Lower-Extremity Intra-Joint Coordination and Its Variability between Fallers and Non-Fallers during Gait
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Experimental Setup
2.3. Data Processing
2.4. Data Analysis
2.5. Coordination and Coordination Variability Calculation
2.6. Statistical Analysis
3. Results
3.1. ROM of Joints and Gait Spatiotemporal Parameters
3.2. Intra-Joint Coordination Patterns
3.2.1. Ankle-To-Knee Coordination Pattern
3.2.2. Knee-To-Hip Coordination Pattern
3.2.3. Hip-To-Ankle Coordination Pattern
3.3. Coordination Variability
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kenny, R.A.; Romero-Ortuno, R.; Cogan, L. Falls. Medicine 2013, 41, 155–159. [Google Scholar] [CrossRef]
- Yamada, M.; Aoyama, T.; Nakamura, M.; Tanaka, B.; Nagai, K.; Tatematsu, N.; Uemura, K.; Nakamura, T.; Tsuboyama, T.; Ichihashi, N. The reliability and preliminary validity of game-based fall risk assessment in community-dwelling older adults. Geriatr. Nurs. 2011, 32, 188–194. [Google Scholar] [CrossRef]
- Xu, T.; Zhou, Y.; Zhu, J. New advances and challenges of fall detection systems: A survey. Appl. Sci. 2018, 8, 418. [Google Scholar] [CrossRef] [Green Version]
- Larson, L.; Bergmann, T.F. Taking on the fall: The etiology and prevention of falls in the elderly. Clin. Chiropr. 2008, 11, 148–154. [Google Scholar] [CrossRef]
- Florence, C.S.; Bergen, G.; Atherly, A.; Burns, E.; Stevens, J.; Drake, C. Medical costs of fatal and nonfatal falls in older adults. J. Am. Geriatr. Soc. 2018, 66, 693–698. [Google Scholar] [CrossRef] [Green Version]
- Inouye, S.K.; Brown, C.J.; Tinetti, M.E. Medicare nonpayment, hospital falls, and unintended consequences. N. Engl. J. Med. 2009, 360, 2390–2393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montemurro, N.; Ortenzi, V.; Naccarato, G.A.; Perrini, P. Angioleiomyoma of the knee: An uncommon cause of leg pain. A systematic review of the literature. Interdiscip. Neurosurg. 2020, 22, 100877. [Google Scholar] [CrossRef]
- Montemurro, N.; Perrini, P.; Mangini, V.; Galli, M.; Papini, A. The Y-shaped trabecular bone structure in the odontoid process of the axis: A CT scan study in 54 healthy subjects and biomechanical considerations. J. Neurosurg. Spine 2019, 30, 585–592. [Google Scholar] [CrossRef]
- Norton, R.; Campbell, A.J.; Lee-Joe, T.; Robinson, E.; Butler, M. Circumstances of falls resulting in hip fractures among older people. J. Am. Geriatr. Soc. 1997, 45, 1108–1112. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, H.; Jehu, D.A.; Daneshjoo, A.; Shakoor, E.; Razeghi, M.; Amani, A.; Hakim, M.N.; Yusof, A. Effects of 8 Weeks of Balance Training, Virtual Reality Training, and Combined Exercise on Lower Limb Muscle Strength, Balance, and Functional Mobility Among Older Men: A Randomized Controlled Trial. Sports Health 2021. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, H.; Shojaedin, S.S.; Alijanpour, E.; Abbasi, A. The Effects of Core Stability Exercises on Balance and Walking in Elderly Fallers with Mild Cognitive Impairment: A Randomized Control Trial. J. Res. Rehabil. Sci. 2020, 1, 110–117. [Google Scholar]
- Svoboda, Z.; Bizovska, L.; Janura, M.; Kubonova, E.; Janurova, K.; Vuillerme, N. Variability of spatial temporal gait parameters and center of pressure displacements during gait in elderly fallers and nonfallers: A 6-month prospective study. PLoS ONE 2017, 12, e0171997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newstead, A.H.; Walden, G.J.; Gitter, A.J. Gait variables differentiating fallers from nonfallers. J. Geriatr. Phys. Ther. 2007, 30, 93–101. [Google Scholar] [CrossRef] [PubMed]
- König, N.; Taylor, W.R.; Armbrecht, G.; Dietzel, R.; Singh, N.B. Identification of functional parameters for the classification of older female fallers and prediction of ‘first-time’fallers. J. R. Soc. Interface 2014, 11, 20140353. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zia Ur Rehman, R.; Hansen, C.; Maetzler, W.; Del Din, S.; Rochester, L.; Hortobágyi, T.; Lamoth, C.J.C. Classification of neurological patients to identify fallers based on spatial-temporal gait characteristics measured by a wearable device. Sensors 2020, 20, 4098. [Google Scholar] [CrossRef] [PubMed]
