Effect of Limb-Specific Resistance Training on Central and Peripheral Artery Stiffness in Young Adults: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Height, Weight, and Body Composition
2.4. Central Artery Stiffness
2.5. Peripheral Artery Stiffness
2.6. Blood Chemistry
2.7. Maximal Strength
2.8. Resistance Training Program
2.9. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- DeVan, A.E.; Anton, M.M.; Cook, J.N.; Neidre, D.B.; Cortez-Cooper, M.Y.; Tanaka, H. Acute effects of resistance exercise on arterial compliance. J. Appl. Physiol. 2005, 98, 2287–2291. [Google Scholar] [CrossRef] [Green Version]
- Nichols, W.W.; Singh, B.M. Augmentation index as a measure of peripheral vascular disease state. Curr. Opin. Cardiol. 2002, 17, 543–551. [Google Scholar] [CrossRef] [PubMed]
- O’Rourke, M. Arterial stiffness, systolic blood pressure, and logical treatment of arterial hypertension. Hypertension 1990, 15, 339–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, H.; DeSouza, C.A.; Seals, D.R. Absence of age-related increase in central arterial stiffness in physically active women. Arterioscler. Thromb. Vasc. Biol. 1998, 18, 127–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urbina, E.M.; Kieltkya, L.; Tsai, J.; Srinivasan, S.R.; Berenson, G.S. Impact of multiple cardiovascular risk factors on brachial artery distensibility in young adults: The Bogalusa Heart Study. Am. J. Hypertens. 2005, 18, 767–771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreau, K.L.; Donato, A.J.; Seals, D.R.; DeSouza, C.A.; Tanaka, H. Regular exercise, hormone replacement therapy and the age-related decline in carotid arterial compliance in healthy women. Cardiovasc. Res. 2003, 57, 861–868. [Google Scholar] [CrossRef]
- Moreau, K.L.; Degarmo, R.; Langley, J.; McMahon, C.; Howley, E.T.; Bassett, D.R.; Thompson, D.L. Increasing daily walking lowers blood pressure in postmenopausal women. Med. Sci. Sports Exerc. 2001, 33, 1825–1831. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, T.; Masuhara, M.; Ikuta, K. Home-based resistance training improves arterial stiffness in healthy premenopausal women. Eur. J. Appl. Physiol. 2009, 107, 113–117. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, T.; Masuhara, M.; Ikuta, K. Low-intensity resistance training after high-intensity resistance training can prevent the increase of central arterial stiffness. Int. J. Sports Med. 2013, 34, 385–390. [Google Scholar] [CrossRef]
- DeSouza, C.A.; Shapiro, L.F.; Clevenger, C.M.; Dinenno, F.A.; Monahan, K.D.; Tanaka, H.; Seals, D.R. Regular aerobic exercise prevents and restores age-related declines in endothelium-dependent vasodilation in healthy men. Circulation 2000, 102, 1351–1357. [Google Scholar] [CrossRef] [Green Version]
- Hwang, M.-H.; Kim, S. Type 2 diabetes: Endothelial dysfunction and Exercise. J. Exerc. Nutr. Biochem. 2014, 18, 239–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeon, K.; Lee, S.; Hwang, M.-H. Effects of combined circuit exercise on arterial stiffness in hypertensive postmenopausal women: A local public center-based pilot study. Menopause 2018, 25, 1442–1447. [Google Scholar] [CrossRef]
