Fracture Behaviour of Concrete with Reactive Magnesium Oxide as Alternative Binder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Procedure
2.1.1. Materials
2.1.2. Mix Design
2.1.3. Tests
3. Experimental Results and Discussion
3.1. Main Mechanical Properties
3.2. Fracture Energy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Unite Nations Environment Programme. 2020 Global Status Report for Building and Construction: Towards a Zero-emission, Efficient and Resilient Buildings and Construction Sector; Unite Nations Environment Programme: Nairobi, Kenya, 2020. [Google Scholar]
- Andrew, R.M. Global CO2 emissions from cement production. Earth Syst. Sci. Data 2018, 10, 195. [Google Scholar] [CrossRef] [Green Version]
- Amaral, L.; Oliveira, I.; Salomão, R.; Frollini, E.; Pandolfelli, V. Temperature and common-ion effect on magnesium oxide (MgO) hydration. Ceram. Int. 2010, 36, 1047–1054. [Google Scholar] [CrossRef]
- EN 197-1:2011. Cement—Part 1: Composition, Specifications and Conformity Criteria for Common Cement; European Committee for Standardization (CEN): Brussels, Belgium, 2011. [Google Scholar]
- Canterford, J. Magnesia—An important industrial mineral: A review of processing options and uses. Miner. Procesing Extr. Metall. Rev. 1985, 2, 57–104. [Google Scholar] [CrossRef]
- Green, J. Calcination of precipitated Mg (OH)2 to active MgO in the production of refractory and chemical grade MgO. J. Mater. Sci. 1983, 18, 637–651. [Google Scholar] [CrossRef]
- José, N.; Ahmed, H.; Miguel, B.; Luís, E.; Jorge, d.B. Magnesia (MgO) Production and Characterization, and Its Influence on the Performance of Cementitious Materials: A Review. Materials 2020, 13, 4752. [Google Scholar] [CrossRef]
- Schorcht, F.; Kourti, I.; Scalet, B.M.; Roudier, S.; Sancho, L.D. Best Available Techniques (BAT) Reference Document for the Production of Cement, Lime and Magnesium Oxide; European Commission Joint Research Centre Institute for Prospective Technological Studies: Luxembourg, 2013. [Google Scholar]
- Mo, L.; Deng, M.; Tang, M.; Al-Tabbaa, A. MgO expansive cement and concrete in China: Past, present and future. Cem. Concr. Res. 2014, 57, 1–12. [Google Scholar] [CrossRef]
- Zhang, S.; Lee, W. Spinel-Containing Refractories; The University of Sheffield: Sheffield, UK, 2004; Volume 178, p. 215. [Google Scholar]
- Walling, S.A.; Provis, J.L. Magnesia-based cements: A journey of 150 years, and cements for the future? Chem. Rev. 2016, 116, 4170–4204. [Google Scholar] [CrossRef]
- Zheng, L.; Xuehua, C.; Mingshu, T. MgO-type delayed expansive cement. Cem. Concr. Res 1991, 21, 1049–1057. [Google Scholar] [CrossRef]
- Abdalqader, A.; Al-Tabbaa, A. Mechanical and Microstructural Characterisation of Multicomponent Blended Cements Incorporating Reactive Magnesia. In Proceedings of the 1st Concrete Innovation Cnference (CIC), Oslo, Norway, 11–13 June 2014; The Norwegian Concrete Association–Norsk Betongforening: Oslo, Norway, 2014. [Google Scholar]
- Mo, L.; Zhang, F.; Deng, M. Effects of carbonation treatment on the properties of hydrated fly ash-MgO-Portland cement blends. Constr. Build. Mater. 2015, 96, 147–154. [Google Scholar] [CrossRef]
- Mo, L.; Liu, M.; Al-Tabbaa, A.; Deng, M.; Lau, W.Y. Deformation and mechanical properties of quaternary blended cements containing ground granulated blast furnace slag, fly ash and magnesia. Cem. Concr. Res 2015, 71, 7–13. [Google Scholar] [CrossRef]
- Mo, L.; Liu, M.; Al-Tabbaa, A.; Deng, M. Deformation and mechanical properties of the expansive cements produced by inter-grinding cement clinker and MgOs with various reactivities. Constr. Build. Mater. 2015, 80, 1–8. [Google Scholar] [CrossRef]
