Applications for Microwave Kinetic Induction Detectors in Advanced Instrumentation
Abstract
:1. Introduction
2. Microwave Kinetic Inductance Detectors: Basic Operation Principle
3. MKID Applications in Observational Astronomy
3.1. Observational Astronomy: Infrared to Microwaves
3.1.1. MKID on-Chip Spectrometers
3.1.2. MKID Mid-IR to Microwave Imagers
3.2. Observational Astronomy: Near-IR, Optical and UV
- No dark counts: Every photon detected by an MKID produces its own, individual signal. The only event that would produce signal spikes in the absence of photons (a dark measurement) is the impact of two or more lower energy photons (from e.g., IR black body radiation) on the detector within a time frame below its time resolution of a few µs. As these are statistically very unlikely MKIDs have virtually no dark counts. The photon flux measured by MKIDs is therefore precise especially in low light scenarios as it is only limited by statistical fluctuations of the optical system’s quantum efficiency.
- Energy resolution: The signal produced by a single photon absorbed by an MKID depends on the number of Cooper pairs broken by the photon’s energy. The more Cooper pairs are broken the bigger the signal gets. A statistical effect called the Fano limit restricts the achievable precision, but the photon’s energy can still be reconstructed from its signal height with up to medium resolution. This allows MKID arrays to measure every detected photon’s energy and therefore to offer a low to medium resolution spectrum for every MKID pixel in the detector array, without requiring refractive optics.
- High time resolution: As every detected photon produces its own signal pulse, and as every MKID in a detector array is monitored around once every µs it is possible to determine every photon’s arrival time with a precision between one and a few µs. (Design considerations of MKID detectors, like for example very narrow resonances, can result in detector reaction times that are slower than the monitoring frequency, but rarely more than a few µs.) This extreme time resolution allows MKIDs to be used to observe fast, time varying events.
- Scalability: Other low temperature detector technologies also offer photon counting without dark counts, energy resolution, or high time resolution. But modern astronomical instrumentation often requires pixel numbers in the millions or beyond. The unique advantage of MKIDs is their great multiplexability, and with it their capability to scale up to large detector arrays, even in the mega-pixel range. This allows MKIDs to overcome the severe limitation in pixel numbers that other superconducting detectors suffer from and makes it possible to utilize the significant low temperature detector advantages in modern astronomical instruments.
4. MKIDs in Particle Physics
4.1. MKIDs for Neutrino Physics Experiments
4.1.1. CUORE
4.1.2. CALDER
- (1)
- Is the neutrino a standard particle or is it its own anti-particle and therefore a Majorana particle? This information can be obtained by the detection of the particular rare neutrino-less double beta decay.
- (2)
- What is the nature of the dark matter that fills our universe?
4.1.3. HOLMES
4.2. MKIDs for Dark Matter Experiments
5. MKIDs Applications in Material Science with Synchrotrons
6. MKIDs for Security Applications
7. Further MKID Applications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Day, P.K.; LeDuc, H.G.; Mazin, B.A.; Vayonakis, A.; Zmuidzinas, J. A broadband superconducting detector suitable for use in large arrays. Nature 2003, 425, 4. [Google Scholar] [CrossRef]
- Meeker, S.R.; Mazin, B.A.; Walter, A.B.; Strader, P.; Fruitwala, N.; Bockstiegel, C.; Szypryt, P.; Ulbricht, G.; Coiffard, G.; Bumble, B.; et al. DARKNESS: A Microwave Kinetic Inductance Detector Integral Field Spectrograph for High-contrast Astronomy. Publ. Astron. Soc. Pac. 2018, 130. [Google Scholar] [CrossRef] [Green Version]
- Walter, A.B.; Fruitwala, N.; Steiger, S.; Bailey, J.I.; Zobrist, N.; Swimmer, N.; Lipartito, I.; Smith, J.P.; Meeker, S.R.; Bockstiegel, C.; et al. The MKID Exoplanet Camera for Subaru SCExAO. Publ. Astron. Soc. Pacific 2020, 132, 13. [Google Scholar] [CrossRef]
- Zmuidzinas, J. Superconducting Microresonators: Physics and Applications. Annu. Rev. Condens. Matter Phys. 2012, 3, 169–214. [Google Scholar] [CrossRef] [Green Version]
- Baselmans, J. Kinetic Inductance Detectors. J. Low Temp. Phys. 2012, 167, 292–304. [Google Scholar] [CrossRef]
- Mazin, B.A. Microwave Kinetic Inductance Detectors: The First Decade. In Proceedings of the 13th International Workshop on Low Temperature Detectors, Stanford, CA, USA, 20–24 July 2009; American Institute of Physics: College Park, MD, USA, 2009. [Google Scholar]
- Mazin, B.A.; Day, P.K.; LeDuc, H.G.; Vayonakis, A.; Zmuidzinas, J. Superconducting kinetic inductance photon detectors. In Proceedings of the Conference on Highly Innovative Space telescope Concepts, Waikoloa, HI, USA, 22–23 August 2002. [Google Scholar] [CrossRef]
- Endo, A.; Karatsu, K.; Tamura, Y.; Oshima, T.; Taniguchi, A.; Takekoshi, T.; Asayama, S.; Bakx, T.; Bosma, S.; Bueno, J.; et al. First light demonstration of the integrated superconducting spectrometer. Nat. Astron. 2019, 3, 989–996. [Google Scholar] [CrossRef] [Green Version]
- Takekoshi, T.; Karatsu, K.; Suzuki, J.; Tamura, Y.; Oshima, T.; Taniguchi, A.; Asayama, S.; Bakx, T.; Baselmans, J.J.A.; Bosma, S.; et al. DESHIMA on ASTE: On-Sky Responsivity Calibration of the Integrated Superconducting Spectrometer. J. Low Temp. Phys. 2020, 199, 231–239. [Google Scholar] [CrossRef] [Green Version]
- Endo, A.; Karatsu, K.; Laguna, A.P.; Mirzaei, B.; Huiting, R.; Thoen, D.J.; Murugesan, V.; Yates, S.J.C.; Bueno, J.; van Marrewijk, N.; et al. Wideband on-chip terahertz spectrometer based on a superconducting filterbank. J. Astron. Telesc. Instr. Syst. 2019, 5, 12. [Google Scholar] [CrossRef]
- Karkare, K.S.; Barry, P.S.; Bradford, C.M.; Chapman, S.; Doyle, S.; Glenn, J.; Gordon, S.; Hailey-Dunsheath, S.; Janssen, R.M.J.; Kovacs, A.; et al. Full-Array Noise Performance of Deployment-Grade SuperSpec mm-Wave On-Chip Spectrometers. J. Low Temp. Phys. 2020, 199, 849–857. [Google Scholar] [CrossRef] [Green Version]