- Garber, C.E.; Blissmer, B.; Deschenes, M.R.; Franklin, B.A.; Lamonte, M.J.; Lee, I.M.; Nieman, D.C.; Swain, D.P. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: Guidance for prescribing exercise. Med. Sci. Sports Exerc. 2011, 43, 1334–1359. [Google Scholar] [CrossRef] [PubMed]
- Sugawara, J.; Otsuki, T.; Tanabe, T.; Hayashi, K.; Maeda, S.; Matsuda, M. Physical Activity Duration, Intensity, and Arterial Stiffening in Postmenopausal Women. Am. J. Hypertens. 2006, 19, 1032–1036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, H.; Dinenno, F.A.; Monahan, K.D.; Clevenger, C.M.; DeSouza, C.A.; Seals, D.R. Aging, habitual exercise, and dynamic arterial compliance. Circulation 2000, 102, 1270–1275. [Google Scholar] [CrossRef] [Green Version]
- Pollock, M.L.; Franklin, B.A.; Balady, G.J.; Chaitman, B.R.; Fleg, J.L.; Fletcher, B.; Limacher, M.C.; Pina, I.L.; Stein, R.A.; Williams, M.; et al. Resistance exercise in individuals with and without cardiovascular disease: Benefit, rationale, safety, and prescription. 2000, 8721, 1591–1597. Circulation 2020, 101, 828–833. [Google Scholar]
- Haskell, W.L.; Lee, I.M.; Pate, R.R.; Powell, K.E.; Blair, S.N.; Franklin, B.A.; Macera, C.A.; Heath, G.W.; Thompson, P.D.; Bauman, A. Physical activity and public health: Updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Circulation 2007, 116, 1081–1093. [Google Scholar] [CrossRef] [Green Version]
- Miyachi, M.; Donato, A.J.; Yamamoto, K.; Takahashi, K.; Gates, P.E.; Moreau, K.L.; Tanaka, H. Greater age-related reductions in central arterial compliance in resistance-trained men. Hypertension 2003, 41, 130–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cortez-Cooper, M.Y.; DeVan, A.E.; Anton, M.M.; Farrar, R.P.; Beckwith, K.A.; Todd, J.S.; Tanaka, H. Effects of high intensity resistance training on arterial stiffness and wave reflection in women. Am. J. Hypertens. 2005, 18, 930–934. [Google Scholar] [CrossRef] [Green Version]
- Collier, S.R.; Kanaley, J.A.; Carhart, R.; Frechette, V.; Tobin, M.M.; Hall, A.K.; Luckenbaugh, A.N.; Fernhall, B. Effect of 4 weeks of aerobic or resistance exercise training on arterial stiffness, blood flow and blood pressure in pre- and stage-1 hypertensives. J. Hum. Hypertens. 2008, 22, 678–686. [Google Scholar] [CrossRef]
- Kawano, H.; Tanaka, H.; Miyachi, M. Resistance training and arterial compliance keeping the benefits while minimizing the stiffening. J. Hypertens. 2006, 24, 1753–1759. [Google Scholar] [CrossRef] [Green Version]
- Okamoto, T.; Masuhara, M.; Ikuta, K. Effect of low-intensity resistance training on arterial function. Eur. J. Appl. Physiol. 2011, 111, 743–748. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, T.; Min, S.; Sakamaki-Sunaga, M. Arterial compliance and stiffness following low-intensity resistance exercise. Eur. J. Appl. Physiol. 2014, 114, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Yoshizawa, M.; Maeda, S.; Miyaki, A.; Misono, M.; Choi, Y.; Shimojo, N.; Ajisaka, R.; Tanaka, H. Additive beneficial effects of lactotripeptides and aerobic exercise on arterial compliance in postmenopausal women. Am. J. Physiol. Heart Circ. Physiol. 2009, 297, H1899–H1903. [Google Scholar] [CrossRef] [Green Version]
