A Data Driven Approach for Raw Material Terminology
Abstract
:1. Introduction
2. Available (Terminological) Resources
2.1. Paper Dictionaries for Raw Material Domain
2.2. Digital Resources in Raw Material Domain
2.3. General Purpose Morphological Dictionaries
3. Resource Preparation
3.1. Dictionary (Retro)Digitisation
3.2. Corpora Enlargement
3.3. Adding New Serbian Terms to General Lexica Dictionaries
- NNgi (32%), N2X—a noun followed by a word that does not inflect in the terminological phrase. Usually this word is a noun in the genitive or in the instrumental case; examples are ‘kvalitet uglja’ (coal quality—1110), ‘sistem upravljanja’ (management system—902), ‘procena rizika’ (risk assessment—514).
- AN (29%), AXN—an adjective followed by a noun; the adjective and the noun have to agree in all four grammatical categories; examples are ‘površinski kop’ (open pit—5738), ‘ugljeni sloj’ (coal seam—1686), ‘rudarski projekt’ (mining project—1412).
- NprepNp (11%), N4X—a noun followed by two words that do not inflect in the terminological phrase where these word form a prepositional phrase; examples are ‘zdravlje na radu’ (occupational health—1323), ‘čvrstoća na smicanje’ (shear strength—270), ‘transporter sa trakom’ (belt transporter—240).
- N-N (10%), NXN—a noun followed by a noun that agrees with it in number and case, where the separator can be a hyphen; examples are ‘gas-lift’ (197), ‘blok dijagram’ (block diagram—192), ‘bager vedričar’ (bucket excavator—174). This class had the largest number of recognized phrases for rejection, that is, those whose slightly different lemmas were already captured by another pattern, and this pattern should thus be placed with some lower priority in disambiguation.
- X-N (6%), 2XN—a noun preceded by a word that does not inflect in the terminological phrase. Usually it is a word that is used only in one or few terminological phrases, a prefix or an adverb derived from an adjective, while the separator can be a hyphen; examples are ‘bto sistem’ (bto system—1728), ‘pm preduzeće’ (pm company—373), ‘y-osa’ (y-axis—19).
- NNgiNgi (4%), N4X—a noun followed by two words that do not inflect in the terminological phrase where these two words are adjectives/nouns in the genitive or instrumental case; examples are ‘zaštita životne sredine’ (environment protection—668), ‘eksploatacija mineralnih sirovina’ (mineral resource exploitation—228), ‘efekat staklene bašte’ (greenhouse effect—109).
3.4. Adding Bilingual Terms
- noun + noun in the genitive (e.g., ‘coal mining’-‘eksploatacija uglja’)
- adjective + noun (‘waste water’-‘otpadna voda’)
- noun + prepositional phrase (‘belt conveyor’-‘transporter sa trakom’)
- paraphrase (‘crusher stower’-‘mašina za drobljenje i pneumatsko zasipanje’)
- one-word name (‘crushing machine’-‘drobilica’).
4. Terminology Aggregation and Presentation
4.1. Data Integration Procedure—the Pipeline
4.2. Dictionary Examples and Frequencies
4.3. The Web and Mobile App
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prćić, T. Ka Savremenim Srpskim rečNicima, Prvo, Elektronsko, Izdanje [Towards Modern Serbian Dictionaries, The First Digital Edition]; Filozofski fakultet: Novi Sad, Srbija, 2018; p. 222. [Google Scholar]
- ELEXIS—European Lexicographic Infrastructure. Available online: https://elex.is/ (accessed on 12 February 2020).
