Spatiotemporal Assessment of Air Quality and Heat Island Effect Due to Industrial Activities and Urbanization in Southern Riyadh, Saudi Arabia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. The Questionnaire
2.3. Spatial and Temporal Analysis
3. Results
3.1. The Questionnaire
3.2. Thermal Analysis
3.3. Statistical and Geostatistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Al-Jelani, H. Air quality assessment at Al-Tan’eem area in the Holy Makkah City, Saudi Arabia. Environ. Monit. Assess. 2009, 156, 211–222. [Google Scholar] [CrossRef]
- Vicente, A.B.; Jordan, M.M.; Sanfeliu, T.; Sánchez, A.; Esteban, M.D. Air pollution prediction models of particles, As, Cd, Ni and Pb in a highly industrialized area in Castellón (NE, Spain). Environ. Earth Sci. 2012, 66, 879. [Google Scholar] [CrossRef]
- Pekey, B.; Özaslan, Ü. Spatial distribution of SO2, NO2, and O3 Concentrations in an Industrial City of Turkey using a passive sampling method. Clean Soil Air Water 2013, 41, 423–428. [Google Scholar] [CrossRef]
- Al-Harbi, M. Assessment of Air Quality in two Different Urban Localities. Int. J. Environ. Res. 2014, 8, 15–26. [Google Scholar]
- Farahat, A. Air pollution in the Arabian Peninsula (Saudi Arabia, the United Arab Emirates, Kuwait, Qatar, Bahrain, and Oman): Causes, effects, and aerosol categorization. Arab. J. Geosci. 2016, 9, 1–17. [Google Scholar] [CrossRef]
- WHO. Air Quality Guidelines: World Health Organization, Global Update WHO Regional Office for Europe 2006; WHO: Copenhagen, Denmark, 2005. [Google Scholar]
- GHODR. Urban Outdoor Air Pollution, Burden of Disease by Country, Global Health Observatory Data Repository; World Health Organization: Geneva, Switzerland, 2008; Available online: http://apps.who.int/gho/data/node.main.285 (accessed on 10 February 2021).
- IARC. Outdoor Air Pollution as a Leading Environmental Cause of Cancer Deaths; International Agency for Research on Cancer, World Health Organization: Lyon, France, 2013. Available online: http://www.iarc.fr/en/media-centre/pr/2013/pdfs/pr221_E.pdf (accessed on 10 February 2021).
- Bourdrel, T.; Bind, M.A.; Béjot, Y.; Morel, O.; Argacha, J.F. Cardiovascular effects of air pollution. Arch. Cardiovasc. Dis. 2017, 110, 634–642. [Google Scholar] [CrossRef]
- Canadian Medical Association. No Breathing Room: National Illness Costs of Air Pollution. 2008. Available online: http://www.healthyenvironmentforkidsca/sites/healthyenvironmentforkids.ca/files/No_Breathing_Room.pdf (accessed on 10 February 2021).
- Nyberg, F.; Gustavsson, P.; Järup, L.; Bellander, T.; Berglind, N.; Jakobsson, R.; Pershagen, G. Urban air pollution and lung cancer in Stockholm. Epidemiology 2000, 11, 487–495. [Google Scholar] [CrossRef]
- Nafstad, P.; Haheim, L.L.; Oftedal, B.; Gram, F.; Holme, I.; Herrmann, I.; Leren, P. Lung cancer and air pollution: A 27 year follow up of 16 209 Norwegian men. Thorax 2003, 58, 1071–1076. [Google Scholar] [CrossRef] [Green Version]
- Al-Ahmadi, K.; Al-Zahrani, A. NO2 and Cancer Incidence in Saudi Arabia. Int. J. Environ. Res. Public Health 2013, 10, 5844–5862. [Google Scholar] [CrossRef]
- ADA 2017, Regional Plan for the Region Riyadh, Al-Riyadh Development Authority. Available online: http://www.ada.gov.sa/ADA_A/DocumentShow/?url=/res/ADA/Ar/Projects/regional_plan/index.html (accessed on 10 February 2021).
- Modon. Industrial Cities Directory, Saudi Industrial Property Authority. 11\12\2016 9.12pm; 2017. Available online: http://www.modon.gov.sa/EN/INDUSTRIALCITIES/INDUSTRIALCITIESDIRECTORY/INDUSTRIALCITIES/Pages/default.aspx (accessed on 10 February 2021).