- Pauca, A.L.; O’Rourke, M.F.; Kon, N.D. Prospective evaluation of a method for estimating ascending aortic pressure from the radial artery pressure waveform. Hypertension 2001, 38, 932–937. [Google Scholar] [CrossRef] [Green Version]
- Adji, A.; Hirata, K.; Hoegler, S.; O’Rourke, M.F. Noninvasive Pulse Waveform Analysis in Clinical Trials: Similarity of Two Methods for Calculating Aortic Systolic Pressure. Am. J. Hypertens. 2007, 20, 917–922. [Google Scholar] [CrossRef] [Green Version]
- O’Rourke, M.F.; Hashimoto, J. Pressure pulse waveform analysis in critical care. Crit. Care Med. 2006, 34, 1569–1570. [Google Scholar] [CrossRef]
- Hwang, M.-H.; Yoo, J.K.; Kim, H.K.; Hwang, C.L.; Mackay, K.; Hemstreet, O.; Nichols, W.W.; Christou, D.D. Validity and reliability of aortic pulse wave velocity and augmentation index determined by the new cuff-based SphygmoCor Xcel. J. Hum. Hypertens. 2014, 28, 475–481. [Google Scholar] [CrossRef] [PubMed]
- Laurent, S.; Cockcroft, J.; Van Bortel, L.; Boutouyrie, P.; Giannattasio, C.; Hayoz, D.; Pannier, B.; Vlachopoulos, C.; Wilkinson, I.; Struijker-Boudier, H. Expert consensus document on arterial stiffness: Methodological issues and clinical applications. Eur. Heart J. 2006, 27, 2588–2605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LeSuer, D.A.; McCormick, J.H.; Mayhew, J.L.; Wasserstein, R.L.; Arnold, M.D. The accuracy of prediction equations for estimating 1-RM performance in the bench press, squat, and deadlift. J. Strength Cond. Res. 1997, 11, 211–213. [Google Scholar]
- Ray, C.A.; Carrasco, D.I. Isometric handgrip training reduces arterial pressure at rest without changes in sympathetic nerve activity. Am. J. Physiol. Heart Circ. Physiol. 2000, 279, H245–H249. [Google Scholar] [CrossRef] [Green Version]
- Tartière, J.M.; Logeart, D.; Safar, M.E.; Cohen-Solal, A. Interaction between pulse wave velocity, augmentation index, pulse pressure and left ventricular function in chronic heart failure. J. Hum. Hypertens. 2006, 20, 213–219. [Google Scholar] [CrossRef]
- Wilkinson, I.B.; Franklin, S.S.; Cockcroft, J.R. Nitric Oxide and the Regulation of Large Artery Stiffness. Hypertension 2004, 44, 112–116. [Google Scholar] [CrossRef] [PubMed]
- Fahs, C.A.; Heffernan, K.S.; Ranadive, S.; Jae, S.Y.; Fernhall, B. Muscular strength is inversely associated with aortic stiffness in young men. Med. Sci. Sports Exerc. 2010, 42, 1619–1624. [Google Scholar] [CrossRef] [PubMed]