- Shirokoff, E.; Barry, P.S.; Bradford, C.M.; Chattopadhyay, G.; Day, P.; Doyle, S.; Hailey-Dunsheath, S.; Hollister, M.I.; Kovacs, A.; McKenney, C.; et al. MKID development for SuperSpec: An on-chip, mm-wave, filter-bank spectrometer. In Proceedings of the Conference on Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VI, Amsterdam, The Netherlands, 3–6 July 2012. [Google Scholar]
- Wheeler, J.; Hailey-Dunsheath, S.; Shirokoff, E.; Barry, P.S.; Bradford, C.M.; Chapman, S.; Che, G.; Glenn, J.; Hollister, M.; Kovacs, A.; et al. SuperSpec: Development Towards a Full-Scale Filter Bank. In Proceedings of the Conference on Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VIII, Edinburgh, UK, 28 June–1 July 2016. [Google Scholar]
- Bradford, C.M.; Hailey-Dunsheath, S.; Shirokoff, E.; Hollister, M.; McKenney, C.M.; Leduc, H.G.; Reck, T.; Chapman, S.C.; Tikhomirov, A.; Nikola, T.; et al. X-Spec, A Multi-Object, Trans-Millimeter-Wave Spectrometer for CCAT. In Proceedings of the Conference on Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII, Montreal, QC, Canada, 24–27 June 2014. [Google Scholar]
- Thomas, C.N.; Blundell, R.; Glowacka, D.; Goldie, D.; Grimes, P.; Acedo, E.D.L.; Paine, S.; Withington, S.; Zeng, L. Progress on the Cambridge Emission Line Surveyor (CAMELS). In Proceedings of the 26th International Symposium on Space Terahertz Technology, Cambridge, MA, USA, 16–18 March 2015. [Google Scholar]
- Grimes, P.K.; Asada, K.; Blundell, R.; Burgos, R.; Chang, H.H.; Chen, M.T.; Goldie, D.; Groppi, C.; Han, C.C.; Ho, P.T.P.; et al. Instrumentation for single-dish observations with the Greenland Telescope. In Proceedings of the Conference on Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII, Montreal, QC, Canada, 24–27 June 2014. [Google Scholar]
- Thomas, C.N.; Withington, S.; Maiolino, R.; Goldie, D.J.; de Lera Acedo, E.; Wagg, J.; Blundell, R.; Paine, S.; Zeng, L. The CAMbridge Emission Line Surveyor (CAMELS). arXiv 2014, arXiv:1401.4395. [Google Scholar]
- Bryan, S.; Aguirre, J.; Che, G.; Doyle, S.; Flanigan, D.; Groppi, C.; Johnson, B.; Jones, G.; Mauskopf, P.; McCarrick, H.; et al. WSPEC: A Waveguide Filter-Bank Focal Plane Array Spectrometer for Millimeter Wave Astronomy and Cosmology. J. Low Temp. Phys. 2016, 184, 114–122. [Google Scholar] [CrossRef] [Green Version]
- Cataldo, G.; Barrentine, E.M.; Bulcha, B.T.; Ehsan, N.; Hess, L.A.; Noroozian, O.; Stevenson, T.R.; U-Yen, K.; Wollack, E.J.; Moseley, S.H. Second-Generation Design of Micro-Spec: A Medium-Resolution, Submillimeter-Wavelength Spectrometer-on-a-Chip. J. Low Temp. Phys. 2018, 193, 923–930. [Google Scholar] [CrossRef]
- Cataldo, G.; Barrentine, E.M.; Bulcha, B.T.; Ehsan, N.; Hess, L.A.; Noroozian, O.; Stevenson, T.R.; Wollack, E.J.; Moseley, S.H.; Switzer, E.R. Second-generation Micro-Spec: A compact spectrometer for far-infrared and submillimeter space missions. Acta Astron. 2019, 162, 155–159. [Google Scholar] [CrossRef]
- Cataldo, G.; Hsieh, W.T.; Huang, W.C.; Moseley, S.H.; Stevenson, T.R.; Wollack, E.J. Micro-Spec: An ultracompact, high-sensitivity spectrometer for far-infrared and submillimeter astronomy. Appl. Opt. 2014, 53, 1094–1102. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.; Brown, A.D.; Hsieh, W.T.; Stevenson, T.; Moseley, S.H.; U-Yen, K.; Ehsan, N.; Barrentine, E.; Manos, G.; Wollack, E.J. Fabrication of MKIDS for the MicroSpec Spectrometer. IEEE Trans. Appl. Superconduct. 2013, 23. [Google Scholar] [CrossRef]
- Ade, P.A.R.; Anderson, C.J.; Barrentine, E.M.; Bellis, N.G.; Bolatto, A.D.; Breysse, P.C.; Bulcha, B.T.; Cataldo, G.; Connors, J.A.; Cursey, P.W.; et al. The Experiment for Cryogenic Large-Aperture Intensity Mapping (EXCLAIM). J. Low Temp. Phys. 2020, 199, 1027–1037. [Google Scholar] [CrossRef] [Green Version]
- Glenn, J.; Day, P.K.; Ferry, M.; Gao, J.S.; Golwala, S.R.; Kumar, S.; Leduc, H.G.; Maloney, P.R.; Mazin, B.A.; Nguyen, H.; et al. A Microwave Kinetic Inductance Camera for Sub/Millimeter Astrophysics. In Proceedings of the Conference on Millimeter and Submillimeter Detectors and Instrumentation for Astonomy IV, Marseille, France, 26–28 June 2008. [Google Scholar]
- Schlaerth, J.; Vayonakis, A.; Day, P.; Glenn, J.; Gao, J.; Golwala, S.; Kumar, S.; Leduc, H.; Mazin, B.; Vaillancourt, J.; et al. A millimeter and submillimeter kinetic inductance detector camera. J. Low Temp. Phys. 2008, 151, 684–689. [Google Scholar] [CrossRef]
- Schlaerth, J.A.; Czakon, N.G.; Day, P.K.; Downes, T.P.; Duan, R.; Gao, J.S.; Glenn, J.; Golwala, S.R.; Hollister, M.I.; Leduc, H.G.; et al. MKID Multicolor Array Status and Results from DemoCam. In Proceedings of the Conference on Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy V, San Diego, CA, USA, 29 June–2 July 2010. [Google Scholar]
- Maloney, P.R.; Czakon, N.G.; Day, P.K.; Duan, R.; Gao, J.; Glenn, J.; Golwala, S.; Hollister, M.; LeDuc, H.G.; Mazin, B.; et al. The MKID Camera. In Proceedings of the 13th International Workshop on Low Temperature Detectors, Stanford, CA, USA, 20–24 July 2009. [Google Scholar]
- Golwala, S.R.; Bockstiegel, C.; Brugger, S.; Czakon, N.G.; Day, P.K.; Downes, T.P.; Duan, R.; Gao, J.S.; Gill, A.K.; Glenn, J.; et al. Status of MUSIC, the Multiwavelength Sub/Millimeter Inductance Camera. In Proceedings of the Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VI, Amsterdam, The Netherlands, 1–6 July 2012; Holland, W.S., Zmuidzinas, J., Eds.; SPIE: Bellingham, WA, USA, 2012; p. 84522012. [Google Scholar]
- Sayers, J.; Bockstiegel, C.; Brugger, S.; Czakon, N.G.; Day, P.K.; Downes, T.P.; Duan, R.P.; Gao, J.S.; Gill, A.K.; Glenn, J.; et al. The Status of MUSIC: The Multiwavelength Sub/millimeter Inductance Camera. In Proceedings of the Conference on Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII, Montreal, QC, Canada, 24–27 June 2014. [Google Scholar]
- Maloney, P.R.; Czakon, N.G.; Day, P.K.; Downes, T.P.; Duan, R.; Gao, J.S.; Glenn, J.; Golwala, S.R.; Hollister, M.I.; Leduc, H.G.; et al. MUSIC for sub/millimeter astrophysics. In Proceedings of the Conference on Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy V, San Diego, CA, USA, 29 June–2 July 2010. [Google Scholar]
- Schlaerth, J.A.; Czakon, N.G.; Day, P.K.; Downes, T.P.; Duan, R.; Glenn, J.; Golwala, S.R.; Hollister, M.I.; LeDuc, H.G.; Maloney, P.R.; et al. The Status of Music: A Multicolor Sub/millimeter MKID Instrument. J. Low Temp. Phys. 2012, 167, 347–353. [Google Scholar] [CrossRef]