- Al-Jassir, M.; Shaker, A.; Khaliq, M. Deposition of Heavy Metals on Green Leafy Vegetables Sold on Roadsides of Riyadh City, Saudi Arabia. Bull. Environ. Contam. Toxicol. 2005, 75, 1020–1027. [Google Scholar] [CrossRef]
- Parrish, D.; Kuster, W.C.; Min, S.; Yokouchi, Y.; Kondo, Y.; Goldan, P.; De Gouw, J.; Koike, M.; Shirai, T. Comparison of air pollutant emissions among mega-cities. Atmos. Environ. 2009, 43, 6435–6441. [Google Scholar] [CrossRef]
- Al-Rehaili, A. Outdoor-indoor Air Quality in Riyadh: SO2, NH3, and HCHO. Environ. Monit. Assess. 2002, 79, 287. [Google Scholar] [CrossRef] [PubMed]
- Tawabini, B.; Lawal, T.; Shaibani, A.; Farahat, A. Morphological and Chemical Properties of Particulate Matter in the Dammam Metropolitan Region: Dhahran, Khobar, and Dammam, Saudi Arabia. Adv. Meteorol. 2017, 2017, 8512146. [Google Scholar] [CrossRef] [Green Version]
- Shareef, M.; Husain, T.; Alharbi, B. Analysis of Relationship between O3, NO, and NO2 in Riyadh, Saudi Arabia. Asian J. Atmos. Environ. 2018, 12, 17–29. [Google Scholar] [CrossRef]
- Bian, Q.; Alharbi, B.; Shareef, M.; Husain, T.; Pasha, M.; Atwood, S.; Kreidenweis, S. Sources of PM2.5 carbonaceous aerosol in Riyadh, Saudi Arabia. Atmos. Chem. Phys. 2018, 18, 3969–3985. [Google Scholar] [CrossRef] [Green Version]
- Air Quality Index. General Authority of Meteorology and Environment Protection. 2020. Available online: https://www.pme.gov.sa/Ar/Environment/AirQuality/Pages/AQ-Dashboard.aspx (accessed on 10 February 2021).
- Isaaks, E.H.; Srivastava, R.M. An Introduction to Applied Geostatistic; Oxford University Press: New York, NY, USA, 1989. [Google Scholar]
- Carlon, C.; Critto, A.; Marcomini, A.; Nathanail, P. Risk based characterization of contaminated industrial site using multivariate and geostatistical tools. Environ. Pollut. 2001, 111, 417–427. [Google Scholar] [CrossRef]
- Moral, F.; lvarez, P.; Canito, J. Mapping and hazard assessment of atmospheric pollution in a medium sized urban area using the Rasch model and Geostatistic techniques. Atmos. Environ. 2006, 40, 1408–1418. [Google Scholar] [CrossRef]
- Moradi Dashtpagerdi, M.; Sadatinejad, S.J.; Zare Bidaki, R.; Khorsandi, E. Evaluation of Air Pollution Trend Using GIS and RS Applications in South West of Iran. J. Indian Soc. Remote Sens. 2014, 42, 179. [Google Scholar] [CrossRef]
- Roy, D.P.; Wulder, M.A.; Loveland, T.R.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Helder, D.; Irons, J.R.; Johnson, D.M.; Kennedy, R.; et al. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 2014, 145, 154–172. [Google Scholar] [CrossRef] [Green Version]
- Weng, Q.; Lu, D.; Schubring, J. Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sens. Environ. 2004, 89, 467–483. [Google Scholar] [CrossRef]
- Aniello, C.; Morgan, K.; Busbey, A.; Newland, L. Mapping micro-urban heat islands using LANDSAT TM and a GIS. Comput. Geosci. 1995, 21, 965–967, 969. [Google Scholar] [CrossRef]
- Weng, Q.; Yang, S. Urban Air Pollution Patterns, Land Use, and Thermal Landscape: An Examination of the Linkage Using GIS. Environ. Monit. Assess. 2006, 117, 463. [Google Scholar] [CrossRef] [PubMed]
- CDSI. Census of Population and Housing Report in Administrative Region. Central Department of Statistic and Information. Internal Report. 2004. Available online: http://www.cdsi.gov.sa/english/ (accessed on 10 February 2021).
- USGS. Landsat 8 Data Users Handbook—Section 5/Conversion of DNs to Physical Units. 2018. Available online: https://landsat.usgs.gov/landsat-8-l8-data-users-handbook-section-5 (accessed on 10 February 2021).