- Jagla, A.; Schrezenmeir, J. Postprandial triglycerides and endothelial function. Exp. Clin. Endocrinol. Diabetes 2001, 109, 533–547. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, T.; Masuhara, M.; Ikuta, K. Effects of eccentric and concentric resistance training on arterial stiffness. J. Hum. Hypertens. 2006, 20, 348–354. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, T.; Masuhara, M.; Ikuta, K. Upper but not lower limb resistance training increases arterial stiffness in humans. Eur. J. Appl. Physiol. 2009, 107, 127–134. [Google Scholar] [CrossRef]
- Maeda, S.; Otsuki, T.; Iemitsu, M.; Kamioka, M.; Sugawara, J.; Kuno, S.; Ajisaka, R.; Tanaka, H. Effects of leg resistance training on arterial function in older men. Br. J. Sports Med. 2006, 40, 867–869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Bopp, M.; Botta, F.; Nussbaumer, M.; Schäfer, J.; Roth, R.; Schmidt-Trucksäss, A.; Hanssen, H. Lower Body vs. Upper Body Resistance Training and Arterial Stiffness in Young Men. Int. J. Sports Med. 2015, 36, 960–967. [Google Scholar] [CrossRef]
- Heffernan, K.S.; Rossow, L.; Jae, S.Y.; Shokunbi, H.G.; Gibson, E.M.; Fernhall, B. Effect of single-leg resistance exercise on regional arterial stiffness. Eur. J. Appl. Physiol. 2006, 98, 185–190. [Google Scholar] [CrossRef]
- Bank, A.J.; Kaiser, D.R. Smooth muscle relaxation: Effects on arterial compliance, distensibility, elastic modulus, and pulse wave velocity. Hypertension 1998, 32, 356–359. [Google Scholar] [CrossRef] [Green Version]
- Kingwell, B.A.; Berry, K.L.; Cameron, J.D.; Jennings, G.L.; Dart, A.M. Arterial compliance increases after moderate-intensity cycling. Am. J. Physiol. Circ. Physiol. 1997, 42, H2186–H2191. [Google Scholar] [CrossRef]
- Green, D.J.; O’Driscoll, G.; Blanksby, B.A.; Taylor, R.R. Control of skeletal muscle blood flow during dynamic exercise. Sport. Med. 1996, 21, 119–146. [Google Scholar] [CrossRef] [PubMed]
- Radke, K.J.; Izzo, J.L. Seasonal variation in haemodynamics and blood pressure-regulating hormones. J. Hum. Hypertens. 2010, 24, 410–416. [Google Scholar] [CrossRef] [Green Version]
- Kruse, H.J.; Wieczorek, I.; Hecker, H.; Creutzig, A.; Schellong, S.M. Seasonal variation of endothelin-1, angiotensin II, and plasma catecholamines and their relation to outside temperature. J. Lab. Clin. Med. 2002, 140, 236–241. [Google Scholar] [CrossRef]
- Hiramatsu, K.; Yamada, T.; Katakura, M. Acute effects of cold on blood pressure, renin-angiotensin-aldosterone system, catecholamines and adrenal steroids in man. Clin. Exp. Pharmacol. Physiol. 1984, 11, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Healy, J.D. Excess winter mortality in Europe: A cross country analysis identifying key risk factors. J. Epidemiol. Community Health 2003, 57, 784–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, L.R.; Barnett, A.G.; Connell, D.; Tonga, S. Ambient temperature and cardiorespiratory morbidity: A systematic review and meta-analysis. Epidemiology 2012, 23, 594–606. [Google Scholar] [CrossRef] [Green Version]
- Myint, P.K.; Vowler, S.L.; Woodhouse, P.R.; Redmayne, O.; Fulcher, R.A. Winter excess in hospital admissions, in-patient mortality and length of acute hospital stay in stroke: A hospital database study over six seasonal years in Nirfolk, UK. Neuroepidemiology 2007, 28, 79–85. [Google Scholar] [CrossRef]
