Y.R. Nanotechnology and its applications in agriculture: A review. J. Farm Sci. 2016, 29, 1–3. [Google Scholar]
Nanoparticles | Plant | Effect on Plants in a Dose-Dependent Manner | Reference |
---|---|---|---|
Zn, B, Si, Zeolite NPs | Potato | Improve plant growth | [19] |
ZnO NPs | Eggplant | Increase plant growth attributes | [20] |
ZnO NPs | Triticum aestivum | Positive effect on seed germination | [21] |
SiO2 & TiO2 NPs | Rice | Improve plant growth attributes | [22] |
Nano-size calcite product [CaCO3(40%), SiO2(4%), MgO (1%), and Fe2O3(1%)] | Grapevine | Increase plant growth attributes and photosynthetic pigment | [23] |
ZnO NPs | Leucaena leucocephala | Increase in photosynthetic pigment and total soluble protein contents | [24] |
ZnO NPs | Sesamum indicum | High chlorophyll‘a’, chlorophyll‘b’, and total chlorophyll content level | [25] |
ZnO NPs | Zea mays | Increased shoot dry matter and leaf area indexes. | [26] |
ZnO NPs | Pennisetum glaucum | ZnO NPs enhanced shoot and grain yield | [27] |
TiO2 & ZnO NPs | Beetroot | Increased plant growth and shoot dry matter | [28] |
TiO2 NPs | Vigna radiata L. | Improvement was observed in shoot length | [29] |
TiO2 NPs | Onion | Lower concentration of TiO2 NPs enhanced seed germination and seedlings growth | [30] |
TiO2 NPs | Triticum aestivum L. | Increase in the plant’s root and shoot lengths | [31] |
TiO2 NPs | Brassica napus | Promoted seed germination and seedling vigor improved | [32] |
TiO2 NPs | Tomato | Promote the photosynthetic rate | [33] |
SiO2NPs | Larix olgensis | Increase in plant height, root length, and chlorophyll content | [34] |
SiO2NPs | Agropyron elongatum L. | Improve seed germination | [35] |
Nano- SiO2 | Cucurbita pepo L. | Reduce the salt stress effect | [37] |
Nano Si | Tomato | Enhancement of germination rate and dry weight | [38] |
CuO NPs | Spinacia oleracea | Improved photosynthesis in treated plants | [40] |
MgO NPs | Tobacco | Promote plant growth | [44] |
MgO NPs | Tomato | Induce resistance in tomato plant | [45] |
AgNPs | Wheat | Regulate antioxidative defence system | [46] |
AgNPs | soil bacterial diversity | Regulate soil bacterial diversity | [47] |
Chitosan NPs | Apples | They reduce microbial growth | [48] |
Chitosan NPs | Robusta cofee | Improved growth parameters | [49] |
FeS2 NPs | Cicer arietinum; pinacia oleracea; Daucus carota, Brassica juncea and Sesamum indicum | Seed germination enhanced in tested crops | [50] |
Chitosan NPs | Rice | Reduces disease severity | [51] |
Chitosan NPs | Strawberry | Regulate defense response | [52] |
SiNPs | Helianthus annuus | Improved germination | [53] |
SilicaNPs | Vicia faba L. | Improved growth parameters | [54] |
SiO2NPs | Pea | Improved growth parameters and chlorophyll content | [55] |
SiO2 & MoNPs | Rice | Regulate seed germination | [56] |
SiO2NPs | Indocalamus barbatus | Improved photosynthetic pigments | [57] |
SilicaNPs | Zea mays. L | Improve silica content in plants | [58] |
SiO2NPs | Maize | Improved growth parameters and increased seed stability | [59] |
SiO2and TiO2NPs | Soybean | Enhance germination of seeds | [60] |
Cu(OH)2 | Lactuca sativa | Improve antioxidant system | [61] |
Cu(OH)2 | Spinach | Improve the antioxidant system | [62] |
ZnO NPs | Glycine max | Enhanced Antioxidant system | [63] |
ZnO NPs | Cabbage, cauliflower, and tomato | Enhance pigments, protein, and sugar contents | [64] |