- Syariza, M.A.; Jaelania, L.M.; Subehie, L.; Pamungkasb, A.; Koenhardonoc, E.S.; Sulisetyonod, A. Retrieval of sea surface temperature over Poteran island water of Indonesia with Landsat 8 TIRS image: A preliminary algorithm. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2015, Joint International Geoinformation Conference 2015, Kuala Lumpur, Malaysia, 28–30 October 2015; Volume XL-2/W4. [Google Scholar]
- Anandababu, D.; Purushothaman, B.M.; Suresh, B.S. Estimation of Land Surface Temperature using LANDSAT 8 Data. Int. J. Adv. Res. Ideas Innov. Technol. 2018, 4, 177–186. [Google Scholar]
- Solangi, G.; Siyal, A.; Siyal, P. Spatiotemporal Dynamics of Land Surface Temperature and Its Impact on the Vegetation. Civ. Eng. J. 2019, 5, 1753–1763. [Google Scholar] [CrossRef]
- Brase, C.H. Understanding Basic Statistics; Brooks/Cole: Seattle, WA, USA, 2010; Volume 5. [Google Scholar]
- Isa, D.E. Proceedings of the World Congress on Engineering. In The Robust Principal Component; WCE: London, UK, 2009; Volume I, p. 1. [Google Scholar]
- Deutsch, C.V. Geostatistical Reservoir Modeling; Oxford UP: Oxford, UK, 2002. [Google Scholar]
- Seaton, A.; MacNee, W.; Donaldson, K.; Godden, D. Particulate air pollution and acute health effects. Lancet 1995, 345, 176–178. [Google Scholar] [CrossRef]
- Sofia, D.; Gioiella, F.; Lotrecchiano, N.; Giuliano, A. Mitigation strategies for reducing air pollution. Environ. Sci. Pollut. Res. 2020, 27, 19226–19235. [Google Scholar] [CrossRef] [PubMed]
PM10 ug/m3 | PM2.5 ug/m3 | CO ppm | PM4 ug/m3 | PM1 ug/m3 | NO2 ug/m3 | SO2 ug/m3 | O3 ppm | H2S ug/m3 | VOC ug/m3 | CO2 ug/m3 | NO ug/m3 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | 214 | 119 | 5 | 133.6 | 58.4 | 35 | 288 | 0.014 | 0.25 | 0.07 | 23.3 | 1.5 |
Minimum | 78 | 28 | 2 | 38 | 11 | 9 | 110 | 0.01 | 0.07 | 0 | 4.7 | 0.2 |
Maximum | 307 | 187 | 10 | 245 | 136 | 64 | 510 | 0.02 | 0.95 | 0.23 | 65 | 3.9 |
Std. deviation | 79 | 58 | 2.8 | 62.5 | 44.2 | 15.5 | 108 | 0.005 | 0.23 | 0.06 | 15.7 | 0.99 |
Skewness | −0.22 | −0.28 | 0.36 | 0.2 | 0.52 | 0.54 | 0.45 | 0.24 | 1.9 | 1.1 | 1.4 | 0.99 |
Kurtosis | −0.7 | −0.7 | −0.3 | −0.2 | −0.1 | −0.55 | 0.05 | −0.2 | 0.7 | 1 | 1.9 | 0.74 |
NAAQS | 150 | 35 | 35 | 100 | 1300 | 0.075 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salman, A.; Al-Tayib, M.; Hag-Elsafi, S.; Zaidi, F.K.; Al-Duwarij, N. Spatiotemporal Assessment of Air Quality and Heat Island Effect Due to Industrial Activities and Urbanization in Southern Riyadh, Saudi Arabia. Appl. Sci. 2021, 11, 2107. https://doi.org/10.3390/app11052107
Salman A, Al-Tayib M, Hag-Elsafi S, Zaidi FK, Al-Duwarij N. Spatiotemporal Assessment of Air Quality and Heat Island Effect Due to Industrial Activities and Urbanization in Southern Riyadh, Saudi Arabia. Applied Sciences. 2021; 11(5):2107. https://doi.org/10.3390/app11052107
Chicago/Turabian StyleSalman, Abeer, Manahil Al-Tayib, Sulafa Hag-Elsafi, Faisal K. Zaidi, and Nada Al-Duwarij. 2021. "Spatiotemporal Assessment of Air Quality and Heat Island Effect Due to Industrial Activities and Urbanization in Southern Riyadh, Saudi Arabia" Applied Sciences 11, no. 5: 2107. https://doi.org/10.3390/app11052107
APA StyleSalman, A., Al-Tayib, M., Hag-Elsafi, S., Zaidi, F. K., & Al-Duwarij, N. (2021). Spatiotemporal Assessment of Air Quality and Heat Island Effect Due to Industrial Activities and Urbanization in Southern Riyadh, Saudi Arabia. Applied Sciences, 11(5), 2107. https://doi.org/10.3390/app11052107