- Smolka, E.; Schulte im Walde, S. The Role of Constituents in Multiword Expressions: An Interdisciplinary, Cross-Lingual Perspective; Language Science Press: Berlin, Germany, 2020; Volume 4. [Google Scholar] [CrossRef]
- Kallas, J.; Koeva, S.; Langemets, M.; Tiberius, C.; Kosem, I. Lexicographic Practices in Europe: Results of the ELEXIS Survey on User Needs. In Electronic Lexicography in the 21st Century, Proceedings of the eLex 2019 Conference, Sintra, Portugal, 1–3 October 2019; Kosem, T., Kuhn, Z., Correia, M., Ferreria, J.P., Jansen, M., Pereira, I., Kallas, J., Jakubíček, M., Krek, S., Tiberius, C., Eds.; Lexical Computing: Brno, Czechia, 2019; pp. 1–3. [Google Scholar]
- Krek, S. Natural Language Processing and Automatic Knowledge Extraction for Lexicography. Int. J. Lexicogr. 2019, 32, 115–118. [Google Scholar] [CrossRef]
- Van der Merwe, M.F.; Horn, K. Mobile Concepts in a Mobile Environment: Historical Terms in LSP Lexicography. Yesterday Today 2018, 17–34. [Google Scholar] [CrossRef]
- Chen, L.C.; Chang, K.H.; Chung, H.Y. A Novel Statistic-Based Corpus Machine Processing Approach to Refine a Big Textual Data: An ESP Case of COVID-19 News Reports. Appl. Sci. 2020, 10, 5505. [Google Scholar] [CrossRef]
- Granger, S. Electronic lexicography: From challenge to opportunity. In Electronic Lexicography, Chapter Introduction; Oxford University Press: Oxford, UK, 2012; pp. 1–15, Oxford University Press: Oxford, UK, 2012. [Google Scholar] [CrossRef]
- Jakubiček, M.; Měchura, M.; Kovář, V.; Rychlý, P. Practical Post-Editing Lexicography with Lexonomy and Sketch Engine. In Proceedings of the XVIII EURALEX International Congress: Lexicography in Global Contexts, Book of Abstracts, Ljubljana, Slovenia, 17–21 July 2018; Cibej, J., Gorjanc, V., Kosem, I., Krek, S., Eds.; Ljubljana University Press: Ljubljana, Slovenia, 2018; pp. 65–67. [Google Scholar]
- Koppel, K.; Tavast, A.; Langemets, M.; Kallas, J. Aggregating dictionaries into the language portal Sõnaveeb: Issues with and without a solution. Electronic Lexicography in the 21st Century: Smart Lexicography. In Proceedings of the eLex 2019 Conference, Sintra, Portugal, 1–3 October 2019; pp. 1–3. [Google Scholar]
- Lopez-Ubeda, P.; Díaz-Galiano, M.C.; Montejo-Raez, A.; Martin-Valdivia, M.T.; Ureña-López, L.A. An integrated approach to biomedical term identification systems. Appl. Sci. 2020, 10, 1726. [Google Scholar] [CrossRef] [Green Version]
- Graham, R.L. Dictionary of Mining, Mineral & Related Terms; US Bureau of Mines: Washington, DC, USA, 1996. [Google Scholar]
- Dictionary of Mining, Mineral and Related Terms (an EduMine Tool). Available online: http://xmlwords.infomine.com/xmlwords.htm (accessed on 10 January 2020).
- Nešić, G. Rudarski rečNik: Srpsko-Hrvatski: English: Français: Deutsch: Russkij [Mining Dictionary: Serbo-Croatian: English: French: German: Russian]; Rudarski Institut [Mining Institute]: Beograd, Srbija, 1970; p. 1291. [Google Scholar]
- Lazić, S. Englesko-Hrvatsko-Srpski Naftni Rječnik [English Croatian-Serbian Petroleum Dictionary]; Poslovno udruženje Nafta: Zagreb, Hrvatska, 1976; p. 444. [Google Scholar]
- Perić, M. Englesko-Hrvatski Enciklopedijski rječNik Istraživanja i Proizvodnje Nafte i Plina [English-Croatian Encyclopedic Dictionary of Petroleum Exploration & Production]; INA Industrija nafte d.d. Sektor korporativnih komunikacija: Zagreb, Hrvatska, 2007; p. 1038. [Google Scholar]
- Tomanec, R.; Miljanović, I. Mali Terminološki rečNik Pripreme Mineralnih Sirovina: Englesko-Srpski i Srpsko-Engleski [A small Dictionay of Mineral Preparation: English-Serbian and Serbian-English]; Rudarsko-geološki fakultet [Faculty of Mining and Geology]: Beograd Srbija, 2002. [Google Scholar]