ZnO NPs | Arachis hypogaea | Seed germination enhaced | [65] |
FeS2 NP | Spinach | Improve plant growth | [66] |
TiO2 NPs | Glycine max L. | Positive effect on the seed and oil yield and component compared to the control | [67] |
TiO2 NPs | Mentha Piperita | Increased root length | [68] |
TiO2 NPs | Agropyron desertorum | Improves seed germination | [69] |
Nanoparticle | Pathogen | Effect | Reference |
---|---|---|---|
Ag NPs | Alternaria alternata, A. brassicicola, A. solani, Cladosporium cucumerinum, Botrytis cinerea, Corynespora cassiicola, Cylindrocarpon destructans, Didymella bryoniae, F. oxysporum f. sp. lycopersici, F. oxysporum, Fusarium oxysporum f.sp. cucumerinum, F. solani, Fusarium sp., Glomerella cingulata, P. spinosum, Monosporascuscannonballus, Pythium aphanidermatum, Stemphylium lycopersici | Show antifungal activity | [70] |
AgNPs | Erwinia sp., Bacillus megaterium, Pseudomonas syringe, Fusarium graminearum, F. avenaceum, F. culmorum | An inhibitory effect on tested microbes | [71] |
AgNPs | Escherichia coli | Antibacterial activity | [72] |
AgNPs | Staphylococcus aureus and Klebsiella pneumonia | Antibacterial activity | [73] |
AgNPs | Gram-positive (Bacillus subtilis) and gram-negative (Escherichia coli). | An inhibitory effect on tested bacteria | [74] |
AgNPs | Foodborne pathogens viz. Pseudomonas aeruginosa, Escherichia coli, Bacillus subtilis. | Antibacterial activity | [75] |
AgNPs | Alternaria alternata, A. citri, Penicillium digitatum | Show antifungal properties | [76] |
AgNPs | Alternaria alternata, Macrophomina phaseolina, Botrytis cinerea, Sclerotinia Sclerotiorum, Curvularia lunata, Rhizoctonia solani | Show Antifungal activity. | [77] |
AgNPs | Bipolaris sorokiniana and MagnaportheGrisea | Show antifungal activity | [78] |
AgNPs and Cs-Ag nanocomposite | Pseudomonas syringaepv.syringae | Show antibacterial activity | [79] |
Chitosan NPs | Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa | Show antibacterial activity | [80] |
Chitosan NPs | Fusarium solani, Aspergillus niger | Show Antifungal activity | [81] |
Au NPs | Escherichia coli and Staphylococcus | Antibacterial activity | [82] |
ZnO and Au NPs | E. coli | Antibacterial activity | [83] |
AuNPs | Puccinia graminis tritci, Aspergillus flavus, Aspergillus niger and Candida albicans | Show Antifungal activity | [84] |
Cu composites | Xanthomonas euvesicatoria | Antibacterial activity | [85] |
CuO NPs | Botrytis cinerea, Colletotrichumgraminicola, Rhizoctonia solani, Colletotrichum musae, Magnaportheoryzae, Penicillium digitatum, Sclerotium rolfsii | Show antifungal activity | [86] |
CuO and Cu2O NPs | Phytophthora infestans | Show antifungal activity | [87] |
MgO NPs | Ralstonia solanacearum, Phomopsis vexans | Show antifungal and antibacterial activity | [88] |
SilicaNPs | Alternaria sp | Show antifungal activity | [89] |
SiO2 NPs | Fusarium oxysporum f. sp. lycopersici and F. oxysporum f. sp. radicislycopersici | Possess antifungal properties | [90] |
Nano Si-Ag | Pythium ultimum, Magnaporthe grisea, Colletotrichum gloeosporioides, Botrytis cineria, Rhizoctonia solani, Pseudomonas syringae, Xanthomonas compestris pv. vesicatoria | Show antifungal and antibacterial activity | [91] |
ZnO NPs | Alternaria alternate Botrytis cinerea, Aspergillus niger, Fusarium oxysporum and Penicillium expansum | Antifungal activity against all the tested fungi | [92] |