- Sayers, J.; Zemcov, M.; Glenn, J.; Golwala, S.R.; Maloney, P.R.; Siegel, S.R.; Wheeler, J.; Bockstiegel, C.; Brugger, S.; Czakon, N.G.; et al. Peculiar Velocity Constraints from Five-Band SZ Effect Measurements toward RX J1347.5-1145 with Music and Bolocam from the CSO. Astrophys. J. 2016, 820. [Google Scholar] [CrossRef] [Green Version]
- Swenson, L.J.; Day, P.K.; Dowell, C.D.; Eom, B.H.; Hollister, M.I.; Jarnot, R.; Kovacs, A.; Leduc, H.G.; McKenney, C.M.; Monroe, R.; et al. MAKO: A Pathfinder Instrument for On-Sky Demonstration of Low-Cost 350 Micron Imaging Arrays. In Proceedings of the Conference on Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VI, Amsterdam, The Netherlands, 3–6 July 2012; Spie-International Society of Optical Engineering: Bellingham, WA, USA, 2012. [Google Scholar]
- Monfardini, A.; Benoit, A.; Bideaud, A.; Boudou, N.; Calvo, M.; Camus, P.; Hoffmann, C.; Desert, F.X.; Leclercq, S.; Roesch, M.; et al. The Neel IRAM KID Arrays (NIKA). J. Low Temp. Phys. 2012, 167, 834–839. [Google Scholar] [CrossRef]
- Monfardini, A.; Benoit, A.; Bideaud, A.; Swenson, L.; Cruciani, A.; Camus, P.; Hoffmann, C.; Desert, F.X.; Doyle, S.; Ade, P.; et al. A Dual-Band Millimeter-Wave Kinetic Inductance Camera for the IRAM 30 m Telescope. Astrophys. J. Suppl. Ser. 2011, 194, 11. [Google Scholar] [CrossRef]
- Monfardini, A.; Swenson, L.J.; Bideaud, A.; Desert, F.X.; Yates, S.J.C.; Benoit, A.; Baryshev, A.M.; Baselmans, J.J.A.; Doyle, S.; Klein, B.; et al. NIKA: A millimeter-wave kinetic inductance camera. Astron. Astrophys. 2010, 521, 6. [Google Scholar] [CrossRef]
- Monfardini, A.; Adam, R.; Adane, A.; Ade, P.; Andre, P.; Beelen, A.; Belier, B.; Benoit, A.; Bideaud, A.; Billot, N.; et al. Latest NIKA Results and the NIKA-2 Project. J. Low Temp. Phys. 2014, 176, 787–795. [Google Scholar] [CrossRef] [Green Version]
- Calvo, M.; Benoit, A.; Catalano, A.; Goupy, J.; Monfardini, A.; Ponthieu, N.; Barria, E.; Bres, G.; Grollier, M.; Garde, G.; et al. The NIKA2 Instrument, A Dual-Band Kilopixel KID Array for Millimetric Astronomy. J. Low Temp. Phys. 2016, 184, 816–823. [Google Scholar] [CrossRef] [Green Version]
- Adam, R.; Adane, A.; Ade, P.A.R.; Andre, P.; Andrianasolo, A.; Aussel, H.; Beelen, A.; Benoit, A.; Bideaud, A.; Billot, N.; et al. The NIKA2 large-field-of-view millimetre continuum camera for the 30 m IRAM telescope. Astron. Astrophys. 2018, 609, 15. [Google Scholar] [CrossRef]
- Catalano, A.; Adam, R.; Ade, P.A.R.; Andre, P.; Aussel, H.; Beelen, A.; Benoit, A.; Bideaud, A.; Billot, N.; Bourrion, O.; et al. The NIKA2 Instrument at 30-m IRAM Telescope: Performance and Results. J. Low Temp. Phys. 2018, 193, 916–922. [Google Scholar] [CrossRef] [Green Version]
- Catalano, A.; Adam, R.; Adane, A.; Ade, P.; Andre, P.; Beelen, A.; Belier, B.; Benoit, A.; Bideaud, A.; Billot, N.; et al. The NIKA 2012–2014 Observing Campaigns: Control of Systematic Effects and Results. In Proceedings of the Conference on Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII, Montreal, QC, Canada, 24–27 June 2014; Spie-International Society of Optical Engineering: Bellingham, WA, USA, 2014. [Google Scholar]
- Ritacco, A.; Macias-Perez, J.F.; Ponthieu, N.; Adam, R.; Ade, P.; Andre, P.; Aumont, J.; Beelen, A.; Benoit, A.; Bideaud, A.; et al. NIKA 150 GHz polarization observations of the Crab nebula and its spectral energy distribution. Astron. Astrophys. 2018, 616. [Google Scholar] [CrossRef] [Green Version]
- Ruppin, F.; Mayet, F.; Pratt, G.W.; Adam, R.; Ade, P.; Andre, P.; Arnaud, M.; Aussel, H.; Bartalucci, I.; Beelen, A.; et al. First Sunyaev-Zel’dovich mapping with the NIKA2 camera: Implication of cluster substructures for the pressure profile and mass estimate. Astron. Astrophys. 2018, 615, 19. [Google Scholar] [CrossRef] [Green Version]
- Brien, T.L.R.; Ade, P.A.R.; Barry, P.S.; Castillo-Dominguez, E.; Ferrusca, D.; Gascard, T.; Gomez, V.; Hargrave, P.C.; Hornsby, A.L.; Hughes, D.; et al. MUSCAT: The Mexico-UK Sub-Millimetre Camera for Astronomy. In Proceedings of the SPIE, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX, Austin, TX, USA, 12–15 June 2018; Zmuidzinas, J., Gao, J.R., Eds.; Spie-International Society of Optical Engineering: Bellingham, WA, USA, 2018; p. 10708. [Google Scholar]
- Castillo-Dominguez, E.; Ade, P.; Barry, P.S.; Brien, T.; Doyle, S.; Ferrusca, D.; Gomez-Rivera, V.; Hargrave, P.; Hornsby, A.; Hughes, D.; et al. Mexico-UK Sub-millimeter Camera for Astronomy. J. Low Temp. Phys. 2018, 193, 1010–1015. [Google Scholar] [CrossRef] [Green Version]
- Austermann, J.E.; Beall, J.A.; Bryan, S.A.; Dober, B.; Gao, J.; Hilton, G.; Hubmayr, J.; Mauskopf, P.; McKenney, C.M.; Simon, S.M.; et al. Millimeter-Wave Polarimeters Using Kinetic Inductance Detectors for TolTEC and Beyond. J. Low Temp. Phys. 2018, 193, 120–127. [Google Scholar] [CrossRef] [Green Version]
- Bryan, S.; Austermann, J.; Ferrusca, D.; Mauskopf, P.; McMahon, J.; Montana, A.; Simon, S.; Novak, G.; Sanchez-Arguelles, D.; Wilson, G.; et al. Optical Design of the TolTEC Millimeter-Wave Camera. In Proceedings of the Conference on Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX, Austin, TX, USA, 12–15 June 2018. [Google Scholar]
- Baryshev, A.M.; Baselmans, J.J.A.; Yates, S.J.C.; Ferrari, L.; Bisigello, L.; Janssen, R.M.J.; Endo, A.; Klapwijk, T.M.; Klein, B.; Heyminck, S.; et al. Large Format Antenna Coupled Micorwave Kinetic Iinductance Detector Arrays for Radioastronomy. In Proceedings of the 39th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Tucson, AZ, USA, 14–19 September 2014. [Google Scholar]
- Baselmans, J. Large Format, Background Limited Arrays of Kinetic Inductance Detectors for Sub-mm Astronomy. In Proceedings of the Atacama Large-Aperture Submm/mm Telescope (AtLAST), Munich, Germany, 17–19 January 2018; p. 1. [Google Scholar]
- Otal, L.E. The Optical System and the Astronomical Potential of A-MKID, a New Camera Using Microwave Kinetic Inductance Detector Technology. Ph.D. Thesis, Rheinischen Friedrich-Wilhelms-Universität Bonn, Bonn, Germany, 2014. [Google Scholar]
- Duan, R.; Khaikin, V.; Lebedev, M.; Shmagin, V.; Yakopov, G.; Vdovin, V.; Bubnov, G.; Zhang, X.; Niu, C.; Li, D.; et al. Toward Eurasian SubMillimeter Telescopes: The concept of multicolor subTHz MKID-array demo camera MUSICAM and its instrumental testing. arXiv 2020, arXiv:2008.10154. [Google Scholar]