- Kwon, M.-S.; Kwon, Y.-R.; Park, Y.-S.; Kim, J.-W. Comparison of gait patterns in elderly fallers and non-fallers. Technol. Health Care 2018, 26, 427–436. [Google Scholar] [CrossRef] [Green Version]
- Abbasi, A.; Yazdanbakhsh, F.; Tazji, M.K.; Aghaei, P.; Svoda, Z.; Nazarpour, K.; Vieira, M.F. A comparison of coordination and its variability in lower extremity segments during treadmill and overground running at different speeds. Gait Posture 2020, 79, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Hamill, J.; van Emmerik, R.E.A.; Heiderscheit, B.C.; Li, L. A dynamical systems approach to lower extremity running injuries. Clin. Biomech. 1999, 14, 297–308. [Google Scholar] [CrossRef]
- Mehri, R.; Abbasi, A.; Abbasi, S.; Khaleghi Tazji, M.; Nazarpour, K. Intra-Segment Coordination Variability in Road Cyclists during Pedaling at Different Intensities. Appl. Sci. 2020, 10, 8964. [Google Scholar] [CrossRef]
- Dewolf, A.H.; Meurisse, G.M.; Schepens, B.; Willems, P.A. Effect of walking speed on the intersegmental coordination of lower-limb segments in elderly adults. Gait Posture 2019, 70, 156–161. [Google Scholar] [CrossRef] [PubMed]
- Scholtz, J.P. Dynamic Pattern Theory—Some Implications for Therapeutics. Phys. Theory 1990, 70, 827–843. [Google Scholar] [CrossRef] [PubMed]
- Hafer, J.F.; Boyer, K.A. Variability of segment coordination using a vector coding technique: Reliability analysis for treadmill walking and running. Gait Posture 2017, 51, 222–227. [Google Scholar] [CrossRef]
- Bernstein, N.A. The Co-Ordination and Regulation of Movements; Pergamon Press: Oxford, UK; New York, NY, USA, 1967. [Google Scholar]
- Xu, Z.; Wong, D.W.-C.; Yan, F.; Chen, T.L.-W.; Zhang, M.; Jiang, W.-T.; Fan, Y.-B. Lower Limb Inter-Joint Coordination of Unilateral Transfemoral Amputees: Implications for Adaptation Control. Appl. Sci. 2020, 10, 4072. [Google Scholar] [CrossRef]
- Mutchler, J.A.; Macias, K.; Munkasy, B.A.; Wilson, S.J.; Garner, J.C.; Li, L. Kinematic and Coordination Variability in Runners with and Without Patellofemoral Pain. Int. J. Kinesiol. Sport Sci. 2020, 8, 58–66. [Google Scholar] [CrossRef]
- Profeta, V.L.S.; Turvey, M.T. Bernstein’s levels of movement construction: A contemporary perspective. Hum. Mov. Sci. 2018, 57, 111–133. [Google Scholar] [CrossRef] [PubMed]
- De Villa, G.A.G.; de Oliveira Andrade, A.; Vieira, M.F. Quantification of Coordination Variability During Gait in Fallers and Non-fallers Older Adults at Different Speeds. In Proceedings of the Latin American Conference on Biomedical Engineering, Cancún, Mexico, 2–5 October 2019; pp. 964–969. [Google Scholar]
- Chiu, S.-L.; Chou, L.-S. Variability in inter-joint coordination during walking of elderly adults and its association with clinical balance measures. Clin. Biomech. 2013, 28, 454–458. [Google Scholar] [CrossRef] [PubMed]
- Hafer, J.F.; Boyer, K.A. Age related differences in segment coordination and its variability during gait. Gait Posture 2018, 62, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Needham, R.A.; Naemi, R.; Chockalingam, N. A new coordination pattern classification to assess gait kinematics when utilising a modified vector coding technique. J. Biomech. 2015, 48, 3506–3511. [Google Scholar] [CrossRef]
- Needham, R.; Naemi, R.; Chockalingam, N. Quantifying lumbar-pelvis coordination during gait using a modified vector coding technique. J. Biomech. 2014, 47, 1020–1026. [Google Scholar] [CrossRef]
- Emmerik, R.E.A.; Van Ducharme, S.W.; Amado, A.C.; Hamill, J. Comparing dynamical systems concepts and techniques for biomechanical analysis. J. Sport Health Sci. 2016, 5, 3–13. [Google Scholar] [CrossRef]