ZnO NPs | Aspergillus flavus and Aspergillus fumigates | Shown potential activity against these tested fungi | [93] |
ZnO NPs | Aspergillus flavus, A. niger, A. fumigatus Fusarium culmorum and F. oxysporium | The highest zone of inhibition occurred in A. flavus | [94] |
ZnO NPs | Aspergillus flavus, A. nidulans, Trichoderma harzianum and Rhizopus stolonifer | Antifungal activity | [95] |
ZnO NPs | Fusarium graminearum | Antifungal activity | [96] |
ZnO NPs | Pseudomonas aeruginosa | Antibacterial activity | [97] |
TiO2 NPs | Fusarium oxysporum f. sp. radicislycopersici and Fusarium oxysporum f. sp. Lycopersici | Antifungal activity | [98] |
TiO2 NPs | Cercosporabeticola | Pathogen growth was inhibited | [99] |
TiO2 NPs | Meloidogyne incognita | Controlled M. incognita | [100] |
TiO2 NPs and ZnO NPs | Saccharomyces cerevisiae | Antifungal activity | [101] |
TiO2 NPs | P. syringaepv. lachrymans and P. cubensis | Reduced infection of pathogen | [102] |
Metallic NPs | Fungus and Bacteria | Antibacterial and antifungal activity | [103] |
Metallic NPs | Microbes | Antibacterial and antifungal activity | [104] |
AgNPs | Fusarium culmorum | Antifungal activity | [105] |
Chitosan NPs | Streptococcus | Antibacterial activity | [106] |
AuNPs | Candida albicans | Antifungal activity | [107] |
AuNPs | Escherichia coli, Staphylococcus aureus | Antibacterial activity | [108] |
ZnO NPs | Ralstonia solanacearum | Antibacterial activity | [109] |
ZnO NPs | Botrytis, Escherichia | Antibacterial and antifungal activity | [110] |
ZnO NPs | Fusarium oxysporum, Aspergillus niger | Antibacterial and antifungal activity | [111] |
ZnO NPs | Alternaria alternate, Fusarium oxysporum, Rhizopus stolonifer and Mucor plumbeus | Inhibit germination of spores of fungi | [112] |
ZnO NPs | Botrytis cinerea and Penicillium expansum | Significantly inhibit growth | [113] |
ZnO NPs | Psedomanas sp. and Fusarium sp. | Antibacterial and antifungal activity | [114] |
TiO2 NPs | Xanthomonas hortorum pv. pelargonii, X. axonopodis pv. Poinsettiicola | Antibacterial activity | [115] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.; Khan, A.U.; Hasan, M.A.; Yadav, K.K.; Pinto, M.M.C.; Malik, N.; Yadav, V.K.; Khan, A.H.; Islam, S.; Sharma, G.K. Agro-Nanotechnology as an Emerging Field: A Novel Sustainable Approach for Improving Plant Growth by Reducing Biotic Stress. Appl. Sci. 2021, 11, 2282. https://doi.org/10.3390/app11052282
Khan M, Khan AU, Hasan MA, Yadav KK, Pinto MMC, Malik N, Yadav VK, Khan AH, Islam S, Sharma GK. Agro-Nanotechnology as an Emerging Field: A Novel Sustainable Approach for Improving Plant Growth by Reducing Biotic Stress. Applied Sciences. 2021; 11(5):2282. https://doi.org/10.3390/app11052282
Chicago/Turabian StyleKhan, Masudulla, Azhar U. Khan, Mohd Abul Hasan, Krishna Kumar Yadav, Marina M. C. Pinto, Nazia Malik, Virendra Kumar Yadav, Afzal Husain Khan, Saiful Islam, and Gulshan Kumar Sharma. 2021. "Agro-Nanotechnology as an Emerging Field: A Novel Sustainable Approach for Improving Plant Growth by Reducing Biotic Stress" Applied Sciences 11, no. 5: 2282. https://doi.org/10.3390/app11052282
APA StyleKhan, M., Khan, A. U., Hasan, M. A., Yadav, K. K., Pinto, M. M. C., Malik, N., Yadav, V. K., Khan, A. H., Islam, S., & Sharma, G. K. (2021). Agro-Nanotechnology as an Emerging Field: A Novel Sustainable Approach for Improving Plant Growth by Reducing Biotic Stress. Applied Sciences, 11(5), 2282. https://doi.org/10.3390/app11052282