- Lazić, P. Terminološki Rečnik iz Pripreme Mineralnih Sirovina [The Terminological Dictionary of the Mineral Processing]; Univerzitet u Beograd, Rudarsko-geološki fakultet [University of Belgradem Faculty of Mining and Geology]: Beograd, Srbija. , 2020; Draft Version. [Google Scholar]
- Stanković, R.M.; Obradović, I.; Kitanović, O.; Kolonja, L. Towards a mining equipment ontology. In Proceedings of the 12th International Conference ‘Research and Development in Mechanical Industry’ (RaDMI 2012), Vrnjačka Banja, Serbia, 14–17 September 2012; SaTCIP (Scientific and Technical Center for Intellectual Property) Ltd., Serbia: Vrnjačka Banja, Serbia, 2012; pp. 108–118. [Google Scholar]
- Obradović, I.; Stanković, R.; Prodanović, J.; Kitanović, O. A TEL platform blending academic and entrepreneurial knowledge. In Proceedings of the Fourth International Conference on e-Learning (eLearning-2013), Manama, Bahrain, 7–9 May 2013; Belgrade Metropolitan University Belgrade: Belgrade, Serbia, 2013; pp. 65–70. [Google Scholar]
- Stanković, R.; Obradović, I.; Utvić, M. Developing Termbases for Expert Terminology under the TBX Standard. In Natural Language Processing for Serbian-Resources and Applications, Proceedings of the 35th Anniversary of Computational Linguistics in Serbia, Belgrade, Serbia, 12 November 2013; Pavlović Lažetić, G., Vitas, D., Krstev, C., Eds.; University of Belgrade: Belgrade, Serbia, 2013. [Google Scholar]
- Kolonja, L.; Stanković, R.; Obradović, I.; Kitanović, O.; Cvjetić, A. Development of terminological resources for expert knowledge: A case study in mining. Knowl. Manag. Res. Pract. 2016, 14, 445–456. [Google Scholar] [CrossRef]
- Beko, L.; Obradović, I.; Stanković, R. Developing Students’ Mining and Geology Vocabulary Through Flashcards and L1 in the CLIL Classroom. In Proceedings of the Second International Conference on Teaching English for Specific Purposes and New Language Learning Technologies, Niš, Serbia, 22–24 May 2015; Faculty of Electronic Engineering, University of Niš: Niš, Serbia, 2015. [Google Scholar]
- Termi—Terminological Web Application. Available online: https://termi.rgf.bg.ac.rs/ (accessed on 12 February 2020).
- GeolISS—Geološki Informacioni Sistem Srbije [Geological Information System of Serbia]—GeoliSSTerm. Available online: http://geoliss.mre.gov.rs/recnik/ (accessed on 12 February 2020).
- Rudarska Terminologija i Nomenklatura [Mining Terminology and Nomenclature]. Available online: http://rudonto.rgf.bg.ac.rs/ (accessed on 12 February 2020).
- Andonovski, J.; šandrih, B.; Kitanović, O. Bilingual lexical extraction based on word alignment for improving corpus search. Electron. Libr. 2019, 37, 722–739. [Google Scholar] [CrossRef]
- Radojičić, M.; Obradović, I.; Stanković, R.; Utvić, M.; Kaplar, S. A Mathematical Learning Environment Based on Serbian Language Resources. In Proceedings of the 7th International Scientific Conference Technics and Informatics in Education, Čačak, Serbia, 25–27 May 2018; Faculty of Technical Sciences: Čačak, Serbia, 2018; pp. 248–254. [Google Scholar]
- Stanković, R.; Krstev, C.; Lazić, B.; Vorkapić, D. A bilingual digital library for academic and entrepreneurial knowledge management. In Proceeding of the 10th International Forum on Knowledge Asset Dynamics-IFKAD, Bari, Italy, 10–12 June 2015; pp. 1764–1777. [Google Scholar]