- Shi, S.C.; Li, J.; Lin, Z.H.; Yang, J.P.; Liu, D.; Duan, W.Y.; Lou, Z.; Shi, Q.; Li, Z.; Zhang, W.; et al. Development of an MKIDs-Based THz Superconducting Imaging Array (TeSIA) at 0.85 THz. J. Low Temp. Phys. 2018, 193, 128–133. [Google Scholar] [CrossRef]
- Ade, P.; Aravena, M.; Barria, E.; Beelen, A.; Benoit, A.; Bethermin, M.; Bounmy, J.; Bourrion, O.; Bres, G.; De Breuck, C.; et al. A wide field-of-view low-resolution spectrometer at APEX: Instrument design and scientific forecast. Astron. Astrophys. 2020, 642, 13. [Google Scholar]
- Fasano, A.; Aguiar, M.; Benoit, A.; Bideaud, A.; Bourrion, O.; Calvo, M.; Catalano, A.; de Taoro, A.P.; Garde, G.; Gomez, A.; et al. The KISS Experiment. J. Low Temp. Phys. 2020, 199, 529–536. [Google Scholar] [CrossRef] [Green Version]
- Fasano, A.; Aguiar, M.; Benoit, A.; Bideaud, A.; Bourrion, O.; Calvo, M.; Catalano, A.; de Taoro, A.P.; Garde, G.; Gomez, A.; et al. KISS: A spectrometric imager for millimetre cosmology. arXiv 2020, arXiv:191104917v2. [Google Scholar] [CrossRef]
- Griffin, M.; Baselmans, J.; Baryshev, A.; Doyle, S.; Grim, M.; Hargrave, P.; Klapwijk, T.; Martin-Pintado, J.; Monfardini, A.; Neto, A.; et al. SPACEKIDS: Kinetic Inductance Detectors for Space Applications. In Proceedings of the Conference on Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VIII, Edinburgh, UK, 28 June–1 July 2016. [Google Scholar]
- Griffin, M.; Baselmans, J.; Baryshev, A.; Doyle, S.; Grim, M.; Hargrave, P.; Klapwijk, T.; Martin-Pintado, J.; Monfardini, A.; Neto, A.; et al. SPACEKIDS: Kinetic Inductance Detector Arrays for Space Applications. In Proceedings of the 40th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Hong Kong, China, 23–28 August 2015. [Google Scholar]
- Bueno, J.; Murugesan, V.; Karatsu, K.; Thoen, D.J.; Baselmans, J.J.A. Ultrasensitive Kilo-Pixel Imaging Array of Photon Noise-Limited Kinetic Inductance Detectors Over an Octave of Bandwidth for THz Astronomy. J. Low Temp. Phys. 2018, 193, 96–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baselmans, J.J.A.; Bueno, J.; Yates, S.J.C.; Yurduseven, O.; Llombart, N.; Karatsu, K.; Baryshev, A.M.; Ferrari, L.; Endo, A.; Thoen, D.J.; et al. A kilo-pixel imaging system for future space based far-infrared observatories using microwave kinetic inductance detectors. Astron. Astrophys. 2017, 601, 16. [Google Scholar] [CrossRef]
- Ferrari, L.; Baryshev, A.M.; Baselmans, J.J.A.; de Lange, G.; Diener, P.; Kooi, J.W.; Lankwarden, J.J.; Yates, S.J.C. Kinetic Inductance Detectors (KIDs) for the SAFARI Instrument on SPICA. In Proceedings of the Conference on Space Telescopes and Instrumentation 2010—Optical, Infrared, and Millimeter Wave, San Diego, CA, USA, 27 June–2 July 2010. [Google Scholar]
- Janssen, R.M.J. Submicron Kinetic Inductance Detectors for SAFARI: Improving MKID Sensitivity through Width Reduction. Master’s Thesis, TU Delft, Delft, The Netherlands, 2010. [Google Scholar]
- de Bernardis, P.; Ade, P.A.R.; Baselmans, J.J.A.; Battistelli, E.S.; Benoit, A.; Bersanelli, M.; Bideaud, A.; Calvo, M.; Casas, F.J.; Castellano, M.G.; et al. Exploring cosmic origins with CORE: The instrument. J. Cosmol. Astropart. Phys. 2018, 46. [Google Scholar] [CrossRef]
- Noroozian, O. Photon-Counting Kinetic Inductance Detectors for the Origins Space Telescope; NASA Proposal id16-APRA16-61. 2016:16-APRA-61; NASA: Washington, DC, USA, 2016. [Google Scholar]
- Noroozian, O.; Barrentine, E.M.; Stevenson, T.R.; Brown, A.D.; Moseley, S.H.; Wollack, E.; Pontoppidan, K.M.; U-Yen, K.; Mikula, V. Photon-Counting Kinetic Inductance Detectors (KID) for Far/Mid-Infrared Space Spectroscopy with the Origins Space Telescope (OST); AAS Meeting #231 Presentation, id. 447.01; American Astronomical Society: Washington, DC, USA, 2018. [Google Scholar]
- Matsumura, T.; Akiba, Y.; Borrill, J.; Chinone, Y.; Dobbs, M.; Fuke, H.; Ghribi, A.; Hasegawa, M.; Hattori, K.; Hattori, M.; et al. Mission Design of LiteBIRD. J. Low Temp. Phys. 2014, 176, 733–740. [Google Scholar] [CrossRef] [Green Version]
- Karatsu, K.; Naruse, M.; Nitta, T.; Sekine, M.; Sekimoto, Y.; Noguchi, T.; Uzawa, Y.; Matsuo, H.; Kiuchi, H. Development of 1000 Arrays MKID Camera for the CMB Observation. In Proceedings of the Conference on Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VI, Amsterdam, The Netherlands, 3–6 June 2012. [Google Scholar]
- Perido, J.; Glenn, J.; Day, P.; Fyhrie, A.; Leduc, H.; Zmuidzinas, J. Extending KIDs to the Mid-IR for Future Space and Suborbital Observatories. J. Low Temp. Phys. 2020, 199, 696–703. [Google Scholar] [CrossRef] [Green Version]
- Galitzki, N.; Ade, P.; Angile, F.E.; Ashton, P.; Austermann, J.; Billings, T.; Che, G.; Cho, H.M.; Davis, K.; Devlin, M.; et al. Instrumental Performance and Results from Testing of the BLAST-TNG Receiver, Submillimeter Optics, and MKID Detector Arrays. In Proceedings of the Conference on Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VIII, Edinburgh, UK, 28 June–1 July 2016. [Google Scholar]
- Dober, B.J.; Ade, P.A.R.; Ashton, P.; Angile, F.E.; Beall, J.A.; Becker, D.; Bradford, K.J.; Che, G.; Cho, H.M.; Devlin, M.J.; et al. The Next-Generation BLASTPol Experiment. In Proceedings of the Conference on Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII, Montreal, QC, Canada, 24–27 June 2014. [Google Scholar]
- Lourie, N.P.; Ade, P.A.R.; Angile, F.E.; Ashton, P.C.; Austermann, J.E.; Devlin, M.J.; Dober, B.; Galitzki, N.; Gao, J.S.; Gordon, S.; et al. Preflight characterization of the BLAST-TNG receiver and detector arrays. In Proceedings of the Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX, Austin, TX, USA, 12–15 June 2018. [Google Scholar]
- Paiella, A.; Coppolecchia, A.; Lamagna, L.; Ade, P.A.R.; Battistelli, E.S.; Castellano, M.G.; Colantoni, I.; Columbro, F.; D’Alessandro, G.; de Bernardis, P.; et al. Kinetic inductance detectors for the OLIMPO experiment: Design and pre-flight characterization. J. Cosmol. Astropart. Phys. 2019, 32. [Google Scholar] [CrossRef] [Green Version]
- Presta, G.; Ade, P.A.R.; Battistelli, E.S.; Castellano, M.G.; Colantoni, I.; Columbro, F.; Coppolecchia, A.; D’Alessandro, G.; de Bernardis, P.; Gordon, S.; et al. The First Flight of the OLIMPO Experiment: Instrument Performance. In Proceedings of the 10th Young Researcher Meeting, Rome, Italy, 18–21 June 2019. [Google Scholar]