- Choi, S.-w.; Jang, B.-s.; Kim, J.-h.; Lee, K.-m. Durability characteristics of fly ash concrete containing lightly-burnt MgO. Constr. Build. Mater. 2014, 58, 77–84. [Google Scholar] [CrossRef]
- Mavroulidou, M.; Morrison, T.; Unsworth, C.; Gunn, M. Properties of concrete made of multicomponent mixes of low-energy demanding binders. Constr. Build. Mater. 2015, 101, 1122–1141. [Google Scholar] [CrossRef]
- Gao, P.-w.; Wu, S.-x.; Lu, X.-l.; Deng, M.; Lin, P.-h.; Wu, Z.-r.; Tang, M.-s. Soundness evaluation of concrete with MgO. Constr. Build. Mater. 2007, 21, 132–138. [Google Scholar] [CrossRef]
- Cao, F.; Yan, P. The influence of the hydration procedure of MgO expansive agent on the expansive behavior of shrinkage-compensating mortar. Constr. Build. Mater. 2019, 202, 162–168. [Google Scholar] [CrossRef]
- Unluer, C.; Al-Tabbaa, A. Impact of hydrated magnesium carbonate additives on the carbonation of reactive MgO cements. Cem. Concr. Res. 2013, 54, 87–97. [Google Scholar] [CrossRef]
- Bravo, M.; Forero, J.A.; Nobre, J.; de Brito, J.; Evangelista, L. Performance of Mortars with Commercially-Available Reactive Magnesium Oxide as Alternative Binder. Materials 2021, 14, 938. [Google Scholar] [CrossRef]
- Moradpour, R.; Taheri-Nassaj, E.; Parhizkar, T.; Ghodsian, M. The effects of nanoscale expansive agents on the mechanical properties of non-shrink cement-based composites: The influence of nano-MgO addition. Compos. Part B Eng. 2013, 55, 193–202. [Google Scholar] [CrossRef]
- Lau, W.Y. The Role of Reactive MgO as an Expansive Additive in the Shrinkage Reduction of Concrete; University of Cambridge: Cambridge, UK, 2019. [Google Scholar]
- Pu, L.; Unluer, C. Investigation of carbonation depth and its influence on the performance and microstructure of MgO cement and PC mixes. Constr. Build. Mater. 2016, 120, 349–363. [Google Scholar] [CrossRef]
- Gonçalves, T.; Silva, R.; De Brito, J.; Fernández, J.; Esquinas, A. Hydration of reactive MgO as partial cement replacement and its influence on the macroperformance of cementitious mortars. Adv. Mater. Sci. Eng. 2019, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Wogelius, R.A.; Refson, K.; Fraser, D.G.; Grime, G.W.; Goff, J.P. Periclase surface hydroxylation during dissolution. Geochim. Et Cosmochim. Acta 1995, 59, 1875–1881. [Google Scholar] [CrossRef]
- Du, C. A review of magnesium oxide in concrete. Concr. Int. 2005, 27, 45–50. [Google Scholar]
- Rehsi, S. Magnesium oxide in portland cement. In Advances in Cement Technology; Elsevier: Amsterdam, The Netherlands, 1983; pp. 467–483. [Google Scholar]
- Wu, H.-L.; Zhang, D.; Ellis, B.R.; Li, V.C. Development of reactive MgO-based Engineered Cementitious Composite (ECC) through accelerated carbonation curing. Constr. Build. Mater. 2018, 191, 23–31. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, S.; Guo, T.; Zhang, P. Effects of UEA and MgO expansive agents on fracture properties of concrete. Constr. Build. Mater. 2020, 263, 120245. [Google Scholar] [CrossRef]
- EN 12620:2002+A1:2010, Aggregates for Concrete; European Committee for Standardization (CEN): Brussels, Belgium, 2010.
- Hewlett, P.; Liska, M. Lea’s Chemistry of Cement and Concrete; Butterworth-Heinemann: Oxford, UK, 2019. [Google Scholar]
- Nepomuceno, M.; Oliveira, L.; Lopes, S.M.R. Methodology for mix design of the mortar phase of self-compacting concrete using different mineral additions in binary blends of powders. Constr. Build. Mater. 2012, 26, 317–326. [Google Scholar] [CrossRef]
- EN 206:2013+A1:2016 Concrete-Specification, Performance, Production and Conformity; European Committee for Standardization (CEN): Brussels, Belgium, 2016.