- Stanković, R.; Krstev, C.; Vitas, D.; Vulović, N.; Kitanović, O. Keyword-based search on bilingual digital libraries. In Semanitic Keyword-Based Search on Structured Data Sources; Calì, A., Gorgan, D., Ugarte, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 112–123. [Google Scholar]
- Tomašević, A.; Stanković, R.; Utvić, M.; Obradović, I.; Kolonja, B. Managing mining project documentation using human language technology. Electron. Libr. 2018, 36, 993–1009. [Google Scholar] [CrossRef]
- Stanković, R.; Krstev, C.; Lazić, B.; Škorić, M. Electronic Dictionaries—from File System to lemon Based Lexical Database. In Proceedings of the Eleventh International Conference on Language Resources and Evaluation—W23 6th Workshop on Linked Data in Linguistics: Towards Linguistic Data Science (LDL-2018), LREC 2018, Paris, France, 12 May 2018; McCrae, J.P., Chiarcos, C., Declerck, T., Gracia, J., Klimek, B., Eds.; European Language Resources Association (ELRA): Paris, France, 2018; pp. 18–23. [Google Scholar]
- Krstev, C. Processing of Serbian—Automata, Texts and Electronic Dictionaries; Faculty of Philology of the University of Belgrade: Belgrade, Serbia, 2008. [Google Scholar]
- Krstev, C.; Stanković, R.; Obradović, I.; Lazić, B. Terminology Acquisition and Description Using Lexical Resources and Local Grammars. In Proceedings of the 11th International Conference on Terminology and Artificial Intelligence, Granada, Spain, 4–6 November 2015; Volume 1495, pp. 81–89. [Google Scholar]
- Stankovic, R.; Šandrih, B.; Krstev, C.; Utvić, M.; Škorić, M. Machine Learning and Deep Neural Network-Based Lemmatization and Morphosyntactic Tagging for Serbian. Proceedings of The 12th Language Resources and Evaluation Conference, Marseille, France, 11–16 May 2020; European Language Resources Association: Marseille, France, 2020; pp. 3954–3962. [Google Scholar]
- Schmid, H. Improvements in Part-of-Speech Tagging with an Application to German. In Natural Language Processing Using Very Large Corpora; Armstrong, S., Church, K., Isabelle, P., Manzi, S., Tzoukermann, E., Yarowsky, D., Eds.; Springer Netherlands: Dordrecht, The Netherland, 1999; pp. 13–25. [Google Scholar] [CrossRef]
- Schmid, H. Probabilistic Part-of-Speech Tagging Using Decision Trees. In New Methods in Language Processing; Jones, D.B., Somers, H.L., Eds.; Routledge: London, UK, 2013; pp. 154–164. [Google Scholar]
- Bilte—Bilingual Terminology Extraction. Available online: http://bilte.jerteh.rs/ (accessed on 12 February 2020).
- Krstev, C.; Šandrih, B.; Stanković, R.; Mladenović, M. Using English baits to catch Serbian multi-word terminology. In Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018), Miyazaki, Japan, 7–12 May 2018; European Language Resources Association (ELRA): Miyazaki, Japan, 2018. [Google Scholar]
- šandrih, B.; Krstev, C.; Stanković, R. Two approaches to compilation of bilingual multi-word terminology lists from lexical resources. Nat. Lang. Eng. 2020, 26, 455–479. [Google Scholar] [CrossRef]
- Spasić, I.; Greenwood, M.; Preece, A.; Francis, N.; Elwyn, G. FlexiTerm: A flexible term recognition method. J. Biomed. Semant. 2013, 4, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cram, D.; Daille, B. Terminology extraction with term variant detection. Proceedings of ACL-2016 System Demonstrations, Berlin, Germany, 7–12 August 2016; Association for Computational Linguistics: Berlin, Germany, 2016; pp. 13–18. [Google Scholar] [CrossRef]
- Och, F.J.; Ney, H. A systematic comparison of various statistical alignment models. Comput. Linguist. 2003, 29, 19–51. [Google Scholar] [CrossRef]
- Moses–Statistical Machine Translation System. Available online: http://www.statmt.org/moses/ (accessed on 12 February 2020).