- Whittlesey, D.; Gordon, E.; Caldweel, G.E.; Hamill, J.; Kamen, G.; Saunders, N. Research Methods in Biomechanics, 2nd ed.; Human Kinetics Publication: Champaign, IL, USA, 2013. [Google Scholar]
- Pataky, T.C.; Robinson, M.A.; Vanrenterghem, J. Vector field statistical analysis of kinematic and force trajectories. J. Biomech. 2013, 46, 2394–2401. [Google Scholar] [CrossRef] [Green Version]
- Mortaza, N.; Abu Osman, N.A.; Mehdikhani, N. Are the spatio-temporal parameters of gait capable of distinguishing a faller from a non-faller elderly. Eur. J. Phys. Rehabil. Med. 2014, 50, 677–691. [Google Scholar] [PubMed]
- Makino, K.; Makizako, H.; Doi, T.; Tsutsumimoto, K.; Hotta, R.; Nakakubo, S.; Suzuki, T.; Shimada, H. Fear of falling and gait parameters in older adults with and without fall history. Geriatr. Gerontol. Int. 2017, 17, 2455–2459. [Google Scholar] [CrossRef] [PubMed]
- Cebolla, E.C.; Rodacki, A.L.F.; Bento, P.C.B. Balance, gait, functionality and strength: Comparison between elderly fallers and non-fallers. Braz. J. Phys. Ther. 2015, 19, 146–151. [Google Scholar] [CrossRef] [Green Version]
- Arnold, A.S.; Anderson, F.C.; Pandy, M.G.; Delp, S.L. Muscular contributions to hip and knee extension during the single limb stance phase of normal gait: A framework for investigating the causes of crouch gait. J. Biomech. 2005, 38, 2181–2189. [Google Scholar] [CrossRef] [PubMed]
- Boyer, K.A.; Johnson, R.T.; Banks, J.J.; Jewell, C.; Hafer, J.F. Systematic review and meta-analysis of gait mechanics in young and older adults. Exp. Gerontol. 2017, 95, 63–70. [Google Scholar] [CrossRef] [PubMed]
- DeVita, P.; Hortobagyi, T. Age causes a redistribution of joint torques and powers during gait. J. Appl. Physiol. 2000, 88, 1804–1811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barak, Y.; Wagenaar, R.C.; Holt, K.G. Gait characteristics of elderly people with a history of falls: A dynamic approach. Phys. Ther. 2006, 86, 1501–1510. [Google Scholar] [CrossRef] [Green Version]
- Coviello, G.; Avitabile, G.; Florio, A. A synchronized multi-unit wireless platform for long-term activity monitoring. Electronics 2020, 9, 1118. [Google Scholar] [CrossRef]
Parameters | Group | ||
---|---|---|---|
Non-Fallers | Fallers | p-Value | |
Cadence (step/min) | 114.79 ± 12.3 | 97.59 ± 15.85 | 0.001 |
Gait speed (m/s) | 1.04 ± 0.22 | 0.74 ± 0.15 | 0.000 |
Stride time (s) | 1.05 ± 0.12 | 1.27 ± 0.33 | 0.008 |
Stride length (m) | 1.08 ± 0.12 | 0.90 ± 0.09 | 0.000 |
Step width (cm) | 9.89 ± 4.22 | 10.25 ± 4.33 | 0.823 |
Double support time (s) | 0.26 ± 0.02 | 0.30 ± 0.02 | 0.000 |
Ankle ROM (°) | 22.48 ± 2.23 | 25.02 ± 9.79 | 0.352 |
Knee ROM (°) | 44.28 ± 11.50 | 47.19 ± 4.41 | 0.391 |
Hip ROM (°) | 41.36 ± 6.37 | 41.80 ± 6.74 | 0.863 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadeghi, H.; Shojaedin, S.S.; Abbasi, A.; Alijanpour, E.; Vieira, M.F.; Svoboda, Z.; Nazarpour, K. Lower-Extremity Intra-Joint Coordination and Its Variability between Fallers and Non-Fallers during Gait. Appl. Sci. 2021, 11, 2840. https://doi.org/10.3390/app11062840
Sadeghi H, Shojaedin SS, Abbasi A, Alijanpour E, Vieira MF, Svoboda Z, Nazarpour K. Lower-Extremity Intra-Joint Coordination and Its Variability between Fallers and Non-Fallers during Gait. Applied Sciences. 2021; 11(6):2840. https://doi.org/10.3390/app11062840
Chicago/Turabian StyleSadeghi, Hassan, Seyed Sadredin Shojaedin, Ali Abbasi, Elham Alijanpour, Marcus Fraga Vieira, Zdeněk Svoboda, and Kianoush Nazarpour. 2021. "Lower-Extremity Intra-Joint Coordination and Its Variability between Fallers and Non-Fallers during Gait" Applied Sciences 11, no. 6: 2840. https://doi.org/10.3390/app11062840
APA StyleSadeghi, H., Shojaedin, S. S., Abbasi, A., Alijanpour, E., Vieira, M. F., Svoboda, Z., & Nazarpour, K. (2021). Lower-Extremity Intra-Joint Coordination and Its Variability between Fallers and Non-Fallers during Gait. Applied Sciences, 11(6), 2840. https://doi.org/10.3390/app11062840