- Coppolecchia, A.; Amico, G.; Battistelli, E.S.; de Bernardis, P.; Cruciani, A.; D’Addabbo, A.; D’Alessandro, G.; De Gregori, S.; De Petris, M.; Gualtieri, R.; et al. OLIMPO: A 4-Bands Imaging Spectro-Photometer for Balloon-Borne Observations of the Sunyaev-Zel’dovich Effect. In Proceedings of the 186th International-School-of-Physics-Enrico-Fermi-of-the-Italian-Physical-Society on New Horizons for Observational Cosmology, Varenna, Italy, 1–6 July 2013. [Google Scholar]
- Masi, S.; de Bernardis, P.; Paiella, A.; Piacentini, F.; Lamagna, L.; Coppolecchia, A.; Ade, P.A.R.; Battistelli, E.S.; Castellano, M.G.; Colantoni, I.; et al. Kinetic Inductance Detectors for the OLIMPO experiment: In-flight operation and performance. J. Cosmol. Astropart. Phys. 2019, 26. [Google Scholar] [CrossRef] [Green Version]
- Johnson, B.R.; Ade, P.A.R.; Araujo, D.; Bradford, K.J.; Chapman, D.; Day, P.K.; Didier, J.; Doyle, S.; Eriksen, H.K.; Flanigan, D.; et al. The Detector System for the Stratospheric Kinetic Inductance Polarimeter (SKIP). J. Low Temp. Phys. 2014, 176, 741–748. [Google Scholar] [CrossRef] [Green Version]
- Monfardini, A.; Baselmans, J.; Benoit, A.; Bideaud, A.; Bourrion, O.; Catalano, A.; Calvo, M.; D’Addabbo, A.; Doyle, S.; Goupy, J.; et al. Lumped Element Kinetic Inductance Detectors for Space Applications. In Proceedings of the Conference on Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VIII, Edinburgh, UK, 28 June–1 July 2016. [Google Scholar]
- Nagasaki, T.; Choi, J.; Genova-Santos, R.T.; Hattori, M.; Hazumi, M.; Ishitsuka, H.; Karatsu, K.; Kikuchi, K.; Koyano, R.; Kutsuma, H.; et al. GroundBIRD: Observation of CMB Polarization with a Rapid Scanning and MKIDs. J. Low Temp. Phys. 2018, 193, 1066–1074. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.; Choi, J.; Genova-Santos, R.T.; Hattori, M.; Hazumi, M.; Honda, S.; Ikemitsu, T.; Ishida, H.; Ishitsuka, H.; Jo, Y.; et al. GroundBIRD: A CMB Polarization Experiment with MKID Arrays. J. Low Temp. Phys. 2020, 200, 384–391. [Google Scholar] [CrossRef]
- Oguri, S.; Choi, J.; Damayanthi, T.; Hattori, M.; Hazumi, M.; Ishitsuka, H.; Karatsu, K.; Mima, S.; Minowa, M.; Nagasaki, T.; et al. GroundBIRD: Observing Cosmic Microwave Polarization at Large Angular Scale with Kinetic Inductance Detectors and High-Speed Rotating Telescope. J. Low Temp. Phys. 2016, 184, 786–792. [Google Scholar] [CrossRef]
- Araujo, D.C.; Ade, P.A.R.; Bond, J.R.; Bradford, K.J.; Chapman, D.; Che, G.; Day, P.K.; Didier, J.; Doyle, S.; Eriksen, H.K.; et al. A LEKID-Based CMB Instrument Design for Large-Scale Observations in Greenland. In Proceedings of the Conference on Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy VII, Montreal, QC, Canada, 24–27 June 2014. [Google Scholar]
- Johnson, B.R.; Flanigan, D.; Abitbol, M.H.; Ade, P.A.R.; Bryan, S.; Cho, H.M.; Datta, R.; Day, P.; Doyle, S.; Irwin, K.; et al. Development of Multi-chroic MKIDs for Next-Generation CMB Polarization Studies. J. Low Temp. Phys. 2018, 193, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Hui, H.; Ade, P.A.R.; Ahmed, Z.; Aikin, R.W.; Alexander, K.D.; Barkats, D.; Benton, S.J.; Bischoff, C.A.; Bock, J.J.; Bowens-Rubin, R.; et al. BICEP Array: A multi-frequency degree-scale CMB polarimeter. In Proceedings of the Conference on Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX, Austin, TX, USA, 12–15 June 2018. [Google Scholar]
- O’Brient, R.C.; Steinbach, B.; Bock, J.J.; Wandui, A.; Nguyen, H.; Turner, A. Thermal Kinetic Inductance Detectors for CMB and Sub Millimeter Observations. In Proceedings of the Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX, Austin, TX, USA, 10 June 2018. [Google Scholar]
- Wandui, A.; Bock, J.J.; Frez, C.; Hollister, M.; Minutolo, L.; Nguyen, H.; Steinbach, B.; Turner, A.; Zmuidzinas, J.; O’Brient, R. Thermal kinetic inductance detectors for millimeter-wave detection. J. Appl. Phys. 2020, 128. [Google Scholar] [CrossRef]
- Abitbol, M.H.; Ahmed, Z.; Barron, D.; Basu Thakur, R.; Bender, A.N.; Benson, B.A.; Bischoff, C.A.; Bryan, S.A.; Carlstrom, J.E.; Chang, C.L.; et al. CMB-S4 Technology Book, First Edition. arXiv 2017, arXiv:1706.02464v1. [Google Scholar]
- Guo, W.; Liu, X.; Wang, Y.; Wei, Q.; Wei, L.F.; Hubmayr, J.; Fowler, J.; Ullom, J.; Vale, L.; Vissers, M.R.; et al. Counting near infrared photons with microwave kinetic inductance detectors. Appl. Phys. Lett. 2017, 110, 212601. [Google Scholar] [CrossRef]
- Mezzena, R.; Faverzani, M.; Ferri, E.; Giachero, A.; Margesin, B.; Nucciotti, A.; Puiu, A.; Vinante, A. Development of Microwave Kinetic Inductance Detectors for IR Single-Photon Counting. J. Low Temp. Phys. 2019, 199, 73–79. [Google Scholar] [CrossRef]
- Strader, M.J.; Archibald, A.M.; Meeker, S.R.; Szypryt, P.; Walter, A.B.; van Eyken, J.C.; Ulbricht, G.; Stoughton, C.; Bumble, B.; Kaplan, D.L.; et al. Search for optical pulsations in PSR J0337+1715. Mon. Not. R. Astron. Soc. 2016, 459, 427–430. [Google Scholar] [CrossRef] [Green Version]
- Strader, M.J.; Johnson, M.D.; Mazin, B.A.; Jaeger, G.V.S.; Gwinn, C.R.; Meeker, S.R.; Szypryt, P.; van Eyken, J.C.; Marsden, D.; O’Brien, K.; et al. Excess Optical Enhancement Observed with Arcons for Early Crab Giant Pulses. Astrophys. J. Lett. 2013, 779. [Google Scholar] [CrossRef] [Green Version]
- Collura, G.; Strader, P.; Meeker, S.R.; Szypryt, P.; Walter, A.B.; Bockstiegel, C.; Mazin, B.A.; Prince, T.A. Search for Optical Pulsation in M82 X-2. Astrophys. J. 2017, 850, 4. [Google Scholar] [CrossRef] [Green Version]
- Mazin, B.A.; Meeker, S.R.; Strader, M.J.; Szypryt, P.; Marsden, D.; van Eyken, J.C.; Duggan, G.E.; Walter, A.B.; Ulbricht, G.; Johnson, M.; et al. ARCONS: A 2024 Pixel Optical through Near-IR Cryogenic Imaging Spectrophotometer. Publ. Astron. Soc. Pacific 2013, 125, 1348–1361. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, K.; Mazin, B.; McHugh, S.; Meeker, S.; Bumble, B. ARCONS: A Highly Multiplexed Superconducting UV-to-Near-IR Camera. In Proceedings of the 285th Symposium of the International-Astronomical-Union, Oxford, UK, 19–23 September 2012. [Google Scholar]
- Szypryt, P.; Duggan, G.E.; Mazin, B.A.; Meeker, S.R.; Strader, M.J.; van Eyken, J.C.; Marsden, D.; O’Brien, K.; Walter, A.B.; Ulbricht, G.; et al. Direct detection of SDSS J0926+3624 orbital expansion with ARCONS. Mon. Not. R. Astron. Soc. 2014, 439, 2765–2770. [Google Scholar] [CrossRef] [Green Version]