- Mihaljević, M. Definicija naziva u terminološkim rječnicima [Names definition in terminological dictionaries]. Raspr. čAsopis Instituta Hrvat. Jez. Jezikoslovlje Discuss. J. Inst. Croat. Lang. Linguist. 1993, 19, 259–271. [Google Scholar]
- Chiarcos, C.; Fäth, C.; Ionov, M. The ACoLi dictionary graph. In Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020), Marseille, France, 11–16 May 2020; European Language Resources Association: Marseille, France, 2020; pp. 3281–3290. [Google Scholar]
- The OntoLex Lemon Lexicography Module. Available online: https://www.w3.org/2019/09/lexicog/ (accessed on 12 February 2020).
- Bosque-Gil, J.; Gracia, J.; Montiel-Ponsoda, E. Towards a Module for Lexicography in OntoLex. In Proceedings of the LDK workshops: OntoLex, TIAD and Challenges for Wordnets at 1st Language Data and Knowledge conference (LDK 2017), Galway, Ireland, 18 June 2017; Volume 1899, pp. 74–84. [Google Scholar]
- Lexicon Model for Ontologies. Available online: https://www.w3.org/2016/05/ontolex/ (accessed on 12 February 2020).
- McCrae, J.; Aguado-de Cea, G.; Buitelaar, P.; Cimiano, P.; Declerck, T.; Gómez-Pérez, A.; Gracia, J.; Hollink, L.; Montiel-Ponsoda, E.; Spohr, D.; et al. Interchanging lexical resources on the Semantic Web. Lang. Resour. Eval. 2012, 46, 701–719. [Google Scholar] [CrossRef] [Green Version]
- NexusLinguarum COST Action. Available online: https://nexuslinguarum.eu/ (accessed on 12 February 2020).
- RDF 1.1 Turtle. Available online: https://www.w3.org/TR/turtle/ (accessed on 12 February 2020).
- Chiarcos, C.; Ionov, M.; de Does, J.; Depuydt, K.; Khan, F.; Stolk, S.; Declerck, T.; McCrae, J.P. Modelling Frequency and Attestations for OntoLex-Lemon. In Proceedings of the 2020 Globalex Workshop on Linked Lexicography, Marseille, France, 12 May 2020; pp. 1–9. [Google Scholar]
- Stanković, R.; Šandrih, B.; Stijović, R.; Krstev, C.; Vitas, D.; Marković, A. SASA Dictionary as the Gold Standard for Good Dictionary Examples for Serbian. In Electronic lexicography in the 21st Century, Proceedings of the eLex 2019 Conference, Sintra, Portugal, 1–3 October 2019; Lexical Computing CZ, s.r.o.: Brno, Czech Republic, 2019; pp. 248–269. [Google Scholar]
- Sketch Engine API. Available online: https://www.sketchengine.eu/documentation/api-documentation/ (accessed on 12 February 2020).
- Kilgarriff, A.; Baisa, V.; Bušta, J.; Jakubíček, M.; Kovář, V.; Michelfeit, J.; Rychlỳ, P.; Suchomel, V. The Sketch Engine: Ten years on. Lexicography 2014, 1, 7–36. [Google Scholar] [CrossRef] [Green Version]
- Sketchengine API for OntoLex FrAC Module. Available online: https://github.com/ontolex/frequency-attestation-corpus-information/blob/master/samples/sketch-engine/Sketch-Api-Frac.ipynb (accessed on 12 February 2020).
- Statistics Used in the Sketch Engine. Available online: https://www.sketchengine.eu/wp-content/uploads/ske-statistics.pdf (accessed on 12 February 2020).
- VocBench—Collaborative Development Platform for Managing Ontologies, Thesauri, Ontolex-Lemon Lexicons and Generic RDF Datasets. Available online: http://vocbench.uniroma2.it (accessed on 12 February 2020).
- Stellato, A.; Fiorelli, M.; Turbati, A.; Lorenzetti, T.; van Gemert, W.; Dechandon, D.; Laaboudi-Spoiden, C.; Gerencsér, A.; Waniart, A.; Costetchi, E.; et al. VocBench 3—A collaborative Semantic Web editor for ontologies, thesauri and lexicons. Semant. Web 2020, 11, 855–881. [Google Scholar] [CrossRef]
- Leximirka. Available online: https://leximirka.jerteh.rs (accessed on 12 February 2020).
- MathJax—Open Source, JavaScript Display Engine for Mathematics that Works in all Browsers. Available online: https://www.mathjax.org/ (accessed on 12 February 2020).