Variables | CON (n = 8) | URT (n = 8) | LRT (n = 8) | |||
---|---|---|---|---|---|---|
Pre | Post | Pre | Post | Pre | Post | |
Age, years | 21 ± 1 | - | 20 ± 1 | - | 20 ± 1 | - |
Height, cm | 164.4 ± 1.2 | - | 172.8 ± 4.7 | - | 170.2 ± 2.0 | - |
Weight, kg | 60.0 ± 3.3 | 59.0 ± 3.5 | 65.0 ± 4.9 | 67.6 ± 5.7 | 65.1 ± 3.6 | 63.4 ± 4.0 |
BMI, kg/m2 | 21.8 ± 1.1 | 21.8 ± 1.2 | 21.5 ± 0.6 | 21.9 ± 0.7 | 22.4 ± 0.9 | 22.7 ± 1.0 |
Body fat, % | 23.1 ± 2.5 | 23.9 ± 2.3 | 18.5 ± 2.4 | 17.4 ± 2.5 | 24.3 ± 2.2 | 25.8 ± 2.4 |
Muscle mass, kg | 25.0 ± 1.3 | 24.8 ± 1.2 | 30.2 ± 3.4 | 31.0 ± 3.4 * | 27.6 ± 2.2 | 28.1 ± 2.1 |
Trunk LBM, kg | 20.0 ± 1.0 | 19.7 ± 0.9 | 22.4 ± 2.0 | 23.2 ± 2.2 * | 20.9 ± 1.4 | 21.3 ± 1.4 * |
Arm LBM, kg | 2.3 ± 0.2 | 2.2 ± 0.2 | 2.6 ± 0.3 | 2.8 ± 0.4 * | 2.4 ± 0.2 | 2.4 ± 0.2 * |
Leg LBM, kg | 7.0 ± 0.3 | 7.1 ± 0.3 | 8.7 ± 1.1 | 8.8 ± 1.0 | 8.0 ± 0.6 | 8.1 ± 0.6 |
rHR, beat/min | 59 ± 3 | 58 ± 2 | 58 ± 3 | 52 ± 2 * | 57 ± 3 | 53 ± 3 |
SBP, mmHg | 110 ± 2 | 111 ± 4 | 115 ± 4 | 114 ± 4 | 113 ± 3 | 109 ± 4 |
DBP, mmHg | 64 ± 2 | 64 ± 2 | 64 ± 2 | 61 ± 3 | 63 ± 1 | 63 ± 3 |
Triglyc, mg/dL | 64 ± 6 | 74 ± 13 | 66 ± 8 | 67 ± 7 | 71 ± 11 | 72 ± 12 |
Epi, pg/mL | 43 ± 2 | 35 ± 3 | 41 ± 2 | 32 ± 3 | 52 ± 7 | 34 ± 3 |
Norepi, pg/mL | 325 ± 33 | 128 ± 14 * | 413 ± 36 | 140 ± 15 * | 372 ± 25 | 118 ± 19 * |
Group | Exercise | Pre-Intervention | Post-Intervention | t-Test P Value | Δ1 RM (%) |
---|---|---|---|---|---|
URT | Chest press, kg | 66.8 ± 3.0 | 81.7 ± 2.9 | 0.0001 | 22.3 |
Shoulder press, kg | 58.5 ± 8.4 | 71.2 ± 11.1 | 0.006 | 21.7 | |
Seated row, kg | 20.2 ± 1.2 | 23.3 ± 0.5 | 0.004 | 15.3 | |
Barbell curl, kg | 24.3 ± 2.8 | 30.2 ± 2.7 | 0.0001 | 24.3 | |
LRT | Leg press, kg | 182.7 ± 14.0 | 208.3 ± 14.8 | 0.001 | 14.0 |
Leg extension, kg | 78.4 ± 5.6 | 93.8 ± 4.3 | 0.0001 | 19.6 | |
Lying leg curl, kg | 15.4 ± 1.7 | 18.8 ± 1.7 | 0.0001 | 22.1 | |
Hip extension, kg | 13.9 ± 1.7 | 16.4 ± 1.7 | 0.0001 | 18.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.; Lee, R.; Kang, N.; Hwang, M.-H. Effect of Limb-Specific Resistance Training on Central and Peripheral Artery Stiffness in Young Adults: A Pilot Study. Appl. Sci. 2021, 11, 2737. https://doi.org/10.3390/app11062737
Kim M, Lee R, Kang N, Hwang M-H. Effect of Limb-Specific Resistance Training on Central and Peripheral Artery Stiffness in Young Adults: A Pilot Study. Applied Sciences. 2021; 11(6):2737. https://doi.org/10.3390/app11062737
Chicago/Turabian StyleKim, Minyoung, Ruda Lee, Nyeonju Kang, and Moon-Hyon Hwang. 2021. "Effect of Limb-Specific Resistance Training on Central and Peripheral Artery Stiffness in Young Adults: A Pilot Study" Applied Sciences 11, no. 6: 2737. https://doi.org/10.3390/app11062737
APA StyleKim, M., Lee, R., Kang, N., & Hwang, M. -H. (2021). Effect of Limb-Specific Resistance Training on Central and Peripheral Artery Stiffness in Young Adults: A Pilot Study. Applied Sciences, 11(6), 2737. https://doi.org/10.3390/app11062737