- Meeker, S.R. DARKNESS: The First Microwave Kinetic Inductance Detector Integral Field Spectrograph for Exoplanet Imaging. Ph.D. Thesis, University of California, Santa Barbara, CA, USA, 2017. [Google Scholar]
- Males, J.R.; Close, L.M.; Millera, K.; Schatz, L.; Doelman, D.; Lumbresa, J.; Snik, F.; Rodacka, A.; Knight, J.; Van Gorkom, K.; et al. MagAO-X: Project status and first laboratory results. In Proceedings of the Conference on Adaptive Optics Systems VI, Austin, TX, USA, 10–15 June 2018. [Google Scholar]
- Bockstiegel, C.D. The MKID Camera for PICTURE-C and Photon Counting Stochastic Speckle Discrimination. Ph.D. Thesis, University of California, Santa Barbara, CA, USA, 2019. [Google Scholar]
- Cook, T.; Cahoy, K.; Chakrabarti, S.; Douglas, E.; Finn, S.C.; Kuchner, M.; Lewis, N.; Marinan, A.; Martel, J.; Mawet, D.; et al. Planetary Imaging Concept Testbed Using a Recoverable Experiment-Coronagraph (PICTURE C). J. Astron. Telesc. Instr. Syst. 2015, 1. [Google Scholar] [CrossRef] [Green Version]
- Walter, A.B. MEC: The MKID Exoplanet Camera for High Speed Focal Plane Control at the Subaru Telescope. Ph.D. Thesis, University of California, Santa Barbara, CA, USA, 2019. [Google Scholar]
- Lozi, J.; Guyon, O.; Jovanovic, N.; Goebel, S.; Pathak, P.; Skaf, N.; Sahoo, A.; Norris, B.; Martinache, F.; N’Diaye, M.; et al. SCExAO, an instrument with a dual purpose: Perform cutting-edge science and develop new technologies. In Proceedings of the Conference on Adaptive Optics Systems VI, Austin, TX, USA, 10–15 June 2018. [Google Scholar]
- Marsden, D.W.; Mazin, B.A.; O’Brien, K.; Hirata, C. Giga-z: A 100,000 Object Superconducting Spectrophotometer for LSST Follow-Up. Astrophys. J. Suppl. Ser. 2013, 208. [Google Scholar] [CrossRef] [Green Version]
- Mazin, B.A.; Marsden, D.; O’Brien, K. SuperMOS: A new class of low resolution multiobject spectrographs. In Proceedings of the Conference on Ground-Based and Airborne Telescopes IV, Amsterdam, The Netherlands, 1–6 July 2012. [Google Scholar]
- Mazin, B.A.; Bailey, J.; Bartlett, J.; Bockstiegel, C.; Bumble, B.; Currie, T.; Daal, M.; Davis, K.; Dodkins, R.; Fruitwala, N.; et al. Optical and Near-IR Microwave Kinetic Inductance Detectors (MKIDs) in the 2020s. Astro2020 APC White Paper. 2019. arXiv 2019, arXiv:1908.02775v1. [Google Scholar]
- Mazin, B.A.; Becker, G.D.; Cancelo, G.; France, K.; Fraser, W.C.; Jones, T.; Meeker, S.R.; O’Brien, K.; Prochaska, J.X.; Tendulkar, S.; et al. KRAKENS: A Superconducting MKID Integral Field Spectrograph Concept for the Keck I Telescope. In Proceedings of the Conference on Ground-Based and Airborne Instrumentation for Astronomy VII, Austin, TX, USA, 10–14 June 2018. [Google Scholar]
- Mazin, B.A.; Becker, G.; France, K.; Fraser, W.; Howell, D.A.; Jones, T.; Meeker, S.; O’Brien, K.; Prochaska, J.X.; Siana, B.; et al. Science with KRAKENS. arXiv 2015, arXiv:1506.03458v1. [Google Scholar]
- O’Brien, K.; Thatte, N.; Mazin, B. KIDSpec: An MKID Based Medium Resolution Integral Field Spectrograph. In Proceedings of the Ground-Based and Airborne Instrumentation for Astronomy V, Montreal, QC, Canada, 22–27 June 2014; Ramsay, S.K., McLean, I.S., Takami, H., Eds.; SPIE: Bellingham, WA, USA, 2014; p. 91472014. [Google Scholar]
- O’Brien, K. KIDSpec: An MKID-Based Medium-Resolution, Integral Field Spectrograph. J. Low Temp. Phys. 2020, 199, 537–546. [Google Scholar] [CrossRef] [Green Version]
- Jovanovic, N.; Cvetojevic, N.; Daal, M.; Mazin, B.; Moreira, R.; Mawet, D.; Vasisht, G.; Beichman, C.; Wallace, K.; Jewell, J.; et al. Status and Future Developments of Integrated Photonic Spectrographs for Astronomy and Earth and Planetary Sciences. In Proceedings of the Photonic Instrumentation Engineering VII, San Francisco, CA, USA, 1–6 February 2020. [Google Scholar]
- Hobbs, D.; Leitz, C.; Bartlett, J.; Hepburn, I.; Kawata, D.; Cropper, M.; Mazin, B.; Brown, A.; Makarov, V.; McArthur, B.; et al. Astro2020: Decadal Survey on Astronomy and Astrophysics: All-Sky Near Infrared Space Astrometry. Bull. Am. Astron. Soc. 2019, 51, 19. [Google Scholar]
- Ulbricht, G.; Mazin, B.A.; Szypryt, P.; Walter, A.B.; Bockstiegel, C.; Bumble, B. Highly multiplexible thermal kinetic inductance detectors for x-ray imaging spectroscopy. Appl. Phys. Lett. 2015, 106. [Google Scholar] [CrossRef] [Green Version]
- Cecil, T.; Miceli, A.; Gades, L.; Datesman, A.; Quaranta, O.; Yefremenko, V.; Novosad, V.; Mazin, B. Kinetic Inductance Detectors for X-Ray Spectroscopy. In Proceedings of the 2nd International Conference on Technology and Instrumentation in Particle Physics (Tipp 2011), Chicago, IL, USA, 9–14 June 2012; Volume 37, pp. 697–702. [Google Scholar]
- Miceli, A.; Cecil, T.W.; Gades, L.; Quaranta, O. Towards X-ray Thermal Kinetic Inductance Detectors. J. Low Temp. Phys. 2014, 176, 497–503. [Google Scholar] [CrossRef]
- Quaranta, O.; Cecil, T.W.; Gades, L.; Mazin, B.; Miceli, A. X-ray photon detection using superconducting resonators in thermal quasi-equilibrium. Supercond. Sci. Technol. 2013, 26. [Google Scholar] [CrossRef]
- Derujula, A.; Lusignoli, M. Calorimetric Measurements of HO-163 Decay as Tools to Determine the Electron Neutrino Mass. Phys. Lett. B 1982, 118, 429–434. [Google Scholar] [CrossRef] [Green Version]
- Ferri, E.; Bagliani, D.; Biasotti, M.; Ceruti, G.; Corsini, D.; Faverzani, M.; Gatti, F.; Giachero, A.; Gotti, C.; Kilbourne, C.; et al. The status of the MARE experiment with Re-187 and Ho-163 isotopes. In Proceedings of the 13th International Conference on Topics in Astroparticle and Underground Physics, Taup 2013, Asilomar, CA, USA, 8–13 September 2013; Volume 61, pp. 227–231. [Google Scholar]
- Nucciotti, A. The Use of Low Temperature Detectors for Direct Measurements of the Mass of the Electron Neutrino. Adv. High Energy Phys. 2016, 2016. [Google Scholar] [CrossRef] [Green Version]
- Casali, N.; Bellenghi, C.; Calvo, M.; Cardani, L.; Castellano, G.; Colantoni, I.; Cosmelli, C.; Cruciani, A.; Di Domizio, S.; Goupy, J.; et al. Cryogenic Light Detectors for Background Suppression: The CALDER Project. J. Low Temp. Phys. 2020, 200, 206–212. [Google Scholar] [CrossRef]
- Arnaboldi, C.; Avignone, F.; Balata, M.; Barucci, M.; Beeman, J.; Brofferio, C.; Bucci, C.; Capelli, S.; Carbone, L.; Cebrian, S.; et al. The CUORE experiment. In Proceedings of the 9th International Workshop on Low Temperature Detectors, Madison, WI, USA, 22–27 July 2002. [Google Scholar]