- Cervone, D. MathJax: A Platform for Mathematics on the Web. Not. Am. Math. Soc. 2012, 59, 312–316. [Google Scholar] [CrossRef]
- KaTeX—Javascript Library for TeX Math Rendering on the Web. Available online: https://github.com/KaTeX/KaTeX (accessed on 12 February 2020).
- KaTeX View—A Library that Uses Khan Academy KaTeX for TeX Math Rendering. Available online: https://github.com/judemanutd/KaTeXView (accessed on 12 February 2020).
- Lexonomy. Available online: https://www.lexonomy.eu/ (accessed on 12 February 2020).
- Měchura, M.B. Introducing Lexonomy: An open-source dictionary writing and publishing system. In Electronic Lexicography in the 21st Century: Lexicography from Scratch. In Proceedings of the eLex 2017 Conference, Leiden, The Netherlands, 19–21 September 2017; pp. 19–21. [Google Scholar]
- Stanković, R.; Krstev, C.; Obradović, I.; Lazić, B.; Trtovac, A. Rule-based automatic multi-word term extraction and lemmatization. In Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16), Portorož, Slovenia, 23–28 May 2016; pp. 507–514. [Google Scholar]
- Gelbukh, A.; Sidorov, G.; Lavin-Villa, E.; Chanona-Hernandez, L. Automatic term extraction using log-likelihood based comparison with general reference corpus. In International Conference on Application of Natural Language to Information Systems; Springer: Berlin/Heidelberg, Germany, 2010; pp. 248–255. [Google Scholar]
- Frantzi, K.; Ananiadou, S.; Mima, H. Automatic recognition of multi-word terms:. the c-value/nc-value method. Int. J. Digit. Libr. 2000, 3, 115–130. [Google Scholar] [CrossRef] [Green Version]
- Pazienza, M.T.; Pennacchiotti, M.; Zanzotto, F.M. Terminology extraction: An analysis of linguistic and statistical approaches. In Knowledge Mining; Springer: Berlin/Heidelberg, Germany, 2005; pp. 255–279. [Google Scholar]
- Arcan, M.; Turchi, M.; Tonelli, S.; Buitelaar, P. Leveraging bilingual terminology to improve machine translation in a CAT environment. Nat. Lang. Eng. 2017, 23, 763–788. [Google Scholar] [CrossRef]
- Haque, R.; Penkale, S.; Way, A. TermFinder: Log-likelihood comparison and phrase-based statistical machine translation models for bilingual terminology extraction. Lang. Resour. Eval. 2018, 52, 365–400. [Google Scholar] [CrossRef]
- Sketch Engine—Revolutionize the Dictionary-Building Process. Available online: https://www.sketchengine.eu/user-guide/lexicographers/ (accessed on 15 February 2021).
- Kang, X.; Li, B.; Yao, H.; Liang, Q.; Li, S.; Gong, J.; Li, X. Incorporating Synonym for Lexical Sememe Prediction: An Attention-Based Model. Appl. Sci. 2020, 10, 5996. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kitanović, O.; Stanković, R.; Tomašević, A.; Škorić, M.; Babić, I.; Kolonja, L. A Data Driven Approach for Raw Material Terminology. Appl. Sci. 2021, 11, 2892. https://doi.org/10.3390/app11072892
Kitanović O, Stanković R, Tomašević A, Škorić M, Babić I, Kolonja L. A Data Driven Approach for Raw Material Terminology. Applied Sciences. 2021; 11(7):2892. https://doi.org/10.3390/app11072892
Chicago/Turabian StyleKitanović, Olivera, Ranka Stanković, Aleksandra Tomašević, Mihailo Škorić, Ivan Babić, and Ljiljana Kolonja. 2021. "A Data Driven Approach for Raw Material Terminology" Applied Sciences 11, no. 7: 2892. https://doi.org/10.3390/app11072892
APA StyleKitanović, O., Stanković, R., Tomašević, A., Škorić, M., Babić, I., & Kolonja, L. (2021). A Data Driven Approach for Raw Material Terminology. Applied Sciences, 11(7), 2892. https://doi.org/10.3390/app11072892