- EN 12390: 2009. Testing Hardened Concrete-Part 3: Compressive Strength of Test Specimens; European Committee for Standardization (CEN): Brussels, Belgium, 2009. [Google Scholar]
- EN 12390-6: 2009. Testing Hardened Concrete Part 6: Tensile Splitting Strength of Test Specimens; British Standard Institute: Londin, UK, 2009. [Google Scholar]
- LNEC. 397, “Betões: Determinação do Módulo de Elasticidade em Compressão”; LNEC Lisboa: Lisboa, Portugal, 1993. [Google Scholar]
- Brühwiler, E.; Wittmann, F. The wedge splitting test, a new method of performing stable fracture mechanics tests. Eng. Fract. Mech. 1990, 35, 117–125. [Google Scholar] [CrossRef]
- BUILD, N. 511: Wedge Splitting Test Method (WST)–Fracture Testing of Fibre-Reinforced Concrete (Mode I); Nordic Innovation Centre: Oslo, Norway, 2005; pp. 1–6. [Google Scholar]
- Linsbauer, H.; Tschegg, E. Fracture energy determination of concrete with cube-shaped specimens. Zem. Und Beton 1986, 31, 38–40. [Google Scholar]
- Khalilpour, S.; BaniAsad, E.; Dehestani, M. A review on concrete fracture energy and effective parameters. Cem. Concr. Res. 2019, 120, 294–321. [Google Scholar] [CrossRef]
- Kumar, S.; Barai, S.V. Concrete Fracture Models and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Gonçalves, T.; Silva, R.; de Brito, J.; Fernández, J.; Esquinas, A. Mechanical and durability performance of mortars with fine recycled concrete aggregates and reactive magnesium oxide as partial cement replacement. Cem. Concr. Compos. 2020, 105, 103420. [Google Scholar] [CrossRef]
- Vandeperre, L.; Liska, M.; Al-Tabbaa, A. Microstructures of reactive magnesia cement blends. Cem. Concr. Compos. 2008, 30, 706–714. [Google Scholar] [CrossRef]
- Jang, J.-K.; Kim, H.-G.; Kim, J.-H.; Ryou, J.-S. The evaluation of damage effects on MgO added concrete with slag cement exposed to calcium chloride deicing salt. Materials 2018, 11, 793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, R.; Panesar, D.K. Mechanical properties and rapid chloride permeability of carbonated concrete containing reactive MgO. Constr. Build. Mater. 2018, 172, 77–85. [Google Scholar] [CrossRef]
- Meddah, M.S.; Suzuki, M.; Sato, R. Influence of a combination of expansive and shrinkage-reducing admixture on autogenous deformation and self-stress of silica fume high-performance concrete. Constr. Build. Mater. 2011, 25, 239–250. [Google Scholar] [CrossRef]
- EN 1992-1-1:2004/A1:2014. Eurocode 2: Design of Concrete Structures-part 1-1: General Rules and Rules for Buildings; European Committee for Standardization: Brussels, Belgium, 2004. [Google Scholar]
- Wittmann, F. Crack formation and fracture energy of normal and high strength concrete. Sadhana 2002, 27, 413–423. [Google Scholar] [CrossRef]
- Li, Y.; Deng, M.; Mo, L.; Tang, M. Mechanical properties of concrete with light burnt MgO-based expansive additive under different restrained conditions. J. Cent. South Univ. (Sci. Technol.) 2012, 43, 2534–2541. [Google Scholar]
- Müller, H.S.; Breiner, R.; Anders, I.; Mechtcherine, V.; Curbach, M.; Speck, K.; Dehn, F.; Walraven, J.; Reinhardt, H.-W.; Lohaus, L.; et al. Code-Type Models for Structural Behaviour of Concrete: Background of the Constitutive Relations and Material Models in the Fib Model Code for Concrete Structures 2010; State-of-Art Report Internat; Federation for Structural Concrete: Lausanne, Switzerland, 2010; 196p. [Google Scholar]
MgO-S0 | MgO-S1 | MgO-C | MgO-A | Cement | |
---|---|---|---|---|---|
Purity (%) | 85.0 | 86.3 | 96.0 | 98.8 | - |
Specific surface (m2/g) | 4.9 | 3.0 | 47.9 | 51.2 | 2.8 |
Reactivity (s) | 3544 | 1460 | 16 | 14 | - |
Skeletal density (kg/m3) | 3071 | 3111 | 3371 | 3584 | 3110 |