- Casali, N.; Azzolini, O.; Beeman, J.W.; Bellini, F.; Beretta, M.; Biassoni, M.; Brofferio, C.; Bucci, C.; Capelli, S.; Cardani, L.; et al. Final Results of the CUPID-0 Phase I Experiment. In Proceedings of the 16th International Conference on Topics in Astroparticle and Underground Physics (TAUP), Tokyo, Japan, 9–13 September 2019. [Google Scholar]
- Faverzani, M.; Alpert, B.; Backer, D.; Bennet, D.; Biasotti, M.; Brofferio, C.; Ceriale, V.; Ceruti, G.; Corsini, D.; Day, P.K.; et al. The HOLMES Experiment. J. Low Temp. Phys. 2016, 184, 922–929. [Google Scholar] [CrossRef]
- Sisti, M.; Artusa, D.R.; Avignone, F.T.; Azzolini, O.; Balata, M.; Banks, T.I.; Bari, G.; Beeman, J.; Bellini, F.; Bersani, A.; et al. Status of the CUORE and results from the CUORE-0 neutrinoless double beta decay experiments. Nucl. Part. Phys. Proc. 2016, 273, 1719–1725. [Google Scholar] [CrossRef] [Green Version]
- Alessandrello, A.; Arnaboldi, C.; Avignone, F.T.; Beeman, J.; Barucci, M.; Balata, M.; Brofferio, C.; Bucci, C.; Cebrian, S.; Creswick, R.J.; et al. A cryogenic underground observatory for rare events: CUORE, an update. Phys. Atom. Nuclei 2003, 66, 452–457. [Google Scholar] [CrossRef] [Green Version]
- Alduino, C.; Alfonso, K.; Artusa, D.R.; Avignone, F.T.; Azzolini, O.; Banks, T.I.; Bari, G.; Beeman, J.W.; Bellini, F.; Benato, G.; et al. The projected background for the CUORE experiment. Eur. Phys. J. C 2017, 77. [Google Scholar] [CrossRef]
- The CUPID Interest Group. CUPID pre-CDR. arXiv 2019, arXiv:1907.09376. [Google Scholar]
- Armengaud, E.; Augier, C.; Barabash, A.S.; Bellini, F.; Benato, G.; Benoît, A.; Beretta, M.; Bergé, L.; Billard, J.; Borovlev, Y.A.; et al. A new limit for neutrinoless double-beta decay of 100Mo from the CUPID-Mo experiment. arXiv 2020, arXiv:2011.13243. [Google Scholar]
- Azzolini, O.; Beeman, J.W.; Bellini, F.; Beretta, M.; Biassoni, M.; Brofferio, C.; Bucci, C.; Capelli, S.; Cardani, L.; Carniti, P.; et al. Final Result of CUPID-0 Phase-I in the Search for the Se-82 Neutrinoless Double-beta Decay. Physical Review Letters 2019, 123, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casali, N.; Cardani, L.; Colantoni, I.; Cruciani, A.; Di Domizio, S.; Martinez, M.; Pettinari, G.; Vignati, M. Phonon and light read out of a Li2MoO4 crystal with multiplexed kinetic inductance detectors. Eur. Phys. J. C 2019, 79, 7. [Google Scholar] [CrossRef]
- Cardani, L.; Bellini, F.; Casali, N.; Castellano, M.G.; Colantoni, I.; Coppolecchia, A.; Cosmelli, C.; Cruciani, A.; Di Domizio, S.; Tomei, C.; et al. CALDER: Cryogenic Light Detectors for Background-Free Searches. In Proceedings of the 5th International Workshop on Low Radioactivity Techniques (LRT), Seattle, WA, USA, 18–20 March 2015. [Google Scholar]
- Cardani, L.; Casali, N.; Cruciani, A.; le Sueur, H.; Martinez, M.; Bellini, F.; Calvo, M.; Castellano, M.G.; Colantoni, I.; Cosmelli, C.; et al. AI/Ti/AI phonon-mediated KIDs for UV-vis light detection over large areas. Supercond. Sci. Technol. 2018, 31. [Google Scholar] [CrossRef] [Green Version]
- Colantoni, I.; Bellenghi, C.; Calvo, M.; Camattari, R.; Cardani, L.; Casali, N.; Cruciani, A.; Di Domizio, S.; Goupy, J.; Guidi, V.; et al. BULLKID: BULky and Low-Threshold Kinetic Inductance Detectors. J. Low Temp. Phys. 2020, 199, 593–597. [Google Scholar] [CrossRef] [Green Version]
- Colantoni, I.; Cardani, L.; Casali, N.; Cruciani, A.; Bellini, F.; Castellano, M.G.; Cosmelli, C.; D’Addabbo, A.; Di Domizio, S.; Martinez, M.; et al. CALDER: The Second-Generation Light Detectors. IEEE Trans. Appl. Superconduct. 2018, 28. [Google Scholar] [CrossRef]
- Colantoni, I.; Cardani, L.; Casali, N.; Cruciani, A.; Bellini, F.; Castellano, M.G.; Cosmelli, C.; D’Addabbo, A.; Di Domizio, S.; Martinez, M.; et al. Design and Fabrication of the Second-Generation KID-Based Light Detectors of CALDER. J. Low Temp. Phys. 2018, 193, 726–731. [Google Scholar] [CrossRef]
- Becker, D.T.; Bennett, D.A.; Biasotti, M.; Borghesi, M.; Ceriale, V.; De Gerone, M.; Faverzani, M.; Ferri, E.; Fowler, J.W.; Gallucci, G.; et al. Working principle and demonstrator of microwave-multiplexing for the HOLMES experiment microcalorimeters. J. Instrum. 2019, 14, 40. [Google Scholar] [CrossRef] [Green Version]
- Giachero, A.; Day, P.K.; Falferi, P.; Faverzani, M.; Ferri, E.; Giordano, C.; Maino, M.; Margesin, B.; Mezzena, R.; Nizzolo, R.; et al. Development of Microwave Superconducting Microresonators for Neutrino Mass Measurement in the Holmes Framework. J. Low Temp. Phys. 2016, 184, 123–130. [Google Scholar] [CrossRef] [Green Version]
- Faverzani, M.; Cruciani, A.; D’Addabbo, A.; Day, P.K.; Di Domizio, S.; Ferri, E.; Fresch, P.; Giachero, A.; Margesin, B.; Mezzena, R.; et al. Thermal kinetic inductance detectors for soft X-ray spectroscopy. Nucl. Instrum. Methods Phys. Res. Sect. A 2019, 936, 197–198. [Google Scholar] [CrossRef]
- Golwala, S.; Gao, J.; Moore, D.; Mazin, B.; Eckart, M.; Bumble, B.; Day, P.; LeDuc, H.G.; Zmuidzinas, J. A WIMP dark matter detector using MKIDs. J. Low Temp. Phys. 2008, 151, 550–556. [Google Scholar] [CrossRef]
- Cornell, B.; Moore, D.C.; Golwala, S.R.; Bumble, B.; Day, P.K.; LeDuc, H.G.; Zmuidzinas, J. Particle Detection Using MKID-Based Athermal-Phonon Mediated Detectors. J. Low Temp. Phys. 2014, 176, 891–897. [Google Scholar] [CrossRef]
- Moore, D.C.; Golwala, S.R.; Bumble, B.; Cornell, B.; Day, P.K.; LeDuc, H.G.; Zmuidzinas, J. Position and energy-resolved particle detection using phonon-mediated microwave kinetic inductance detectors. Appl. Phys. Lett. 2012, 100, 4. [Google Scholar] [CrossRef] [Green Version]
- Hochberg, Y.; Charaev, I.; Nam, S.W.; Verma, V.; Colangelo, M.; Berggren, K.K. Detecting Sub-GeV Dark Matter with Superconducting Nanowires. Phys. Rev. Lett. 2019, 123, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Derenzo, S.; Essig, R.; Massari, A.; Soto, A.; Yu, T.-T. Direct detection of sub-GeV dark matter with scintillating targets. Phys. Rev. D 2017, 96. [Google Scholar] [CrossRef] [Green Version]
- Baryakhtar, M.; Craig, N.; Daal, M.; Huang, J.; Lasenby, R.; Lippincott, H.; Mazin, B.; Van Tilburg, K.; Weld, D. Sub-eV Dark Matter Detection with MKID Haloscopes. Snowmass2021—Letter of Interest. 2020. Available online: www.snowmass21.org/docs/files/summaries/CF/SNOWMASS21-CF1_CF2-IF2_IF1_Ben_Mazin-004.pdf (accessed on 31 January 2021).
