Effects of Obesity on Adaptation Transfer from Treadmill to Over-Ground Walking
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Protocol
2.3. Data Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jensen, M.D.; Ryan, D.H.; Apovian, C.M.; Ard, J.D.; Comuzzie, A.G.; Donato, K.A.; Hu, F.B.; Hubbard, V.S.; Jakicic, J.M.; Kushner, R.F. 2013 AHA/ACC/TOS Guideline for the Management of Overweight and Obesity in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society. J. Am. Coll. Cardiol. 2014, 63, 2985–3023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hales, C.M.; Carroll, M.D.; Fryar, C.D.; Ogden, C.L. Prevalence of Obesity and Severe Obesity among Adults: United States, 2017–2018; 2020; Available online: https://www.cdc.gov/nchs/products/databriefs/db360.htm (accessed on 26 February 2021).
- World Health Organization. Global Recommendations on Physical Activity for Health; World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- Blanchard, C.M.; McGannon, K.R.; Spence, J.C.; Rhodes, R.E.; Nehl, E.; Baker, F.; Bostwick, J. Social Ecological Correlates of Physical Activity in Normal Weight, Overweight, and Obese Individuals. Int. J. Obes. 2005, 29, 720–726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Browning, R.C. Locomotion Mechanics in Obese Adults and Children. Curr. Obes. Rep. 2012, 1, 152–159. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Gill, S.V. Changes in Center of Pressure Velocities during Obstacle Crossing One Year after Bariatric Surgery. Gait Posture 2020, 76, 377–381. [Google Scholar] [CrossRef]
- DeVita, P.; Hortobágyi, T. Obesity Is Not Associated with Increased Knee Joint Torque and Power during Level Walking. J. Biomech. 2003, 36, 1355–1362. [Google Scholar] [CrossRef]
- Agostini, V.; Gastaldi, L.; Rosso, V.; Knaflitz, M.; Tadano, S. A Wearable Magneto-Inertial System for Gait Analysis (H-Gait): Validation on Normal Weight and Overweight/Obese Young Healthy Adults. Sensors 2017, 17, 2406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hills, A.P.; Hennig, E.M.; Byrne, N.M.; Steele, J.R. The Biomechanics of Adiposity–Structural and Functional Limitations of Obesity and Implications for Movement. Obes. Rev. 2002, 3, 35–43. [Google Scholar] [CrossRef]
- Alonso, A.C.; Luna, N.M.S.; Mochizuki, L.; Barbieri, F.; Santos, S.; Greve, J.M.D. The Influence of Anthropometric Factors on Postural Balance: The Relationship between Body Composition and Posturographic Measurements in Young Adults. Clinics 2012, 67, 1433–1441. [Google Scholar] [CrossRef]
- Gill, S.V.; Hicks, G.E.; Zhang, Y.; Niu, J.; Apovian, C.M.; White, D.K. The Association of Waist Circumference with Walking Difficulty among Adults with or at Risk of Knee Osteoarthritis: The Osteoarthritis Initiative. Osteoarthr. Cartil. 2017, 25, 60–66. [Google Scholar] [CrossRef] [Green Version]
- Gill, S.V. The Impact of Weight Classification on Safety: Timing Steps to Adapt to External Constraints. J. Musculoskelet. Neuronal Interact. 2015, 15, 103. [Google Scholar]
- Hung, Y.-C.; Gill, S.V.; Meredith, G.S. Influence of Dual-Task Constraints on Whole-Body Organization during Walking in Children Who Are Overweight and Obese. Am. J. Phys. Med. Rehabil. 2013, 92, 461–471. [Google Scholar] [CrossRef]
- Gill, S.V.; Hung, Y.-C. Effects of Overweight and Obese Body Mass on Motor Planning and Motor Skills during Obstacle Crossing in Children. Res. Dev. Disabil. 2014, 35, 46–53. [Google Scholar] [CrossRef]
- Choi, J.T.; Bastian, A.J. Adaptation Reveals Independent Control Networks for Human Walking. Nat. Neurosci. 2007, 10, 1055–1062. [Google Scholar] [CrossRef]
- Reisman, D.S.; Block, H.J.; Bastian, A.J. Interlimb Coordination during Locomotion: What Can Be Adapted and Stored? J. Neurophysiol. 2005, 94, 2403–2415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malone, L.A.; Bastian, A.J. Thinking about Walking: Effects of Conscious Correction versus Distraction on Locomotor Adaptation. J. Neurophysiol. 2010, 103, 1954–1962. [Google Scholar] [CrossRef] [Green Version]
- Reisman, D.S.; Wityk, R.; Silver, K.; Bastian, A.J. Locomotor Adaptation on a Split-Belt Treadmill Can Improve Walking Symmetry Post-Stroke. Brain 2007, 130, 1861–1872. [Google Scholar] [CrossRef] [Green Version]