Mixes Name | Quantity of Water | Quantity of Cement | Quantity of MgO | Quantity of Fine Aggregates | Quantity of Coarse Aggregates | Fresh-State Density |
---|---|---|---|---|---|---|
RC | 174 | 300 | 0 | 883 | 997 | 2427.5 |
C5:C | 179 | 285 | 15 | 883 | 997 | 2455.0 |
C10:C | 182 | 270 | 30 | 883 | 997 | 2372.8 |
C20:C | 188 | 240 | 60 | 883 | 997 | 2363.1 |
C5:S0 | 175 | 285 | 15 | 883 | 997 | 2452.0 |
C10:S0 | 175 | 270 | 30 | 883 | 997 | 2463.7 |
C20:S0 | 176 | 240 | 60 | 883 | 997 | 2442.0 |
C5:S1 | 175 | 285 | 15 | 883 | 997 | 2440.8 |
C10:S1 | 175 | 270 | 30 | 883 | 997 | 2457.6 |
C20:S1 | 176 | 240 | 60 | 883 | 997 | 2465.0 |
C5:A | 178 | 285 | 15 | 883 | 997 | 2403.5 |
C10:A | 182 | 270 | 30 | 883 | 997 | 2401.6 |
C20:A | 182 | 240 | 60 | 883 | 997 | 2397.1 |
Mix | Compressive Strength | Tensile Strength | Modulus of Elasticity | ||||||
---|---|---|---|---|---|---|---|---|---|
28 | σ | ∆RC | 28 | σ | ∆RC | 28 | σ | ∆RC | |
RC | 51.05 | 1.70 | - | 3.58 | 0.16 | - | 36.57 | 0.02 | - |
C5:C | 46.17 | 1.36 | −9.6% | 3.20 | 0.24 | −10.5% | 42.07 | 0.20 | 15.0% |
C10:C | 40.07 | 1.12 | −21.5% | 2.57 | 0.19 | −28.2% | 39.03 | 0.59 | 6.7% |
C20:C | 33.60 | 0.70 | −34.2% | 2.29 | 0.03 | −36.0% | 37.00 | 1.45 | 1.2% |
C5:S0 | 40.83 | 1.27 | −20.0% | 3.28 | 0.11 | −8.3% | 42.40 | 0.68 | 15.9% |
C10:S0 | 40.74 | 0.01 | −20.2% | 2.92 | 0.12 | −18.5% | 39.79 | 0.72 | 8.8% |
C20:S0 | 40.11 | 1.04 | −21.4% | 2.45 | 0.39 | −31.5% | 37.62 | 0.03 | 2.9% |
C5:S1 | 44.59 | 2.40 | −12.7% | 2.96 | 0.10 | −17.2% | 41.73 | 0.32 | 14.1% |
C10:S1 | 43.70 | 2.40 | −14.4% | 2.80 | 0.05 | −21.9% | 40.38 | 0.38 | 10.4% |
C20:S1 | 38.32 | 0.54 | −24.9% | 2.31 | 0.19 | −35.6% | 39.61 | 0.50 | 8.3% |
C5:A | 46.54 | 3.69 | −8.8% | 3.50 | 0.20 | −2.2% | 41.58 | 0.15 | 13.7% |
C10:A | 43.43 | 0.25 | −14.9% | 3.20 | 0.04 | −10.5% | 39.37 | 0.00 | 7.7% |
C20:A | 38.46 | 1.56 | −24.7% | 2.38 | 0.16 | −33.6% | 34.44 | 0.90 | −5.8% |
Mix | 28 Days | |||||
---|---|---|---|---|---|---|
GF (N/m) | σ | ∆RC | KI (MPa·m1/2) | σ | ∆RC | |
RC | 141.1 | 10.3 | - | 2.27 | 0.08 | - |
C5:C | 120.7 | 19.6 | −14% | 2.25 | 0.18 | −1% |
C10:C | 117.3 | 19.6 | −17% | 2.13 | 0.17 | −6% |
C20:C | 70.9 | 11.2 | −50% | 1.61 | 0.13 | −28% |
C5:S0 | 123.4 | 0.0 | −13% | 2.28 | 0.00 | −1% |
C10:S0 | 122.0 | 4.1 | −13% | 2.20 | 0.04 | −2% |
C20:S0 | 119.3 | 0.7 | −15% | 2.11 | 0.01 | −6% |
C5:S1 | 122.3 | 0.0 | −13% | 2.25 | 0.00 | −1% |
C10:S1 | 121.1 | 14.7 | −14% | 2.21 | 0.14 | −2% |
C20:S1 | 113.0 | 14.3 | −20% | 2.11 | 0.14 | −7% |
C5:A | 100.0 | 17.9 | −29% | 2.03 | 0.18 | −10% |
C10:A | 95.1 | 14.2 | −33% | 1.93 | 0.16 | −15% |
C20:A | 66.4 | 10.3 | −53% | 1.51 | 0.11 | −33% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Forero, J.A.; Bravo, M.; Pacheco, J.; de Brito, J.; Evangelista, L. Fracture Behaviour of Concrete with Reactive Magnesium Oxide as Alternative Binder. Appl. Sci. 2021, 11, 2891. https://doi.org/10.3390/app11072891
Forero JA, Bravo M, Pacheco J, de Brito J, Evangelista L. Fracture Behaviour of Concrete with Reactive Magnesium Oxide as Alternative Binder. Applied Sciences. 2021; 11(7):2891. https://doi.org/10.3390/app11072891
Chicago/Turabian StyleForero, J. A., M. Bravo, J. Pacheco, J. de Brito, and L. Evangelista. 2021. "Fracture Behaviour of Concrete with Reactive Magnesium Oxide as Alternative Binder" Applied Sciences 11, no. 7: 2891. https://doi.org/10.3390/app11072891
APA StyleForero, J. A., Bravo, M., Pacheco, J., de Brito, J., & Evangelista, L. (2021). Fracture Behaviour of Concrete with Reactive Magnesium Oxide as Alternative Binder. Applied Sciences, 11(7), 2891. https://doi.org/10.3390/app11072891