- Dunne, K.; Gudmundsson, J.; Lawson, M.; Millar, A.; Morampudi, S.; Newman, N.; Peiris, H.V.; Wilczek, F. Snowmass 2021 Letter of Interest: Tunable Plasma Haloscope. Snowmass 2021—Letter of Interest. 2020. Available online: https://www.snowmass21.org/docs/files/summaries/IF/SNOWMASS21-IF1-CF2-003.pdf (accessed on 31 January 2021).
- Baryakhtar, M.; Huang, J.W.; Lasenby, R. Axion and hidden photon dark matter detection with multilayer optical haloscopes. Phys. Rev. D 2018, 98. [Google Scholar] [CrossRef] [Green Version]
- Hwu, Y.; Margaritondo, G. Synchrotron Radiation and Sensors: A History of Synergies. IEEE Sens. J. 2020. [Google Scholar] [CrossRef]
- Cecil, T.; Miceli, A.; Quaranta, A.; Liu, C.; Rosenmann, D.; McHugh, S.; Mazin, B. Tungsten silicide films for microwave kinetic inductance detectors. Appl. Phys. Lett. 2012, 101. [Google Scholar] [CrossRef] [Green Version]
- Cecil, T.W.; Gades, L.; Madden, T.; Yan, D.; Miceli, A. Optimization of thermal kinetic inductance detectors for x-ray spectroscopy. IEEE Trans. Appl. Superconduct. 2015, 25. [Google Scholar] [CrossRef]
- Schäfers, F.; Mertin, M.; Gorgoi, M. A high resolution and high flux soft x-ray beamline at BESSY. Rev. Sci. Instr. 2007, 78. [Google Scholar] [CrossRef] [PubMed]
- Giachero, A.; Cruciani, A.; D’Addabbo, A. Development of Thermal Kinetic Inductance Detectors Suitable for X-ray Spectroscopy. J. Low Temp. Phys. 2018, 193. [Google Scholar] [CrossRef] [Green Version]
- Rowe, S.; Pascale, E.; Doyle, S.; Dunscombe, C.; Hargrave, P.; Papageorgio, A.; Wood, K.; Ade, P.A.; Barry, P.; Bideaud, A.; et al. A passive terahertz video camera based on lumped element kinetic inductance detectors. Rev. Sci. Instr. 2015, 87. [Google Scholar] [CrossRef] [Green Version]
- Morozov, D.; Doyle, S.; Banerjee, A.; Brien, T.; Hemakumara, D.; Thayne, I.; Wood, K.; Hadfield, R. Design and Characterisation of Titanium Nitride Subarrays of Kinetic Inductance Detectors for Passive Terahertz Imaging. J. Low Temp. Phys. 2018, 193. [Google Scholar] [CrossRef] [Green Version]
- Messina, G.; Brosco, V.; Cruciani, A.; Benfatto, L.; Cibella, S.; Pettinari, G.; Castellano, M.; Tanga, A.; Ortolani, M.; Baldassarre, L.; et al. High-TC Superconducting Kinetic Inductance Detectors for Terahertz Imaging. In Proceedings of the 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Paris, France, 1–6 September 2019. [Google Scholar]
- Hassel, J.; Dabironezare, S.; Gandini, E.; Grönberg, L.; Sipola, H.; Rautiainen, A.; Tamminen, A.; Leivo, M.; Luukanen, A.; Llombart, N.; et al. Dual-Band Submillimeter-Wave Kinetic Inductance Bolometers and an Imaging System for Contraband Object Detection. In Proceedings of the Passive and Active Millimeter-Wave Imaging XXI, Orlando, FL, USA, 15–19 April 2018. [Google Scholar]
- De Jonge, C.; Baryshev, A.M.; Ferrari, L.; Yates, S.J.C.; Baselmans, J.J.A.; Endo, A. Development of a passive stand-off imager using MKID technology for security and biomedical applications. In Proceedings of the 37th International Conference on Infrared, Millimeter, and Terahertz Waves, Wollongong, NSW, Australia, 23–28 September 2012. [Google Scholar]
- Mazzocchi, F.; Driessen, E.F.C.; Shu, S.; Grossetti, G.; Strauss, D.; Scherer, T. Development of NbN Polarization Sensitive KID for Fusion Applications. In Proceedings of the 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Nagoya, Japan, 9–14 September 2018. [Google Scholar]
- Baglioni, G. Investigation of Strain-Induced Electromechanical Coupling in Kinetic Inductance [Studentuppsats (Examensarbete)]. Master’s Thesis, KTH, School of Engineering Sciences (SCI), Applied Physics, Valhallavägen, Sweden, 2020. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ulbricht, G.; De Lucia, M.; Baldwin, E. Applications for Microwave Kinetic Induction Detectors in Advanced Instrumentation. Appl. Sci. 2021, 11, 2671. https://doi.org/10.3390/app11062671
Ulbricht G, De Lucia M, Baldwin E. Applications for Microwave Kinetic Induction Detectors in Advanced Instrumentation. Applied Sciences. 2021; 11(6):2671. https://doi.org/10.3390/app11062671
Chicago/Turabian StyleUlbricht, Gerhard, Mario De Lucia, and Eoin Baldwin. 2021. "Applications for Microwave Kinetic Induction Detectors in Advanced Instrumentation" Applied Sciences 11, no. 6: 2671. https://doi.org/10.3390/app11062671
APA StyleUlbricht, G., De Lucia, M., & Baldwin, E. (2021). Applications for Microwave Kinetic Induction Detectors in Advanced Instrumentation. Applied Sciences, 11(6), 2671. https://doi.org/10.3390/app11062671