- Roemmich, R.T.; Nocera, J.R.; Stegemöller, E.L.; Hassan, A.; Okun, M.S.; Hass, C.J. Locomotor Adaptation and Locomotor Adaptive Learning in Parkinson’s Disease and Normal Aging. Clin. Neurophysiol. 2014, 125, 313–319. [Google Scholar] [CrossRef] [Green Version]
- Selgrade, B.P.; Toney, M.E.; Chang, Y.-H. Two Biomechanical Strategies for Locomotor Adaptation to Split-Belt Treadmill Walking in Subjects with and without Transtibial Amputation. J. Biomech. 2017, 53, 136–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reisman, D.S.; Wityk, R.; Silver, K.; Bastian, A.J. Split-Belt Treadmill Adaptation Transfers to Overground Walking in Persons Poststroke. Neurorehabilit. Neural Repair 2009, 23, 735–744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mawase, F.; Haizler, T.; Bar-Haim, S.; Karniel, A. Kinetic Adaptation during Locomotion on a Split-Belt Treadmill. J. Neurophysiol. 2013, 109, 2216–2227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sawilowsky, S.S. New Effect Size Rules of Thumb. J. Mod. Appl. Stat. Methods 2009, 8, 26. [Google Scholar] [CrossRef]
- Bruijn, S.M.; Van Dieën, J.H. Control of Human Gait Stability through Foot Placement. J. R. Soc. Interface 2018, 15, 20170816. [Google Scholar] [CrossRef] [PubMed]
- Forhan, M.; Gill, S.V. Obesity, Functional Mobility and Quality of Life. Best Pract. Res. Clin. Endocrinol. Metab. 2013, 27, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Krakauer, J.W.; Mazzoni, P.; Ghazizadeh, A.; Ravindran, R.; Shadmehr, R. Generalization of Motor Learning Depends on the History of Prior Action. PLoS Biol. 2006, 4, e316. [Google Scholar] [CrossRef] [Green Version]
- Morton, S.M.; Bastian, A.J. Prism Adaptation during Walking Generalizes to Reaching and Requires the Cerebellum. J. Neurophysiol. 2004, 92, 2497–2509. [Google Scholar] [CrossRef]
- Anstis, S. Aftereffects from Jogging. Exp. Brain Res. 1995, 103, 476–478. [Google Scholar] [CrossRef]
- Earhart, G.M.; Melvill Jones, G.; Horak, F.B.; Block, E.W.; Weber, K.D.; Fletcher, W.A. Transfer of Podokinetic Adaptation from Stepping to Hopping. J. Neurophysiol. 2002, 87, 1142–1144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reynolds, R.F.; Bronstein, A.M. The Moving Platform Aftereffect: Limited Generalization of a Locomotor Adaptation. J. Neurophysiol. 2004, 91, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Hollman, J.H.; Watkins, M.K.; Imhoff, A.C.; Braun, C.E.; Akervik, K.A.; Ness, D.K. A Comparison of Variability in Spatiotemporal Gait Parameters between Treadmill and Overground Walking Conditions. Gait Posture 2016, 43, 204–209. [Google Scholar] [CrossRef]
- Parvataneni, K.; Ploeg, L.; Olney, S.J.; Brouwer, B. Kinematic, Kinetic and Metabolic Parameters of Treadmill versus Overground Walking in Healthy Older Adults. Clin. Biomech. 2009, 24, 95–100. [Google Scholar] [CrossRef]
- Riley, P.O.; Paolini, G.; Della Croce, U.; Paylo, K.W.; Kerrigan, D.C. A Kinematic and Kinetic Comparison of Overground and Treadmill Walking in Healthy Subjects. Gait Posture 2007, 26, 17–24. [Google Scholar] [CrossRef] [PubMed]
BMI Groups | ||
---|---|---|
1 NW (N = 19; 3 F = 10) | 2 OB (N = 19; 3 F = 12) | |
Age (years) | 23.21 (5.46) | 28.27 (4.03) |
Height (m) | 1.71 (0.09) | 1.69 (0.08) |
Weight (kg) | 66.83 (12.46) | 119.74 (29.08) |
BMI (kg/m2) | 22.37 (2.49) | 42.62 (8.01) |
Waist Circumference (cm) | 78.93 (9.01) | 123.56 (18.42) |
Gait Velocity (m/s) | 1.24 (0.12) | 1.05 (0.12) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.; Desrochers, P.C.; Lewis, C.L.; Gill, S.V. Effects of Obesity on Adaptation Transfer from Treadmill to Over-Ground Walking. Appl. Sci. 2021, 11, 2108. https://doi.org/10.3390/app11052108
Kim D, Desrochers PC, Lewis CL, Gill SV. Effects of Obesity on Adaptation Transfer from Treadmill to Over-Ground Walking. Applied Sciences. 2021; 11(5):2108. https://doi.org/10.3390/app11052108
Chicago/Turabian StyleKim, Daekyoo, Phillip C. Desrochers, Cara L. Lewis, and Simone V. Gill. 2021. "Effects of Obesity on Adaptation Transfer from Treadmill to Over-Ground Walking" Applied Sciences 11, no. 5: 2108. https://doi.org/10.3390/app11052108
APA StyleKim, D., Desrochers, P. C., Lewis, C. L., & Gill, S. V. (2021). Effects of Obesity on Adaptation Transfer from Treadmill to Over-Ground Walking. Applied Sciences, 11(5), 2108. https://doi.org/10.3390/app11052108